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Cysteine residues in signal
transduction and its relevance
in pancreatic beta cells

Blanka Holendova and Lydie Plecita-Hlavata*

Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences,
Prague, Czechia
Cysteine is one of the least abundant but most conserved amino acid residues in

proteins, playing a role in their structure, metal binding, catalysis, and redox

chemistry. Thiols present in cysteines can be modified by post-translational

modifications like sulfenylation, acylation, or glutathionylation, regulating protein

activity and function and serving as signals. Their modification depends on their

position in the structure, surrounding amino acids, solvent accessibility, pH, etc.

The most studied modifications are the redox modifications by reactive oxygen,

nitrogen, and sulfur species, leading to reversible changes that serve as cell

signals or irreversible changes indicating oxidative stress and cell damage.

Selected antioxidants undergoing reversible oxidative modifications like

peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that

can propagate to target proteins. Cysteine thiols can also be modified by acyl

moieties’ addition (derived from lipid metabolism), resulting in protein functional

modification or changes in protein anchoring in themembrane. In this review, we

update the current knowledge on cysteine modifications and their

consequences in pancreatic b-cells. Because b-cells exhibit well-balanced

redox homeostasis, the redox modifications of cysteines here serve primarily

for signaling purposes. Similarly, lipid metabolism provides regulatory

intermediates that have been shown to be necessary in addition to redox

modifications for proper b-cell function and, in particular, for efficient insulin

secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur

species and the imbalance of lipids under pathological conditions cause

irreversible changes and contribute to oxidative stress leading to cell failure

and the development of type 2 diabetes.
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1 Introduction

Cysteine (Cys) exhibits unique character. It contains sulfur in the form of sulfhydryl

thiol form which is ionizable, forming a negatively charged thiolate group after

deprotonation that further increases its reactivity. This thiol/thiolate group is subject to

alkylation by electrophiles and oxidation by reactive oxygen, nitrogen, and sulfur species,
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resulting in posttranslationally modified forms that may exhibit

significantly altered functions (1).

Cys is considered one of the most conserved amino acids in

proteins across all species. Strong selection pressure retained Cys

residues at functionally important sites and removed them from

others (2). The physical and chemical properties of Cys predestine it

to be a polar residue (like serine, where the sulfur atom is replaced

by oxygen), however, it is considered hydrophobic because it is

buried to an increased extent (protection from the solvent), and the

number of unpaired Cys residues on the protein surface is minimal

(2). Another unique property is its tendency to form clusters with

other Cys, as in metal-binding or redox-sensitive proteins, leading

to the formation of disulfide bonds. Exposed and isolated Cys are

less conserved (1).
2 Chemical properties of cysteine

The chemical properties of Cys allow it to be both redox active

and strongly nucleophilic due to the large atomic radius of the

sulfur atom, the presence of lone pairs of electrons, and the low

dissociation energy of the thiol S-H bond.

The thiol groups (R- SH) undergo deprotonation (loss of H+),

giving the thiolate form R-S-. The readiness to provide the proton is

given by the pKa, the local pH and electrostatic environment. In

proteins, the specific hydrogen bond donors and an electropositive

local environment cause a decrease in the pKa value due to the

stabilization of the negative thiolate anion, while a hydrophobic

environment or an electronegative local environment has the

opposite effect (1).

Another important feature is the reductive potential of the thiol

group, i.e., the ability to accept or donate electrons. This ability

allows the formation of so-called redox pairs, and their

interconversion is defined as a reductive or oxidative half-

reaction. In biological systems, electron transfer is very dynamic

and involves many players. Therefore, many reactions occur even

under thermodynamically unfavorable conditions and would never

occur in isolation, favoring the kinetic pathways and rates

associated with certain reactions (3, 4).

Thiols can produce disulfides in one or more thiol-disulfide

exchange processes in intricate biological systems (1). Long

assumed to merely serve to stabilize proteins structurally, it is

now known that these processes also give rise to many enzymes’

diverse and dynamic functional characteristics (5). The rate-

determining stage in the folding process of proteins creating

structural disulfide linkages is direct thiol-disulfide exchange.

Although in vivo enzyme catalysis speeds up the events,

spontaneous thiol-disulfide exchange is slow (kinetically

inadequate on the folding timescale). Through a sequence of

intra- and intermolecular thiol-disulfide exchange processes

carried out by oxidoreductases, the folding polypeptide gains a

new disulfide bond. Molecular oxygen serves as the oxidizing

equivalent in these reactions. A different mechanism for thiol-

disulfide exchange involves the oxidative conversion of protein
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thiols to disulfides and their subsequent reduction. Protein thiols

are also significant targets of reactive oxygen species in vivo. These

processes are crucial for both antioxidant defense and redox

regulation of cell signaling, and it is believed that the thiol-

disulfide pool is principally responsible for maintaining

intracellular redox equilibrium (6). It is now widely acknowledged

that thiol-disulfide exchange and thiol oxidation/reduction

reactions are dynamic, non-equilibrium processes that are

kinetically rather than thermodynamically controlled in cellular

systems (7–9). In other words, the partitioning of particular routes

depends on relative rates, whereas redox potentials and equilibrium

constants just tell whether a reaction is favorable. By fine-tuning the

activation energies of reactions that control the outcome of

oxidative stimuli or the location of structural disulfides in native

proteins, enzymes play a crucial role in these processes.
3 Oxidative posttranslational
modifications of cysteines

The availability of different oxidation states of thiol-sulfur

allows the formation of a variety of oxidative posttranslational

modifications (PTMs) on cysteines, including S-nitrosylation (or

S-nitrosation, SNO), sulfhydration (SSH), disulfide bond formation

(RS-SR), sulfenylation (SOH), sulfinic acid (SO2H), and sulfonic

acid (SO3H) (10) (Figure 1A). Most Cys oxidative PTMs are

initiated by reactive oxygen or nitrogen species (ROS/RNS) or

sulfane (H2S) reacting with the free thiol on a Cys side chain

(Figure 1A). Two-electron oxidation of thiol(ate) groups, e.g., by

H2O2, peroxynitrite, and other hydroperoxides, produces the

simplest oxyacid of sulfur, sulfenic acid. The rate of this reaction

can vary from negligibly slow to 108 M-1 s-1 at active sites of

peroxidase (4). Sulfenic acid readily reacts with proximal thiol

groups to form disulfides or is further oxidized to irreversible

sulfinic or sulfonic acids in the absence of such groups (11).

Sulfonic acids can also react with each other to form

thiosulfinates or with amine or amide groups to form

sulfenylamides (12) (Figure 1A). S-nitrosothiols and persulfides

are additional oxidative reaction byproducts that are

unquestionably significant as signaling intermediates (13, 14). The

thiyl radical, another reactive species that can produce a variety of

products once generated, can be produced by the one-electron

oxidation of thiol groups in the presence of radicals (15).

The reactivity of cysteine to oxidative changes is determined by

the proximity of oxidants (in addition to its chemical properties). In

b-cells, these are mainly superoxide (O2
·−) and other oxidizing

byproducts generated in mitochondria, reduced flavoprotein

oxidases or monooxygenases and NADPH oxidase (NOX) family;

and NO produced by NOS and combining with O2
·− also

peroxinitrite (16). Endogenous antioxidant system such as

superoxide dismutase (SOD), peroxiredoxins (Prdx), glutathione

peroxidases (GPX) and compounds such as, glutathione (GSH) and

thioredoxin (Trx) are well compartmentalized (17). Together they

play a critical role in maintaining redox equilibrium.
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4 Other posttranslational
modifications of cysteines

4.1 S-glutathionylation

S-glutathionylation is the attachment of bulky GSH to a cysteine

residue via the formation of disulfides, thereby regulating protein

functions in response to oxidants (18) (Figure 1A). The essential

functions of reversible glutathionylation have emerged in

physiology, including cardiovascular regulation (18, 19)

inflammation and infection (20, 21), apoptosis (22), and cancer

(23). S-glutathionylation occurs through nucleophilic sulfur

chemistry in which the thiolate anion (S−) reacts with oxidized

glutathione (GSSG) or reactions of GSH with electrophilic sulfur
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intermediates, such as sulfenic acid, S-nitrosothiol, or thiyl radical

(24). The formation of glutathionylate is also balanced by the

activities of various enzymes, including glutaredoxins (Grx) and

glutathione transferase pi and omega (GSTP and GSTO) (25).
4.2 S-acylation

S-acylation is the covalent attachment of various fatty acids (14-

20 carbon atoms) to cysteine residues via a thioester bond

(Figure 1B). While most lipid modifications to proteins are

irreversible, S-acylation is reversible and can be very dynamic

(26). Lipid modifications can alter protein transport and

membrane localization, interactions, stability, and conformation

(26). While S-acylation of cysteines has mainly involved saturated
B

C

A

FIGURE 1

Cysteine posttranslational modifications; (A) oxidative modifications: Two-electron oxidation of Cys thiol(ate) groups by hydrogen peroxide, peroxynitrite,
and other hydroperoxides, produces sulfenic acid. Sulfenic acid reacts with thiol groups to form disulfides or is further oxidized to irreversible sulfinic or
sulfonic acids. Other products of oxidative reactions include S-nitrosothiols and persulfides; (B) S-palmitoylation as an example of S – acylation reaction:
In the cells, the reaction is mediated by acyltransferases which attach the activated fatty acid-CoA to the Cys moiety. The reversibility of the reaction is
ensured by esterases; (C) CoAlation: Cysteine thiols of proteins create a reversible mixed disulfide bond called protein CoAlation. This figure was created
in Biorender.com (Toronto, Canada).
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palmitic acid, other studies described Cys modification by oleic acid

(27–29), stearic acid (28, 30), and arachidonic acid (29). This can

lead to different functional outcomes (29, 30). It depends on the

exogenous supply of fatty acids reflecting cellular lipid profiles (31).

The added lipid species also may vary from cysteine to cysteine on

the same protein (32). The prevalence or functional significance of

fatty acid type on S-acylated proteins or modified cysteine in terms

of its potential for oxidative modification is not fully understood.
4.3 S-CoAlation

In recent years the antioxidant function of a key cellular

metabolite, coenzyme A (CoA), has been discovered (33). CoA is

an essential cofactor in all organisms and its biosynthesis involves

enzymatic conjugation of cysteine, pantothenate and ATP (34).

Similar to the antioxidant role of glutathione and glutathionylation

of proteins, CoA protects cysteine thiols from hyperoxidation

during oxidative stress by forming a mixed disulfide bond,

protein CoAlation (33) (Figure 1C). Recent research on protein

CoAlation has shown that it is a widespread and reversible

posttranslational modification. Established cell lines and

organisms have been shown to exhibit increased levels of

CoAlated proteins upon oxidative or metabolic stress (33). To

date, CoAlation was found to modulate the activity of modified

proteins and induce significant conformational changes (35).
5 Relevance of cysteine oxidation in
pancreatic b-cells physiology

For many years, b-cells were attributed as having weak

antioxidant defense. However, this was based on comparison with

liver or kidney, which are highly specialized detoxifying organs (36).

Recently, it was shown that b-cells express Prdxs, Trxs, and SOD1/

2. Thus, superoxide formed can be rapidly dismutated to H2O2,

which can then serve as a signaling molecule due to its stability,

thiol selectivity, and ability to diffuse through membranes. As

mentioned earlier, thiol-containing molecules, Prxs/Trxs exhibit a

high affinity for oxidants and are therefore efficient sensors for a

prooxidant redox environment. Pancreatic b-cells are glucose

sensors responding to high glucose by insulin secretion. Glucose

stimulation induces oxidative metabolism, which increases the

prooxidant redox status. We and others have shown that short-

term glucose stimulation, which increases prooxidant status via

cytoplasmic NOX4, is necessary for efficient insulin secretion,

whereas long-term stimulation, which tends to induce oxidative

stress, can lead to the development of T2D (37, 38). A possible

mechanism for the role of prooxidant metabolism in pancreatic b-
cells has been proposed (39–46).

The most important, but still technically elusive problem in

redox signaling is the compartmentalization of redox status.

Cellular localization then determines the source of ROS/RNS/RSS

and their proximity to potential cysteine modifications, type of

antioxidant defense, and the redox potential of cysteine residues
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present. Subcellular organelles maintain different pH values and

redox potentials as well as concentrations of reactive metabolites

that trigger specific redox signals (47, 48). The most important

compartments for redox signaling in pancreatic b-cells are the

mitochondria, the cytoplasm with the plasma membrane rafts,

while oxidation in ER with the Golgi apparatus has more

structural functions. Whereas the cytoplasm and mitochondria of

quiescent cells have a more reduced environment (-200 and

-300mV for the GSH/GSSG redox pair), which gives them a

broad probability for redox signaling, e.g. upon induction of

proliferation or some other stimulus, ER and Golgi secretion

machinery exhibit a more oxidized potential (-150 and -140mV

for the GSH/GSSG redox pair) (9, 49). This oxidized status is rather

essential for the formation and maintenance of the structural

disulfide bonds of the secretory proteins and counteracts redox

signaling. It is difficult to determine the reduction potential of

individual cellular compartments because different redox pairs are

present (GSH/GSSG, Trx, Cys/Cys, etc.). They have individually

different midpoint potentials that vary in different organelles. For

example, Trx redox pairs are generally more reducing than GSH/

GSSG, and while Trx1 shows a redox potential of -280 and -300 mV

in the cytosol and nucleus, Trx2 shows an, even more, reducing

redox pair of -340 and -360 mV in mitochondria (9, 48). The ability

of cysteine to be modified by redox depends on many factors as

stated above, but also depends on the presence of molecules with

greater reactivity toward thiols such as peroxymonocarbonate. CO2

is in equilibrium with bicarbonate, which forms the biological buffer

within cells. Bicarbonate can react with peroxide to form

peroxymonocarbonate. The rate of its formation increases with

decreasing pH (50). Thus, cellular metabolism and its

compartmentalization are the main trigger for redox signaling.
5.1 Endoplasmic reticulum and Golgi
secretion machinery

The importance of the ER/Golgi secretory machinery in b-cells
lies in proper insulin maturation and insulin granule formation

apart from lipid biosynthesis and folding, glycosylation, trafficking,

and secretion of many proteins. Insulin signaling is a key function

of b-cells in response to glucose. The acidic environment of ER and

the progressive proton gradient from the Golgi to secretory vesicles

allow the disulfide bond formation as a PTM not only in insulin

molecules. Disulfide formation also mediates biomolecule

degradation and ligand dissociation from receptors in the

endocytic pathway. Insulin requires 3 disulfide bonds to be

formed by the oxidase activity of protein disulfide isomerase

(PDI). Electron transfer between PDI and ERO1A provides an

oxidizing environment and disulfide bond formation (51). PDI

must be reoxidized by Prdx4 in rodents and humans together with

Gpx7/8 in humans, with H2O2 supplied mainly by ERO1 or the

present NOX enzymes (52). The tight regulation of ERO1A activity

depends on the specific formation of disulfide pairs in the protein

backbone (Cys94-Cys99 for the active form vs. Cys94-131 and

Cys99-104 for the inactive form) and the quality of folded proteins
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is thus dependent on the ER redox status (53). Disturbed ER redox

homeostasis leads to ER stress, which activates the unfolded protein

response. This can multiply ROS production and impair insulin

production. Interestingly, Gpx7/8 show low GSH activity due to the

absence of domains bound to GSH, but it plays a role in calcium

storage (54). Calcium signaling has a key regulatory function for the

insulin secretion machinery and functional synchronization of b-
cell in the pancreatic islet. The expression of Gpx8 is regulated by

Nrf2, which is involved in ER calcium management via the ATPase

SERCA (55).
5.2 Insulin signaling and redox regulation
in b-cells

Insulin is an important regulator of energy metabolism,

affecting proliferation and survival. Its receptors are present in

many tissues important for glucose uptake and utilization, such as

adipose tissue, skeletal muscle, and liver. However, they are also

found in the brain, kidney, heart and pancreas. A functional insulin

receptor (IR) ready for insulin binding requires the formation of

disulfide bonds between the receptor´s subunits, and further signal

propagation involves the formation of additional disulfide bonds

that regulate its activity. These proteins are kinases and

phosphatases as downstream signaling cascades trigger many

intracellular phosphorylation events. Insulin receptor substrate-1

(IRS1) is a signaling protein that is phosphorylated by IR and

activates downstream signaling pathways. Not only does it undergo

cysteine oxidation to stabilize the molecule by forming cysteine

bonds, but it is regulated by S-nitrosylation, which affects

downstream insulin signaling through Akt phosphorylation.

Several studies suggest an important role of IRS-1 S-nitrosylation

in insulin resistance through the degradation of IRS1 via the

ubiquitin-proteasome pathway (56–58). The effect of S-

nitrosylation on IRS1 in adipocytes is more inhibitory for glucose

uptake. S-nitrosylation decreases tyrosine phosphorylation of IRS1

and activation of Akt. This effect is thought to be mediated by

inhibition of protein tyrosine phosphatases (PTPs) by S-

nitrosylation, resulting in increased serine phosphorylation of

IRS1 and decreased tyrosine phosphorylation (59, 60). Another

example of redox regulation of insulin receptors has been shown for

IGFs. IGF1 and IGF2 are growth factors that share significant

structural homology with insulin and bind to IR. Apart from the

role that cysteine residues in IGF1 and IGF2 play in their structural

stability and activity, they may form disulfide bonds with other

proteins, such as IGF binding proteins (IGFBPs), which may

regulate the activity and availability of these growth factors in the

extracellular space (61). In any case, IR phosphorylation is regulated

by the well-characterized protein tyrosine phosphatase 1B

(PTBP1B) (62). Direct oxidation of PTBP1B is rather slow (~101

M-1. s-1) and it has been suggested that abundant peroxiredoxins

having a higher affinity for oxidation, compete for H2O2 in cells (4,

63). The mechanism of PTBP1B oxidation occurs through the

synergy of two independent mechanisms. First, bicarbonate/CO2
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accelerates the oxidation of phosphatase and the same system

facilitates the inhibition of peroxiredoxins by hyperoxidation, thus

enabling the oxidation and inactivation of PTBP1B (63). Moreover,

the activity of phosphatase is dependent on the pH in cells, and its

activity increases at lower pH. This is consistent with the

dependence of phosphatase oxidation on pH, which increases

with higher pH (63, 64). Moreover, PTBP1B has been shown to

be partially glutathionylated (at Cys215), resulting in decreased

activity (65). Similarly, it has been suggested that S-nitrosylation

reversibly inactivates PTBP1B, which may protect the protein from

permanent inactivation by oxidative stress (66). Thus, the redox

regulation of this PTBP1B is quite complex and largely depends on

the metabolic state. S-glutathionylation has also been described for

other downstream effectors of insulin signaling pathways, PI3K-

Akt, Ras-MEKK1 (e.g. PTEN, IKKb, NFkB, MEKK1, etc.) during

the development of diabetes and some diabetic models (more in

(67)), reducing their activity (Figure 2).
5.3 S-acylation in b-cells

S-acylation has been shown to be an important regulator of ion

channels, vesicle trafficking, and small GTPAses, controlling many

aspects of protein sorting, membrane localization, and lipid

metabolism (68). S-acylated proteins of SNARE complex, including

syntaxin, SNAP25, VAMP2 and synaptotagmin 1 are involved in the

synaptic vesicle fusion machinery in neuronal cells (69) and also in

pancreatic b-cells (70). KATP channel activity is strongly modulated

by S-acylation, which causes channel opening, counteracting the

ability of ATP to close the channel (71, 72). Stimulating glucose

levels, however, are still able to close the channel, probably by rapid

long-chain-CoA esterification to diacylglycerol (68, 73). S-acylation

has also been shown to modulate the activity of voltage-gated Ca2+

channels (74) and BK channels (75), thereby affecting the electrical

excitability of pancreatic b-cells by controlling action potential

amplitude, depolarization, and repolarization that determine Ca2+

influx and insulin exocytosis (76) (Figure 2). Among other targets,

adenine nucleotide translocase (ANT) has been shown to be inhibited

by S-acylation, resulting in a decrease in the ATP : ADP ratio and

increased ROS production (77).
6 Conclusion

It is obvious that not all Cys residues are the same and that the

Cys residues that confer signaling properties to proteins are unique

because of their position in the protein, the surrounding amino

acids, protein cellular localization, and its redox environment.

Although we have extensive knowledge of the location of cysteine

modifications in individual proteins, we lack a functional

understanding and interplay of the various cysteine modifications

in a single protein and their consequences on the global scale. It is

well known that b-cells require redox signaling through cysteine

modifications for efficient glucose-stimulated insulin secretion and
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insulin signaling because of their sensitive redox homeostasis.

However, metabolic overload and imbalanced redox homeostasis

may lead to the development of T2D. This increases the need for

research in this area as a potential intervention in the treatment of

diabetes development.
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