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Background: The clinical correlation between erectile dysfunction (ED) and

depression has been revealed in cumulative studies. However, the evidence of

shared mechanisms between them was insufficient. This study aimed to explore

common transcriptomic alterations associated with ED and depression.

Materials and methods: The gene sets associated with ED and depression were

collected from the Gene Expression Omnibus (GEO) database. Comparative

analysis was conducted to obtain common genes. Using R software and other

appropriate tools, we conducted a range of analyses, including function

enrichment, interactive network creation, gene cluster analysis, and

transcriptional and post-transcriptional signature profiling. Candidate hub

crosslinks between ED and depression were selected after external validation

and molecular experiments. Furthermore, subpopulation location and disease

association of hub genes were explored.

Results: A total of 85 common genes were identified between ED and

depression. These genes strongly correlate with cell adhesion, redox

homeostasis, reactive oxygen species metabolic process, and neuronal cell

body. An interactive network consisting of 80 proteins and 216 interactions

was thereby developed. Analysis of the proteomic signature of common genes

highlighted eight major shared genes: CLDN5, COL7A1, LDHA, MAP2K2, RETSAT,

SEMA3A, TAGLN, and TBC1D1. These genes were involved in blood vessel

morphogenesis and muscle cell activity. A subsequent transcription factor

(TF)–miRNA network showed 47 TFs and 88 miRNAs relevant to shared genes.

Finally, CLDN5 and TBC1D1 were well-validated and identified as the hub

crosslinks between ED and depression. These genes had specific

subpopulation locations in the corpus cavernosum and brain tissue, respectively.

Conclusion: Our study is the first to investigate common transcriptomic

alterations and the shared biological roles of ED and depression. The findings

of this study provide insights into the referential molecular mechanisms

underlying the co-existence between depression and ED.
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1 Introduction

Erectile dysfunction (ED) is a common male sexual dysfunction

that increases with age (1), and it could have a negative effect on both

physical and psychological health for couples. Data reported that 322

million men would suffer from ED to varying degrees by 2025 (2).

There are a multitude of factors that contribute to the pathogenesis of

ED, including neurogenic, vascular, endocrinological, and

psychological factors. Therefore, it is believed that ED is strongly

associated with these diseases. For example, ED could be an early

predictor of adverse cardiovascular events (3, 4). Understanding the

crosslinks between ED and related diseases is vital for their treatment.

Psychological factors are involved in the process of ED.

Therefore, ED may be associated with psychological illness.

Depression is a common mental illness regarded as one of the

most severe public concerns (5). As a result, major depressive

disorder has been deemed the most prevalent mental disorder in

the world (6). The interactive relationship between ED and

depression has been explored in cumulative studies. Depression

occurred in 8.7%–43.1% of patients in ED (7, 8). Liu et al. (3)

reported that men with depression were 1.39 times more likely to

get impotence. Sexual dysfunction was significantly correlated with

the severity of depression (9). Furthermore, ED was 2.92 times more

likely to lead to depression. Nocturnal penile tumescence time and

rigidity were impaired in depressed men. Preliminarily, biological

factors have been proposed as contributing to the co-occurrence of

these conditions, except for psychological factors. Goldstein et al.

(10) postulated that the hypothalamic–pituitary–adrenocortical axis

affected by depression could produce excessive catecholamine,

impairing cavernosal muscle relaxation and propelling ED.

Moreover, decreased testosterone level has been established as a

risk factor for ED (11). Chou et al. (12) found that patients with

depression had a lower level of testosterone compared with

controls, and testosterone therapy showed a promising effect on

depressive symptoms. Furthermore, a significant association

between sexual dysfunction including ED and the dosage of

antidepressants as well as benzodiazepines was noted (13).

Furthermore, men with ED treated with phosphodiesterase-5

inhibitors or penile prostheses had lower depression rates than

those who did not receive treatment (14). ED and depression are

likely caused by multidimensional mechanisms, and evidence from

current studies is insufficient to explain their shared pathogenesis.

Microarray and high-throughput sequencing technologies

have advanced pathogenetic research in recent years (15).

Mining the common alternations at the molecular level will

broaden our understanding of potential mechanisms in ED and

depression. Therefore, the study aimed to explore shared

transcriptomic profiles between ED and depression. In the

present article, we have explored the transcriptome specific to

ED and depression using tissue and human samples for the first

time. Associated biological markers and signaling pathways

were identified and validated adequately. This study would

contribute to the theoretical research on coexisting ED and

depression as well as promising therapeutic guidance for

future studies.
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2 Materials and methods

2.1 Data source

The transcriptomic data associated with ED and depression were

collected from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) based on the diagnostic criteria of the

diseases in December 2022 (1, 16). The present study focused on major

depressive disorder, one of the most prevalent mental disorders

worldwide. GSE2457, a dataset of ED, deposited expression profiling

of corpus cavernosum by array from 10 diabetes-induced ED in rats

and controls (17). GSE54564, a dataset of depression, contained

expression data of the human brain amygdala from 42 patients with

major depressive disorders and non-psychiatric control subjects pair-

matched by age and ethnicity (18, 19). In datasets for validation,

GSE206528 incorporated single-cell transcriptome of the corpus

cavernosum from eight patients with ED and controls (20). Genes

related to depression were retrieved from GSE54570, which involved

expression data of brain tissue from an array of 26 patients with major

depressive disorders and controls (18).
2.2 Identification of common genes
between ED and depression

Gene datasets were filtered and normalized after downloading

series matrix files of GSE2457 and GSE54564. After converting the

probe name and log2 transformation, the differential expression

analysis for the normalized data was performed with the assistance

of the “limma” package (21) in R software (version 4.2.1, https://

www.r-project.org/) to obtain differentially expressed genes (DEGs)

between ED or depression and control groups with the threshold of

p-value < 0.05. Common DEGs between GSE2457 and GSE54564

were acquired using the intersection function. The results were

visualized with a heatmap and Venn diagram by the “pheatmap”

package and EVenn (http://www.ehbio.com/test/venn/) (22).
2.3 Functional analysis

The functional enrichment analysis could interpret the biological

roles of determining genes. Gene Ontology (GO), including biological

processes, cellular components, and molecular function, and pathways,

including Kyoto Encyclopedia of Genes and Genomes (KEGG) and

WikiPathway enrichment analyses, were conducted in the Database for

Annotation, Visualization and Integrated Discovery (DAVID) online

tool (http://david.ncifcrf.gov). The screening criteria included gene

number >2, Ease < 1, and p-value < 0.05. The results were visualized

by the “circlize”, “ggpubr”, and “ggplot2” packages.
2.4 Interactive network and
module analysis

Common DEGs between ED and depression were processed in

the Search Tool for the Retrieval of Interacting Genes (STRING)
frontiersin.org
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database (http://string-db.org) to explore the relationship among

proteins of interest. After disregarding disconnected nodes and

setting the interaction score > 0.4, a protein–protein interaction

(PPI) network was reintroduced in Cytoscape (version 3.7.1, https://

cytoscape.org/) for rearrangement. The ClueGO plugin in

Cytoscape was used to demonstrate the internal interconnection

of ontologies and pathways involved in common DEGs with

medium network specificity and showing pathways with p-value <

0.05 (23).

In the rearranging network, the Molecular Complex

Detection (MCODE) plugin was utilized to conduct module

analysis for representing specific molecular complexes with the

threshold of degree cutoff = 2 and node score cutoff = 0.2 (24).

To present the relationship and select enriched terms, the

Metascape (http://metascape.org) online tool was employed

with a threshold of p-value < 0.05 and enrichment factor

>1.5 (25).
2.5 Significant shared gene detection and
functional interaction

Since dense interaction existed in the present large-scale

network, the CytoHubba plugin in Cytoscape was applied to

detect significant shared genes based on topological algorithms

consisting of BottleNeck, Cluster coefficient, EPC, MCC, and

MNC (26). After selecting five ranking methods, the

GeneMANIA online tool (https://genemania.org/) was employed

to decipher the information on co-localization, co-expression, and

functional characterization among these genes (27).
2.6 Transcriptional and post-
transcriptional analysis

Considering the underlying regulations between transcription

factor (TF), miRNA, and genes, significant shared gene-related TFs

and miRNAs analysis was implemented in the NetworkAnalyst

online tool (https://www.networkanalyst.ca/) based on the

RegNetwork repository (28). Then, the coregulatory interactions

were visualized in Cytoscape for an optimal layout.
2.7 External validation of candidate
hub crosslinks

To enhance authority and stringency, the significant shared genes

were validated in ED- and depression-related datasets. In GSE206528,

after merging and filtering low-expression data, the transcriptome

was normalized by NormalizeData, and FindAllMarkers was utilized

to analyze featured genes between different groups. These processes

were conducted by the “Seurat” package. In GSE54570, DEGs were

obtained in similar steps to GSE54564 by the “limma” package. p-

value < 0.05 was regarded as statistically significant. Furthermore,

expression patterns of the significant shared genes were validated in

these gene sets to obtain hub crosslinks between ED and depression.
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2.8 Experimental validation of candidate
hub crosslinks

To experimentally validate the candidate hub crosslinks between

ED and depression, the corpus cavernosum samples were harvested

from control and ED rats. For ED rats, 8-week-old Sprague-Dawley

rats were injected with streptozotocin (60 mg/kg) intraperitoneally.

Then, rats with fasting blood glucose levels greater than 16.7 mmol/L

3 and 7 days after the injection were considered to be diabetic. After

the administration for 10 weeks, an apomorphine test was conducted

to assess erectile function based on our previous study (29), and those

rats with negative results were treated as ED rats. Electrostimulation

was used later to evaluate ED and control rats’ erectile function (29).

The study was approved by the Experimental Animal Administration

Committee of Wuhan Servicebio Biotechnology in China.

Quantitative real-time PCR was conducted to determine the

mRNA levels of control and ED rats. Based on the corresponding

protocols, total RNA from six control and ED rats was extracted using

the RNA-easyTM Isolation Reagent (G3013, Servicebio, China). Then,

cDNA was synthesized from the RNA samples by the Servicebio®RT

First Strand cDNA Synthesis Kit (G3330, Servicebio, China).

Quantitative real-time PCR was operated based on 2×SYBR Green

qPCRMaster Mix (G3320, Servicebio, China). Detailed information on

primer sequences is shown in Supplementary Table 1. The mRNA

levels of genes were presented as mean ± standard deviation. The

comparisons were performed by Student’s t-test and shown in the

GraphPad software (LLC, San Diego, California, USA).
2.9 Subpopulation distribution

TheMale Health Atlas database (MHA, http://www.malehealthatlas.

cn/) (20) was used to excavate the subpopulation distribution of hub

genes in cell clusters of the corpus cavernosum. The database of Human

Protein Atlas was used to analyze hub gene localization in brain tissue

(HPA, https://www.proteinatlas.org/).
3 Results

3.1 Identification of common genes
between ED and depression

The research approach of the present study is shown in Figure 1.

Differential expression analysis in GSE2457 revealed a total of 1,570

DEGs between the ED and control groups (Figure 2A). Similarly, a

total of 1,587 DEGs were excavated between the depression and

control groups (Figure 2B). Common genes between ED and

depression were obtained by the intersection of these two DEGs.

Finally, 85 genes were identified for further analysis.
3.2 Functional enrichment analysis of
common genes

GO analysis revealed the biological functions of common genes

between ED and depression (Figure 3A). Biological processes
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enriched cellular adhesion, redox homeostasis, glutathione

metabolism, and oxidant detoxification. The neuronal cell body,

dendrite cytoplasm, axon, and lateral plasma membrane were also

enriched in cellular component significantly. Furthermore, these

genes were associated with glutathione-disulfide reductase activity,

actin binding, and structural constituent of muscle in molecular

function (Figure 3B). In pathway enrichment analysis, shared

pathways contained cell adhesion molecules, one-carbon

metabolism, and NRP1-triggered signaling pathways in KEGG

and WikiPathway (Figure 3C).
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3.3 Construction of an interactive network
and module analysis

A total of 80 protein nodes and 216 interactions constitute an

interactive network (Figure 4A). In addition to the functions

associated with GO and pathway enrichment analysis, these genes

also took part in the regulation of reactive oxygen species

metabolism, JNK cascade, cell–cell contact zone, and Wnt

signaling pathway. Furthermore, long-chain fatty acid and amino

acid metabolic processes were observed in the internal

interconnection of ontologies and pathways (Figure 4B).

Different gene clusters were mined based on functional

annotation modules in the following steps. A total of three gene

clusters were identified (Figure 5A). There were 13 nodes and 24

interactions in cluster 1, focusing on biological regulation, including

growth factor stimulus, cellular response to stress, glucose

homeostasis, and the PI3K-Akt-mTOR signaling pathway

(Figure 5B). Four genes in cluster 2 were associated with response

to stimulus and oxidative stress (Figure 5C). In addition, the cellular

process and actin cytoskeleton organization were notable in cluster

3 (Figure 5D).
3.4 Analysis of the comprehensive
proteomic signature of significant
shared genes

To further narrow the gene information and maximize the roles

of important genes, comparative analysis based on topological

algorithms was conducted, and a total of eight significant shared

genes were obtained, namely, CLDN5, COL7A1, LDHA, MAP2K2,

RETSAT, SEMA3A, TAGLN, and TBC1D1 (Figure 6A). The

interaction between significant shared genes and other genes in

the protein–protein network is shown in Figure 6B. Furthermore,

based on co-expression and genetic interactions, GeneMANIA

indicated that these genes had a close relationship with blood
A B

FIGURE 2

Identification of common genes between ED and depression. (A) The heatmap of DEGs between ED and control groups. (B) The heatmap of DEGs
between depression and control groups. ED, erectile dysfunction; DEGs, differentially expressed genes.
FIGURE 1

The research approach of the present study. ED, erectile
dysfunction; MDD, major depressive disorder.
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vessel morphogenesis, muscle cell activity, and actin cytoskeleton

(Figure 6C). Their biological functions and roles in relevant diseases

are listed in Supplementary Table 2.
3.5 Determination of the transcriptional
and post-transcriptional signature

In functional enrichment analysis, miRNA activity was found to

be significant in biological processes. Therefore, transcriptional, and

post-transcriptional interactions may play an important role in

modulating the shared transcriptome. The TF–gene–miRNA

network showed 47 TFs and 88 miRNAs (Figure 7A). SEMA3A

possessed the most miRNA interactions, and most TFs focused on

LDHA. Moreover, TBP and MEF2A were common transcription

factors involved in three shared genes, which may play a significant

role in ED and depression.
3.6 External validation of candidate
hub crosslinks

After screening and functional analysis step by step, significant

shared genes were validated in ED- and depression-related datasets
Frontiers in Endocrinology 05
simultaneously to obtain hub crosslinks. After performing

differential expression analysis in GSE206528 and GSE54570,

respectively, overlapped genes in the two conditions were

compared with shared genes (Figures 7B,C). It was validated and

determined that CLDN5 and TBC1D1 were the hubs of genetic

links between ED and depression. Later, the expression profiles of

CLDN5 and TBC1D1 were validated in ED rats and controls by

quantitative real-time PCR. In Supplementary Figure 1, the results

of quantitative real-time PCR suggest that notable decreases and

increases were observed in the expressions of CLDN5 and TBC1D1

in the ED group compared with the control group (p-value < 0.05),

emphasizing the critical genetic links of CLDN5 and TBC1D1

between ED and depression.
3.7 Subpopulation distribution of hub
genes between ED and depression

Subpopulation distribution in specific tissues is vital for

performing the functions of genes. In MHA, the human corpus

cavernosum included 11 types of cells (Figure 8A). TBC1D1 was

predominantly localized in vessel endothelial cells, corpus

cavernosum, and vessel smooth muscle cells (Figures 8B,C).

CLDN5 was found to be enriched in the corpus cavernosum and
A B

C

FIGURE 3

Functional enrichment analysis of common genes. (A, B) GO enrichment analysis of common genes. (C) Pathway enrichment analysis of common
genes. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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vessel endothelial cells (Figures 8D, E). In brain tissue, TBC1D1 had

a higher distribution in choroid plexus and hippocampal formation.

CLDN5 targeted the choroid plexus, thalamus, pons, and cerebral

cortex (Figure 8F).
4 Discussion

The presence of both ED and depression significantly impacts

the psychosocial wellbeing and quality of life of couples (30).

Although high comorbidity between the two conditions is

apparent, there remains considerable uncertainty around the

pathogenetic nature. There is no clinical, epidemiological

association between ED and depression that is sufficient to

explain the co-occurrence of the diseases. In this study, we

comprehensively analyzed the shared transcriptome between ED

and depression using multi-omics methods for the first time. Hub
Frontiers in Endocrinology 06
crosslinked genes and correlative signaling pathways were identified

and validated based on multi-dimension data.

Considering the heterogeneity in ED and depression-related

tissues, the differential expression and comparative analysis

identified only 85 common genes. Functional enrichment analysis

revealed that these genes were involved in cell redox homeostasis,

glutathione metabolic process, glutathione-disulfide reductase

activity, and cellular oxidant activities. The results indicate that

oxidative stress is crucial in ED and depression. Cumulative reactive

oxygen species during ED inhibit the synthesis and bioavailability of

NO, which is an important mediator of endothelium-dependent

vasodilation in the corpus cavernosum (31). NADPH oxidases are

the main source of endogenous reactive oxygen species, which have

been noted in ED tissues (29). The use of antioxidants has shown

promising results in the treatment of ED. Owing to high oxygen

consumption and weak defenses, the brain is more susceptible to

oxidative injury, and oxidative stress is believed to be the main cause
A

B

FIGURE 4

Construction of interactive network and functional analysis. (A) Protein–protein interactive network of common genes. (B) ClueGO functional
analysis of common genes. For (A), orange labels represent upregulated CPRGs and purple labels denote downregulated genes.
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A

B

D

C

FIGURE 5

Module analysis of common genes. (A) The top three gene clusters based on module analysis. GO biological process and pathway and process
enrichment analysis of cluster 1 (B), cluster 2 (C), and cluster 3 (D). For pathway and process enrichment analysis in (B–D), each node represents an
enriched term and is colored by cluster ID. GO, Gene Ontology.
A

B

C

FIGURE 6

Analysis of the comprehensive proteomic signature of significant shared genes. (A) Comparative analysis via topological algorithms in Cytohubba.
(B) Protein–protein interactive network of significant shared genes. (C) The functional interaction in GeneMANIA. For (C), genes on the right side
showed the 20 most frequently changed neighboring genes.
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of major depressive disorder (32). The activity of glutathione

peroxidases is lowered and contributes to reactive oxygen species

in patients with depression (33). The maintenance of cellular redox

homeostasis was crucial in ED and depression, indicating the

important shared mechanism.

Since neurologic disorders may play a significant role in linking

ED and depression, cellular component analysis was expected to

enrich neuronal cell body, dendrite cytoplasm, and axon. Pathway

enrichment analysis revealed changes in NRP1-triggered signaling

pathways and cell adhesion molecules. In a model of mouse

depression, NRP1 was found to be involved in hippocampal

neurogenesis and neuroplasticity via miR-30 (34). Neuronal cell

adhesion could also be considered a potential marker in

antidepressant response (35). Dysfunction in endothelial cell-to-

cell junctions was found to be significant in the pathogenesis of

hypercholesterolemia-induced ED (36). Subsequent functional

enrichment in gene clusters focused on the reactive oxygen

species metabolic process, the cell–cell contact zone, and the

nutrient metabolic process. It is important to consider these

factors in relation to the shared association between ED and

depression in future studies.
Frontiers in Endocrinology 08
After a comprehensive analysis of the proteomic signature, a total

of eight significant shared genes, namely, CLDN5, COL7A1, LDHA,

MAP2K2, RETSAT, SEMA3A, TAGLN, and TBC1D1, were identified.

COL7A1 encodes the alpha chain of type VII collagen. Available

research concentrated on COL7A1 in all forms of dystrophic

epidermolysis bullosa (37, 38). As an important component of the

tumor microenvironment, COL7A1 demonstrated prognostic value in

patients with gastric cancer and pancreatic cancer (39, 40). Further

study of COL7A1 was warranted due to its promising function.

LDHA belongs to the lactate dehydrogenase family. It is associated

with pyruvate metabolism, glycolysis, and oxidoreductase activity (41).

Significant change in LDHA was observed in cerebral gluconeogenesis

in chronic stress-related depression (42). Gong et al. (43) reported that

Angelicae Sinensis Radix modulated energy metabolism in depression

by inhibiting the expression of LDHA. Since oxidoreductase activity

was predominant in the process of ED, it was plausible to explore

LDHA in the corpus cavernosum. MAP2K2 plays a critical role in

mitogen growth factor signal transduction, which is enriched in the

central nervous system. It is lower in individuals with psychiatric

disorders (44). Similarly, it is also involved in the process of ED (45).

RETSAT, known as retinol saturase, is upregulated in ED and diabetic
A

B C

FIGURE 7

TF–gene–miRNA network and external validation of candidate hub crosslinks. MiRNA–CPRGs network construction and functional enrichment
analysis. (A) TF–gene–miRNA co-regulatory network. The profiling of significant shared genes in validated depression (B) and ED-related gene sets
(C). MDD, major depressive disorder; ED, erectile dysfunction; DM, diabetes mellitus; DMED, diabetes mellitus-related erectile dysfunction.
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rats (46). It is also a potent modulator of the cellular response to

oxidative stress and the generation of reactive oxygen species in vivo

and in vitro (47). SEMA3A is a member of the semaphorin family with

an Ig-like C2-type domain and is involved in axon guidance and

neuronal connectivity. Existing evidence indicates that SEMA3A alleles

are associated with genetic disorders in the central nervous system,

including autism spectrum disorders and neuronal migration (48).

Zhou et al. (49) demonstrated that rs139438618 at the SEMA3A locus

is significantly associated with the comorbidity of alcohol dependence

and major depressive disorder. Whether SEMA3A is related to ED is

unknown, and this may be explored in the future. TAGLN is

ubiquitously expressed in vascular and visceral smooth muscle as a

marker of smooth muscle differentiation. In a model of myostatin

homozygous mutant knockout pig, increased expression of TAGLN

was noted in the penile corpus cavernosum, which could be a target for

treating ED (50). Moreover, angiogenesis may be a possible link

between TAGLN and depression (51–53).

After identification and validation, CLDN5 and TBC1D1 were

regarded as the hub genetic links of ED and depression. CLDN5,
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also known as Claudin 5, belongs to endothelium-specific cellular

junction proteins. Its decrease could reduce endothelial content in

the corpus cavernosum and deteriorate ED (36). Furthermore, its

family may serve as an endothelial barrier to reflect hemodynamic

changes in the corpus cavernosum (54). On the other hand, CLDN5

was associated with blood–brain barrier permeability. Menard et al.

(55) found that social stress would inhibit the expression of CLDN5,

destroy blood–brain barrier integrity, and induce depression

ultimately (56). Furthermore, TNF-a could affect blood–brain

barrier permeability and CLDN5 expression of endothelial cells in

major depressive episodes (57). Stress-related brain entry of

inflammatory molecules and IL-6–CLDN5 interaction are also

involved in the development of depression (58). TBC1D1 plays a

role in regulating cell growth and differentiation. In the available

studies, TBC1D1 was not reported to be involved in the

pathogenesis of ED or depression, but it is one of the suicide

attempt polygenes that may have a link to depression (59).

Therefore, it is significant to explore the specific mechanisms of

CLDN5 and TBC1D1 in the crosslink of ED and depression.
A B

D

E

F

C

FIGURE 8

Subpopulation distribution of hub genes between ED and depression. (A) The whole cellular distribution in human corpus cavernosum.
(B, C) Expression distribution of TBC1D1 in human corpus cavernosum. (D, E) Expression distribution of CLDN5 in human corpus cavernosum.
(F) Expression distribution of TBC1D1 and CLDN5 in brain tissue. ED, erectile dysfunction.
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Some limitations were found in this study. Although

comprehensive excavation and validation were conducted based

on tissue and human samples, biases could exist due to limited

sample size, diabetic state, and heterogeneity across different

species. A total of 85 genes generated from comparative analysis

lacked appropriate statistical correction. Furthermore, these

findings could not establish a causal relationship between the

shared transcriptomic profiles of the identified genes and such

disorders. Further prospective studies are needed. Moreover,

psychosocial factors play an important role in the progress of

depression. Chiu et al. (60) reported that social trauma and

dissociation contributed to psychotic symptoms in patients with

major depressive disorder. The psychosocial contents were

insufficient due to the genetic basis of this research. The

molecular mechanisms underlying the shared pathogenesis in ED

and depression have not been explored enough, and we will

investigate these mechanisms in future research.
5 Conclusions

Our multi-omics analysis revealed the shared biological roles

and transcriptomic profiles of ED and depression for the first time.

After identification and validation, CLDN5 and TBC1D1 were

selected as the hub genetic links between the two conditions.

These results provided referential molecular mechanisms in

concurrent depression and ED.
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