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Clinical management of papillary thyroid cancer depends on estimations of

prognosis. Standard care, which relies on prognostication based on

clinicopathologic features, is inaccurate. We applied a machine learning

algorithm (HighLifeR) to 502 cases annotated by The Cancer Genome Atlas

Project to derive an accurate molecular prognostic classifier. Unsupervised

analysis of the 82 genes that were most closely associated with recurrence

after surgery enabled the identification of three unique molecular subtypes. One

subtype had a high recurrence rate, an immunosuppressed microenvironment,

and enrichment of the EZH2-HOTAIR pathway. Two other unique molecular

subtypes with a lower rate of recurrence were identified, including one subtype

with a paucity of BRAFV600E mutations and a high rate of RAS mutations. The

genomic risk classifier, in addition to tumor size and lymph node status, enabled

effective prognostication that outperformed the American Thyroid Association

clinical risk stratification. The genomic classifier we derived can potentially be

applied preoperatively to direct clinical decision-making. Distinct biological

features of molecular subtypes also have implications regarding sensitivity to

radioactive iodine, EZH2 inhibitors, and immune checkpoint inhibitors.

KEYWORDS
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1 Introduction

Although there has been a dramatic rise in the incidence of

papillary thyroid cancer (PTC) in recent decades (1–3), the unique

tumor biology of PTC remains poorly understood. PTC is

characterized by frequent and early spread to regional lymph

nodes, with occasional invasion into surrounding soft tissues.

Despite the propensity of PTC to metastasize to locoregional

lymph nodes, PTC has a very low incidence of distant metastasis

and high overall cure rates. On the other hand, 10 - 15% of PTC

cases behave more aggressively and show a greater proclivity for

disease recurrence and resistance to conventional adjuvant

therapies such as radioactive iodine (RAI) (4). Understanding

what drives this dichotomous clinical behavior is important for

two reasons. First, recognizing the biological mechanisms that

characterize more aggressive PTC variants may reveal novel

therapeutic targets. Second, clinical management can be

influenced by accurate prognostication. Patients with a good

prognosis can be managed with more conservative surgery or

active surveillance, RAI could be avoided, and follow-up regimes

could be de-escalated. Conversely, the identification of aggressive

PTCs would appropriately direct more extensive surgery, adjuvant

therapies, and more intensive or prolonged follow-up periods.

The American Thyroid Association (ATA) Risk Stratification

system estimates the risk of disease recurrence based on clinical and

pathological factors. It is the most widely used system to estimate

prognosis and guide postoperative clinical decision-making (5).

Although the ATA system has been validated retrospectively, the

proportion of variance explained is suboptimal (6, 7). The inability

of the ATA system to predict recurrence accurately may be because

it is insufficiently informed by molecular features. Currently, only

one molecular marker, the BRAFV600E gene mutation, is

incorporated in the ATA Risk Stratification System (5), and its

value in prognostication is unclear (8).

In 2014, The Cancer Genome Atlas (TCGA) Network published

a landmark study that described the complete genomic landscape of

papillary thyroid cancer (9). A comprehensive description of the

molecular features of PTC was provided, and two meta-clusters

were identified: one consisting of BRAFV600E -driven tumors, and

one with RAS-mutated tumors. While the study provided insight

into the molecular diversity and classification of PTC, it did not

relate molecular features with clinical outcomes, such as

progression-free survival (PFS).

An alternative approach to deriving molecular classifications of

disease is to identify biologically important variants by evaluating

their association with clinically relevant phenotypes (e.g., PFS). This

approach can provide novel insights into the molecular

mechanisms that are responsible for the manifestations of the

phenotype. HighLifeR is a proprietary machine learning algorithm

that robustly identifies features in a highly dimensional dataset that

are closely associated with survival outcomes. By applying the

HighLifeR algorithm to the transcriptional data in the TCGA

cohort, we devised a molecular classifier that outperforms the

ATA Risk Stratification system in predicting the likelihood of

recurrence. Importantly, in PTCs classified by our molecular risk
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index, we uncovered several molecular features that point to

pathogenic mechanisms that could be targeted therapeutically.
2 Results

2.1 Identification of robust molecular
signatures associated with recurrence risk

We applied the HighLifeR algorithm to the RNA-Seq expression

dataset from TCGA. This dataset contains batch-corrected expression

levels of more than 20,000 genes in a set of 502 PTC patients (335 of

whomwere used as discovery set). In total, we tested the associations of

genes with progression free survival (PFS) in more than 7,500,000

combinations of genes and subsets of the discovery cohort. We

identified 44 genes that satisfied our criteria for prognostic significance.

Unsupervised clustering based on these 44 genes revealed three

molecular subgroups with significantly different PFS (Log-rank P =

0.0001) (Figures 1A, B). To address the potential effects of censored

events, we reapplied the HighLifeR algorithm to all cases that had at

least 36 months of follow-up with known outcomes (i.e., disease-free

after at least 36 months or a recurrence during that time) (N = 222).

An additional set of 41 prognostic genes was identified. Three of these

genes overlapped with the first gene set (EZH2, MTMR14, and

ZNF215). The complete set of 82 genes (Supplementary Table 1)

was used in classifier development utilizing the three unsupervised

clusters (Figure 1A) as the training classifications.

While most prognostic genes were not correlated with each other,

there was a cluster of genes with significant positive correlation

(Figure 1C). The most highly correlated genes (Pearson r > 0.75, P <

0.0001) are involved in mitosis, cell cycle control, and chromatin

remodeling. According toTheHuman Protein Atlas, 49 of the proteins

encoded by these 82 genes are detectable by immunohistochemistry in

thyroid cancers.

For the purpose of description, the subtypes were labelled as

Types 1, 2 and 3. Several interesting features were immediately

apparent (Figure 1A). Type 1 PTCs had a paucity of BRAFV600E

mutations, were enriched with mutations in NRAS and HRAS, and

includedmost follicular variants. Type 1 PTCs had no cases of tall cell

histology; tall cell variants were most common in Type 3. Type 2 and

3 tumors had many of the same clinical features, including

BRAFV600E mutations in over half. Type 3 tumors comprised the

majority of TERT promoter mutations. Interestingly, the pattern of

expression of the top 44 prognostic genes in Type 1 was the inverse of

the pattern in Type 3 PTCs (Figure 1A).

A two-step predictive model based on random forest was

developed to classify the validation set. The first step identified Type

3 PTCs with a 10-fold cross-validation accuracy of 92%; the second

step differentiated Type 1 and 2 PTC with a 10-fold cross-validation

accuracy of 86%. As with the discovery cohort, Type 3 PTCs had the

highest rate of recurrence (Figure 1D). However, unlike in the

discovery cohort, Type 1 tumors had the lowest recurrence rate. We

considered that the higher incidence of recurrence could be

attributable to disease stage. Indeed, the recurrences in Type 2 PTCs

in the validation cohort occurred mostly in patients with advanced
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tumors (tumors > 4 cm or N1 disease), which comprised a larger

proportion of the validation cohort (61.8%) than the discovery

cohort (51.6%).

Univariate and multivariable survival analyses were performed on

the discovery set and the validation set. In the larger discovery cohort,

factors that were significant on multivariable analysis were molecular

subtype, M stage, and presence of tall cell histology (Table 1). In the

validation set, molecular subtype and M stage were significant factors

in the multivariable analysis (Supplementary Table 2).

We considered that anaplastic thyroid cancer (ATC), an

extremely aggressive form of thyroid cancer with a high incidence

of TERT promoter mutations, may arise from well differentiated

thyroid cancer (10). Our molecular classification algorithm was

applied to RNASeq data from 10 cases of ATC arising from PTC

(Bioproject ID: PRJNA523137) (11). Interestingly, all 10 cases were

clearly classified as the Type 3 molecular subtype.
2.2 Clinicopathological features of
molecular subtypes

To comprehensively describe the clinical and molecular

differences between the three molecular subtypes, we combined

the discovery and validation cohorts. Clinical features are
Frontiers in Endocrinology 03
summarized in Table 2. Altogether, 25.0% were Type 1, 47.3%

were Type 2, 27.7% were Type 3 PTCs. There was no significant

relationship between molecular subtype and age, sex, race, or

ethnicity. The incidence of multifocality was the same in each

molecular subtype. Extrathyroidal spread and lymph node

metastases were significantly more prevalent in Type 2 and 3

PTCs. Type 1 tumors tended to have a lower T-stage and had the

lowest incidence of lymph node metastases.

We explored the relationships of molecular subtypes with ATA

risk, AMES score and MACIS score. ATA risk classes were more

frequently low risk in Type 1 PTCs, and high-risk ATA class was

more frequent in Type 2 and 3 PTCs. A high AMES score

(corresponding to a higher risk of death from PTC) was least

frequent in Type 1 tumors and most frequent in Type 3 tumors.

Similarly, high MACIS scores were most frequent in Type 3 PTCs.

In all, clinicopathological features in Type 2 and Type 3 PTCs were

not easily distinguishable, but Type 1 PTCs were markedly different.

Two gene signatures described by TCGA (9), the BRAFV600E-

RAS score (BRS) and the Thyroid Differentiation Score (TDS), were

evaluated in the context of the molecular subtypes. Importantly,

only two of the genes from our signature overlapped with the genes

that comprise BRS: CTSC and FN1; and none of the 82 genes

overlapped with genes that comprise TDS. The BRAFV600E-RAS

score (BRS), which quantifies the similarity of the gene expression
B C D

A

FIGURE 1

Discovery of mRNA-based prognostic risk groups. (A) Unsupervised clustering of 44 prognostic genes identified by HighLifeR shows three distinct
clusters in our training set. The heatmap annotation shows distinct differences between molecular subtypes. Specifically, striking differences were in
variant type, thyroid differentiation score (TDS), BRAF-RAS score (BRS), and the number of mutations in BRAF, RAS and TERT genes. (B) Survival analysis
of these three clusters revealed significant differences in progression-free survival. (C) Correlation matrix associated with all 82 genes identified by
HighLifeR shows poor correlation between prognostic genes. (D) Validation of our classification algorithm using TCGA patients excluded from our
training dataset (N = 167) clearly discriminated the three different molecular subtypes and these had significantly different progression-free survival.
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profile to either BRAFV600E or RAS mutant profiles (-1 to +1) (9),

was significantly higher in Type 1 PTCs (Table 2). Using this

method of classification, 91.9% of Type 1 PTCs were RAS-like

with a corresponding higher incidence of NRAS and HRAS

mutations. In contrast, 91.8% of Type 2 PTCs and 88.2% of Type

3 PTCs were BRAF-like. The TDS decreased (TDS range = -4.08 to

2.59) with a higher histological grade (9) and was lowest in the Type

3 molecular subgroup (Table 2; Figure 1A). Neither BRS nor TDS

had a significant association with PFS.

Finally, molecular subtypes had distinct mutation patterns.

Mutations associated with each molecular subtype are summarized

in Supplementary Figures 1A–E. NRAS mutations were present in

33.1% of Type 1 PTCs, in 4.3% of Type 2 PTCs and 1.5% of Type 3
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PTCs. There was also a high prevalence of mutations in the

thyroglobulin gene (TG) in Type 1 PTCs. BRAFV600E mutations

were found in only 5.6% of Type 1 PTCs, but in more than half of

Type 2 and 3 PTCs. Although TERT promoter mutations were

present in all molecular subtypes, the majority were found in Type 3

PTCs. When we compared Type 2 versus Type 3 tumors, we found

no significant differences in mutations.
2.3 Biological features of Type 3 PTCs

To delineate the biological features of each subtype, molecular

features were identified that distinguished Type 3 PTCs from the
TABLE 1 Univariate and multivariable analysis of factors associated with 5-year PFS in the discovery set.

Risk Factor Univariate Analysis Multivariable Analysis

Hazard Ratio (95% CI) P Hazard Ratio (95% CI) P

Sex (female v. male) 1.78 (0.75 – 4.26) 0.19

Age (< 50 years v. ≥ 50 years) 1.86 (0.80 – 4.32) 0.15

Tumor size (≤ 4 cm v. > 4 cm) 1.32 (0.48 – 3.61) 0.59

Histological type

Classical
Follicular
Tall Cell
Other

1 (reference)
0.80 (0.23 – 2.77)
4.25 (1.39 – 12.98)
0.00 (0.00 – inf)

0.72
0.01
1.0

1 (reference)
0.27 (0.05 – 1.47)
5.98 (1.29 – 27.72)
0.00 (0.00 – inf)

0.13
0.02
1.0

T stage

T1
T2
T3
T4

1 (reference)
3.62 (0.78 – 16.77)
4.02 (0.85 – 18.92)
7.76 (1.28 – 46.92)

0.10
0.08
0.03

1 (reference)
4.37 (0.90 – 21.28)
3.10 (0.61 – 15.65)
0.93 (0.08 – 11.34)

0.07
0.17
0.95

N stage (N0/NX v. N1) 1.22 (0.53 – 2.82) 0.65

M stage (M0 v. M1) 8.92 (3.00 – 26.53) 8.22 x 10-5 11.02 (1.48 – 82.16) 0.019

BRAFV600E mutation (Absent v. Present) 1.66 (0.70 – 3.98) 0.25

TERT promoter mutation (Absent v. Present) 5.26 (2.06 – 13.45) 5.31 x 10-4 2.13 (0.49 – 9.30) 0.31

Thyroid Differentiation Score

< -1
-1 to 0
> 0

1 (reference)
0.64 (0.21 – 1.90)
0.46 (0.16 – 1.38)

0.42
0.17

BRAFV600E-RAS class

BRAF-like
RAS-like

1 (reference)
1.15 (0.44 – 3.01) 0.77

ATA Risk

Low
Intermediate
High

1 (reference)
3.13 (1.11 – 8.81)
3.34 (1.24 – 8.99)

0.03
0.02

1 (reference)
1.71 (0.37 – 7.96)
1.90 (0.42 – 8.61)

0.49
0.40

Molecular Subtype

Type 2
Type 1
Type 3

1 (reference)
9.40 (1.99 – 44.46)
12.93 (2.89 – 57.80)

0.005
8.1 x 10-4

1 (reference)
17.98 (3.27 – 98.92)
9.77 (2.04 – 46.81)

8.97 x 10-4

0.004
HR, Hazard ratio. This is the ratio of recurrence rates in two comparator groups for any independent variable (for binary variables) or the logarithm of the change in death rate per unit change of
the independent variable (if the variable is continuous).
CI, Confidence interval.
Bold values indicate significant p-values (p < 0.05).
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TABLE 2 Clinical characteristics for the three molecular subtypes - for discovery and validation set samples combined.

Factor
Molecular subtype

P
Type 1 (N = 126) Type 2 (N = 237) Type 3 (N = 139)

Sex, N (%) 0.84a

Male 35 (27.8) 66 (27.8) 35 (25.2)

Female 91 (72.2) 171 (72.2) 104 (74.8)

Age, mean ± SD 49.5 ± 15.3 46.8 ± 14.3 46.1 ± 18.4 0.14b

Race, N (%) 0.74a

White 69 (79.3) 160 (81.2) 102 (81.0)

Black or African American 8 (9.2) 12 (6.1) 7 (5.6)

American Indian or Alaskan Native 0 (0.0) 0 (0.0) 1 (0.8)

Asian 10 (11.5) 25 (12.7) 16 (12.7)

Ethnicity, N (%) 0.58a

Hispanic or Latino 6 (7.0) 17 (9.1) 14 (11.2)

Not Hispanic or Latino 80 (93.0) 170 (90.9) 111 (88.8)

Histological type, N (%) < 0.0001*a

Classical 55 (43.7) 187 (78.9) 112 (80.6)

Follicular 67 (53.2) 24 (10.1) 10 (7.2)

Tall Cell 0 (0.0) 21 (8.9) 15 (10.8)

Other 4 (3.2) 5 (2.1) 2 (1.4)

Focality, N (%) 0.38a

Unifocal 67 (54.0) 119 (51.3) 80 (58.8)

Multifocal 57 (46.0) 113 (48.7) 56 (41.2)

Extrathyroidal spread, N (%) < 0.0001*a

None 105 (88.2) 141 (61.0) 86 (64.2)

Minimal 13 (10.9) 82 (35.5) 39 (29.1)

Gross (T4a and T4b) 1 (0.8) 8 (3.5) 9 (6.7)

T Stage, N (%) 0.003*a

T1 40 (31.7) 65 (27.4) 39 (28.1)

T2 56 (44.4) 68 (28.7) 41 (29.5)

T3 28 (22.2) 94 (39.7) 49 (35.3)

T4 2 (1.6) 10 (4.2) 10 (7.2)

N Stage, N (%) < 0.0001*a

N0/NX 104 (82.5) 118 (49.8) 58 (41.7)

N1 22 (17.5) 119 (50.2) 81 (58.3)

M Stage, N (%) 0.93a

M0 123 (98.4) 233 (98.3) 136 (97.8)

M1 2 (1.6) 4 (1.7) 3 (2.2)

RAS mutation, N (%) < 0.0001*a

Absent 82 (67.2) 225 (95.7) 132 (98.5)

(Continued)
F
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other two subtypes. We performed Gene Set Enrichment Analysis

(GSEA) of the 50 hallmark gene sets in MSigDB (12). Pathways that

were positively enriched were involved in inflammation and

epithelial-mesenchymal transition (EMT) (Figure 2). Compared

to Type 2 PTCs, GSEA demonstrated mostly enrichment in

inflammatory pathways, pathways involved in proliferation, as

well as mTORC1 signaling (Figure 2). Mindful that the Forkhead

box M1 (FOXM1) transcription factor encourages migration and

invasion of PTC cells (13), we performed a targeted GSEA of the

FOXM1 pathway. This pathway was positively enriched in Type 3

cancers in comparison to Type 1 (False Discovery Rate (FDR) =

0.002) and Type 2 PTCs (FDR = 0.004), as previously reported (14).

In comparison to Type 1 PTCs, there were 2234 differentially

expressed genes (DEGs). Analysis with Ingenuity Pathway Analysis

(IPA) demonstrated intriguing inflammatory features in Type 3
Frontiers in Endocrinology 06
tumors. In comparison to Type 1 PTCs, there was significant

enrichment of genes involved in HMGB1 signaling, STAT3

signaling, IL-23 signaling, and IL-17 signaling (Supplementary

Figure 2A). HMGB1 upregulation and the successive overexpression

of IL-23, IL-17 and IL-6, followed by STAT3 activation, promotes

tumor growth (15). STAT3 from tumor cells and myeloid cells is also

known to induce IL-23 production by tumor associated macrophages;

regulatory T cells expressing IL-23R are then activated to create an

immunosuppressive tumor microenvironment (16). In comparison to

Type 2 PTCs, there were relatively fewer DEGs (496 DEGs). Type 3

showed enrichment of genes involved in HMGB1 signaling and IL-17

signaling, as well as immunosuppressive processes.

Deconvolution of immune cell types using CIBERSORT

revealed that Type 3 tumors contained significantly more

activated CD4+ T cells, and a high number of CD4+CD25+
TABLE 2 Continued

Factor
Molecular subtype

P
Type 1 (N = 126) Type 2 (N = 237) Type 3 (N = 139)

Present 40 (32.8) 10 (4.3) 2 (1.5)

BRAFV600E mutation, N (%) < 0.0001*a

Absent 118 (94.4) 86 (36.3) 64 (46.0)

Present 7 (5.6) 151 (63.7) 75 (54.0)

TERT promoter mutation, N (%) 0.002*a

Absent 117 (94.4) 225 (95.7) 118 (86.1)

Present 7 (5.6) 10 (4.3) 19 (13.9)

Thyroid Differentiation Score, N (%) < 0.0001*a

< -1 3 (3.0) 39 (21.3) 38 (37.3)

-1 to 0 6 (6.1) 81 (44.3) 37 (36.3)

> 0 90 (90.9) 63 (34.4) 27 (26.5)

BRAFV600E-RAS score, mean ± SD 0.67 ± 0.43 -0.65 ± 0.45 -0.60 ± 0.49 < 0.0001*b

ATA Risk, N (%) < 0.0001*a

Low 106 (84.8) 146 (61.9) 74 (53.2)

Intermediate 7 (5.6) 51 (21.6) 40 (28.8)

High 12 (9.6) 39 (16.5) 25 (18.0)

AMES, N (%) 0.06a

Low 113 (90.4) 198 (83.9) 111 (79.9)

High 12 (9.6) 38 (16.1) 28 (20.1)

MACIS score, N (%) 0.054a

< 6.00 84 (71.2) 182 (81.6) 99 (76.2)

6.00 to 6.99 20 (16.9) 22 (9.9) 13 (10.0)

7.00 to 7.99 12 (10.2) 12 (5.4) 9 (6.9)

> 8.00 2 (1.7) 7 (3.1) 9 (6.9)
a = Pearson’s Chi-squared test.
b = Kruskal–Wallis test.
* = significant.
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regulatory T cells (Figure 3A). The expression levels of

immunoregulatory genes were markedly elevated in comparison

to the other two molecular subtypes (Figure 3B).

Another striking feature uncovered in the IPA analysis was the

positive enrichment of the HOTAIR (HOXA transcript antisense

RNA) pathway. HOTAIR is a lncRNA that interacts with Polycomb

Repressive Complex 2 (PRC2), a histone methyltransferase that

affects epigenetic silencing in diverse proneoplastic processes
Frontiers in Endocrinology 07
including EMT (17). HOTAIR interaction with PRC2 drives

EZH2-mediated gene repression. Elevated EZH2 expression is

characteristic of the high-risk phenotype, as is upregulation of

HOTAIR (P < 0.001, FDR < 0.001). HOTAIRM1, which similarly

interacts with EZH2 and encourages an immunosuppressive

microenvironment (18, 19), was also upregulated (FDR=0.001).

In comparison to Type 1 PTCs, Type 3 PTCs contained 596

differentially methylated genes: 35 were hypermethylated in association
FIGURE 2

The single-sample gene set enrichment analysis (ssGSEA) scores between different molecular subtypes using the Hallmark gene set collection. Only
the top 20 significantly enriched gene sets are shown.
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with downregulation, and 236 were hypomethylated with coincidental

upregulation at the mRNA level (Supplementary Figure 3A). There

were no differentially methylated genes between Type 3 and Type 2

PTCs. There were 571 differentially expressed (DE) miRNAs in

comparison to Type 1 PTCs. There were 85 DE miRNAs compared

to Type 2 PTCs. In sum, differences between Type 3 and Type 2 were

not pronounced. The epigenetic features and the miRNA expression

pattern appeared to drive the inflammatory and immunosuppressive

features of Type 3 PTCs (Supplementary Figures 3C, 4A).
2.4 Biological features of Type 2 PTCs

In comparison with Type 1 PTCs, there were 1124 DEGs in

Type 2 PTCs. As in Type 3 tumors, GSEA of the 50 hallmark

pathways demonstrated significant enrichment in proinflammatory

gene sets and genes involved in EMT (Figure 2). A targeted GSEA of

the FOXM1 pathway demonstrated positive enrichment (P =

0.007), although this was less pronounced than in Type 3 PTCs.

IPA demonstrated enrichment in EMT factors, as well as IL-6 and

IL-17 signaling (Supplementary Figure 2B). Immunosuppressive

processes were notably absent, consistent with the lower expression

levels of immunoregulatory genes in Type 2 PTCs compared to

Type 3. The HOTAIR pathway was positively enriched but was less

pronounced than in Type 3 PTCs.

In comparison to Type 1 PTCs, Type 2 PTCs contained 600

differentially methylated genes: 10 were hypermethylated in
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association with downregulation, and 240 were hypomethylated

with coincidental upregulation at the mRNA level (Supplementary

Figure 3B). While epigenetic changes could be linked to some

nonspecific inflammatory changes (Supplementary Figure 3D),

functional differences between Type 2 and Type 1 PTCs appeared

to be more attributable to differences in miRNA expression. Relative

to Type 1 PTCs, there were 169 upregulated miRNAs with

downregulated mRNA targets, and 218 downregulated miRNAs

with upregulated mRNAs targets; and genes so affected were

involved in inflammation, the HOTAIR regulatory pathway, and

neuroendocrine functions (Supplementary Figure 5).
2.5 Biological features of Type 1 PTCs

Type 1 PTCs are characterized by a very different inflammatory

microenvironment compared to Type 2 and 3 PTCs; for example,

the fraction of monocytes and activated NK cells in Type 1 PTCs

was 148% and 201% greater than Type 3 PTCs, respectively

(Figure 3A). On GSEA, there is enrichment of fatty acid

metabolism. Bile acid metabolism is also prominent, although it

did not reach significance following correction for multiple

comparisons (Figure 2). Compared to Type 2 and 3 tumors, IPA

based on DEGs demonstrated LXR/RXR activation (Supplementary

Figures 2A, B). PTEN signaling and PPAR signaling was also

evident in comparison to Type 3 PTCs. These mostly metabolic

features appear to be driven mostly by differences at the miRNA
BA

FIGURE 3

Immune profile of mRNA-based prognostic risk groups. (A) Estimates of immune cell type fractions present in the mRNA-based prognostic risk
groups based on deconvolution of expression profiles using CIBERSORT. Immune cell fractions were compared using one-way ANOVA test and p-
values are shown for each comparison. Displayed are the 16 of 22 cell types which showed significant differences based on one-way ANOVA. (B)
Gene expression of immunomodulators was examined across mRNA-based prognostic risk groups. The immunomodulators were classed into one
of seven categories (co-stimulator, co-inhibitor, ligand, receptor, cell adhesion, antigen presentation or other) and each of the immunomodulators
were also categorized as immune checkpoint inhibitors or stimulators. Median normalized expression levels for each mRNA-based prognostic risk
group are shown.
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level (Supplementary Figure 4). Others have previously observed

alterations in lipid metabolism in PTC, although it is unclear how

diverse this characteristic is (20, 21).
2.6 External validation of molecular
subtypes

RNA-Seq data from an ethnically and racially distinctive cohort

from Seoul National University College of Medicine, Korea (22)

were evaluated to understand the generalizability of the subgroups

we identified. The cohort comprised 48 follicular variant and 76

classical PTCs (total N = 124). No tall cell variant tumors were

included. Similar patterns of expression in the 82 prognostic genes

were identifiable. Some of the features that characterized each

molecular subtype were seen in the Korean cohort

(Supplementary Table 3). Specifically, Type 1 PTCs had the

highest frequency of follicular variants, were mostly RAS-like, and

had the highest incidence of RAS mutations. Type 1 PTCs had the

lowest incidence of BRAFV600E mutations, although the frequency

was higher than in the TCGA cohort. Type 2 and 3 PTCs had the

highest incidence of extrathyroidal spread and tended to have a

higher incidence of lymph node metastases. The incidence of lymph

node disease was lowest in Type 1 PTCs, although this was not

significant. The median follow-up was 88 months, and there was

only one structural recurrence in an advanced Type 2 PTC. There

were 9 biochemical recurrences defined by TSH-stimulated

thyroglobulin ≥1 µg/L. Biochemical recurrences occurred in one

Type 1 PTC (2.4%), four Type 2 PTCs (5.8%), and four Type 3

PTCs (28.6%). Dates to recurrence events were unknown for

this dataset.

To further explore the clinical utility of the molecular risk

stratification, we designed an assay based on targeted hybrid-

capture enrichment RNASeq. Expression of the 82 genes that

distinguished molecular classes were quantified in frozen samples

from Edmonton, Canada (N = 132). The median follow-up period

for these cases was 66 months. Cases were classified in a way that

blinded them to clinical features and outcomes. 5-year recurrence

rates for the study cohort are summarized in Supplementary

Table 4. Strikingly, recurrence rates were consistently highest in

Type 3 PTCs, regardless of whether tumors were early (tumor size

1-4 cm and N0/NX) or advanced. In contrast to Type 3 PTCs, and

in keeping with what was found in the TCGA dataset, Type 1 and

Type 2 PTCs recurrence rates were higher in advanced tumors.
2.7 Potential clinical utility of molecular
risk stratification

While Type 3 PTCs consistently had a worse prognosis, given

the instability of recurrence outcomes of Type 1 and Type 2 PTCs in

the TCGA discovery and validation cohorts, we considered that

clinical factors could modify risk. Two factors that can be readily

evaluated prior to surgery are tumor size and lymph node

involvement. Indeed, according to the 2015 ATA guidelines,

patients with the following preoperative criteria are considered
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candidates for thyroid lobectomy: tumor size 1-4 cm, clinically

node negative, no extrathyroidal spread, no family history of

thyroid cancer, and no history of radiation therapy to the neck

(5). Using the combined data from the TCGA cohort, the Korean

cohort, and the Edmonton cohort (N = 743), it was apparent that

the lowest risk for recurrence was in Type 1 and Type 2 PTCs with

early PTCs (tumor size ≤ 4 cm and no lymph node disease). A

higher risk was observed in advanced Type 1 and 2 PTCs (tumor

size > 4 cm or N1) The highest risk of recurrence was in Type 3

PTCs, regardless of whether early or advanced (Figure 4A).

Altogether, this meant by considering both the molecular subtype

and the clinical information (tumor size > 4 cm or N1) we could

describe two distinct risk classes (a high- and a low-risk

class) (Figure 4B).

Molecular subtyping in conjunction with tumor size and lymph

node status can simplify risk stratification in comparison to the

ATA Risk Stratification System (2015) (5). The ATA system is the

most commonly used clinical risk index for predicting disease

recurrence for differentiated thyroid cancer. Performance of the

two risk stratification methods was compared. A consensus ATA

risk classification for each case was established by two practicing

clinicians. To calculate 5-year time-dependent AUROC, a binary

classification was applied: low-risk vs. intermediate/high-risk. Data

from the Korean cohort was not included because of the paucity of

recurrence events. The AUROC was 0.80 for molecular

classification + tumor size/lymph node status; 0.70 for molecular

subtype alone; and 0.51 for the ATA risk stratification method. This

is not surprising considering the low rate of recurrence for the

molecular low-risk prognostic class (i.e., Type 1 or Type 2, size 1-4

cm and N0/Nx PTCs) and the redistribution of class assignments

between the ATA risk classes and prognostic class (Figure 4C):

Twenty-three of the 205 ATA low-risk PTCs were reclassified to

high risk, and 21 of those had recurrences.

The most impactful application of our findings is likely to be in

the preoperative period. One problem with using purely clinical

criteria to select lobectomy candidates is that 40 - 60% will require a

completion thyroidectomy because the postoperative risk

stratification classified them as a higher risk than initially

estimated (23–28). If molecular subtype could be reliably

determined by fine needle aspirate (FNA), patient selection for

more conservative surgery could be refined. In the same way, for

tumors measuring < 1 cm, patients could be selected for active

surveillance with greater assurance.
2.8 Potential therapeutic approaches for
aggressive PTCs

In addition to the potential application of the prognostic

biomarker for surgical decision making, the novel molecular

subtypes identify phenotypes that could guide future therapeutic

approaches and clinical trials. Radioactive iodine (RAI) following a

total thyroidectomy is a conventional approach to ATA classified

intermediate- and high-risk tumors. This approach could be modified

based on molecular subtypes. For example, TDS is derived from

expression levels of 16 thyroid function genes. One such gene,
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SLC55A5, encodes sodium iodide symporter and is required for iodine

uptake by thyrocytes. A high TDS would therefore be most susceptible

to RAI. Others have reported that BRAFV600E mutations decrease

expression of sodium iodide symporter, thought to be a mechanism of

radioactive iodine resistance (29, 30). Indeed, in this series, cases with

BRAFV600E mutations were associated with lower TDS, regardless of

molecular subtype. However, TDS appeared more related with

molecular subtype than BRAFV600E mutation status – Type 1 tumors

had significantly higher TDS than Type 2 or Type 3 tumors

(Supplementary Figure 6). Moreover, low TDS was associated with a

shorter PFS in patients who received RAI (p < 0.001), but not in

patients who did not receive RAI. In the case of ATA intermediate-risk

tumors, there have been disparate results in clinical series reporting the

benefits of RAI in intermediate-risk PTC (31, 32). This can be

explained by the differences in TDS between (and within) molecular

subgroups (Supplementary Figure 6).

There has been substantial interest in pharmacological

approaches to restoring tumor differentiation and sensitivity to

RAI. MAPK inhibitors have been found to restore expression of

thyroid-specific genes and sensitivity to RAI (30, 33). A phase 2

clinical trial of selumetinib reversed radioiodine resistance in

patients with advanced thyroid cancer with clinical benefit (34).

Rather than focusing on tumors with the BRAFV600E mutation,

trials could focus on tumors with a low TDS and a particular

molecular subtype. For example, Type 3 PTCs overexpress EZH2, a

mas t e r r egu l a to r o f chromat in (F igure 5A) . EZH2

hypertrimethylation of histone H3 lysine 27 (H3K27) leads to

cancer cell de-differentiation. Indeed, a lower TDS is associated

with a higher EZH2 expression (Figure 5B). Preclinical studies have

demonstrated that EZH2 inhibitor tazemetostat in combination

with MAPK inhibitors promotes 125Iodine uptake and enhanced

cytotoxicity in PTC cells (33).
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Type 3 PTCs, characterized by an abundant immune cell

infiltrate and higher expression of immunoregulatory molecules

(Figures 3A, B), may also be amenable to immune checkpoint

inhibitors. In 2018, it was reported that higher T cell-inflamed gene

expression profile (GEP) scores were a prerequisite for clinical

benefit from PD-1 blockade (35). Type 3 tumors identified by our

biomarker had the highest T-cell-inflamed GEP scores (Figure 5C).

In the phase 1b KEYNOTE-028 trial, 22 patients with advanced

papillary follicular thyroid cancers received pembrolizumab, and

anti-PD-1 antibody (36). The overall response rate was only 9.1%

and the stable disease rate was 54.5%. The classification we

described could improve selection of candidates for this approach.

EZH2 inhibitors can also favorably modify the immune

microenvironment. PTCs with a low TDS are associated with

higher expression of EZH2 as well as CD274, which encodes PD-

L1 (Figure 5B). As with immunotherapy in general, Type 3 PTCs

have the characteristics for this therapy (Figure 5D).
3 Discussion

In 2014 the TCGA reported a seminal description of the

molecular features of PTC, providing numerous observations

never before reported (9). Molecular subclassification at various

biological levels was accomplished using unsupervised methods.

Combining these features (i.e., mutation, methylation, mRNA)

enabled identification of meta-clusters. However, apart from

finding subgroups that displayed the signaling consequences of

BRAFV600E mutations and RAS mutations, limited functional

information could be derived using this approach. An alternative

approach is to link molecular features with phenotypical features

including clinical aggressivity.
B C

A

FIGURE 4

Molecular subtype in conjunction with two simple clinical factors improves recurrence risk stratification for PTC. (A) Proposed risk stratification flow
diagram which incorporates molecular subtype determination, followed by assessment of tumor size and lymph node status to ultimately determine
if tumors have a low or a high risk of recurrence. (B) Dichotomization resulting from incorporation of molecular subtype with preoperatively
apparent clinical features shows significantly different survival (Log-rank P = 3.51 x 10-8). The low-risk class exhibits very few recurrences. (C) Alluvial
plot illustrates how patients originally assigned into the low-, intermediate-, and high-risk groups using ATA are re-classified into the three molecular
subtypes and subsequently into the two risk classes after incorporating clinical features (i.e., tumor size and lymph node status).
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Two obstacles exist in studying PTC. First, PTC has a good

prognosis and only a small proportion of tumors recur after

resection. Second, the methods for linking highly dimensional

features to continuous variables (such as survival) have not been

well described. Using a machine learning algorithm designed to

circumvent these problems, genes most consistently associated with

recurrence were identified. Submitting those genes to conventional

unsupervised methods of classification facilitated identification of

unique molecular subtypes.

Prognostic biomarker development has primarily relied on Cox

Proportional Hazard (PH) analysis. However, applying Cox PH to a

highly dimensional molecular profiling dataset (e.g., a dataset

consisting of over 20,000 mRNA transcripts) would result in a highly

overfitted model. Another problem with using a Cox PH model on

genomic data is the key assumption that proportional hazard functions

remain proportional over time. Assigning a linear risk score function to

genes may not be valid, as fluctuations in the survival risk in the range

of expression can occur (37). Another issue with biomarker

development is that the random splitting of a single cohort into

discovery and validation (test) cohorts can potentially result in the

spurious identification of genes that are a product of the composition of

the discovery cohort. HighLifeR addresses these challenges by testing

the effects of many permutations of genes in numerous virtual cohorts,

ranking genes by their strength of association with the survival

outcome and by the consistency of their effect. As a result, it is well

suited for identifying molecular features that have a significant

relationship with survival outcomes in highly dimensional genomic
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datasets. Another machine learning algorithm (EACCD) has

previously been employed to identify prognostic groups in thyroid

cancer using clinical variables (38). The EACCD algorithm relies on

categorical variables as input. When continuous variables are

encountered (e.g., tumor size), arbitrary cut-offs must be utilized,

limiting the algorithm’s usefulness for identifying prognostic genes.

Several other groups have interrogated the TCGA cohort, utilizing

series of Cox Proportional Hazards regression survival analyses to

identify prognostic gene signatures for PTC. One study identified 38

genes significantly associated with PTC progression, and 24 of these

genes were related to the FOXM1 signaling pathway (14). Six of the

genes identified by that group overlapped with our gene set (TTK,

EZH2, SKA3, KIF4A, HIST2H2BF, BUB1). We also observed positive

enrichment of the FOXM1 pathway in Type 3 and Type 2 PTCs. The

5-year time-related AUROC was 0.72. Two groups describing panels

of 5 prognostic genes (none of which are present in our gene list) had

AUROCs of 0.59 and 0.75 (39, 40). Finally, Yang et al. reported on a

risk score based on immune infiltrate determined by the CIBERSORT

algorithm (41). Like us, they found an association of immune

checkpoint gene expression and poor prognosis. The AUROC using

their approach was 0.71. The strength of our approach is the relatively

favorable degree of prognostic accuracy (AUROC 0.80). Moreover, the

subtypes we have identified provide meaningful and actionable

biological insight by describing potential therapeutic targets.

Importantly, we have described how our prognostic signature can

be leveraged with two simple clinical data points: tumor size and

lymph node status (used to dichotomize early and advanced PTC).
B

C D

A

FIGURE 5

Biological differences between mRNA-based prognostic risk indicates potential therapeutic approaches for aggressive papillary thyroid carcinomas.
(A) The relationship between molecular subtype and EZH2 expression shows a higher expression of EZH3 in Type 3 tumors. (B) The relationship
between thyroid differentiation score (TDS) and expression of EZH2 and CD274 (gene name for PD-L1) are shown in the violin plot. One-way
ANOVA p-value <0.0001 is indicated by ***. (C) T-cell-inflamed gene expression scores for each molecular subtype. T-test p-values are shown for
each comparison. (D) Diagram of suggested role of EZH2 and associated molecules contributing to the high-risk group phenotype suggests EZH2
inhibitors may favorably modify high-risk tumors.
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The gene signature by itself performs favorably in comparison to

other prognostic gene signatures (41). In conjunction with the clinical

dichotomization, a subgroup with a low risk of recurrence is

identified with greater specificity than the current ATA risk

stratification system. This has significant potential to direct clinical

decisions. Patients can be selected for less aggressive treatments with

greater assurance (including simple observation in some instances).

At the same time, higher risk patients can be treated more

appropriately with total thyroidectomy ± RAI. The identification of

a molecular subgroup with a high risk of recurrence independent of

tumor stage (Type 3 PTCs) is particularly impactful in this regard.

Our gene signature technology can potentially be applied to fine

needle aspirates (FNA) from thyroid nodules. Currently,

commercially available genomic assays for thyroid nodule

aspirates (such as ThyroSeq (42) and Thyrospec (43)) focus on

diagnosis and estimating the risk of malignancy, particularly in

indeterminate cell samples (Bethesda 4). Another such test, Afirma

(44), described as a genomic sequencing classifier, also detects gene

variants (including BRAFV600E mutations) and fusions in nodules

that are clearly malignant (Bethesda 6) or are suspicious for

malignancy (Bethesda 5). Our data demonstrate the limited utility

of BRAFV600E mutations and other genomic features for

prognostication. Moreover, the transcriptomic classification we

have described is biologically more informative. Being able to

estimate prognosis pre-operatively would facilitate selection of

patients for active surveillance, hemithyroidectomy or total

thyroidectomy ± lymphadenectomy.

The three molecular subgroups that we have discovered could

also potentially inform non-surgical treatment. Ras-like Type 1

PTCs are predicted to derive the greatest benefit from RAI. If future

studies confirm that some Type 2 and 3 PTCs are RAI resistant,

then strategies to restore the tumor’s capacity for RAI uptake are

available. Currently, there are only two approved targeted therapies

for patients with RAI-refractory PTC; the tyrosine kinase inhibitors

sorafenib and lenvatinib. These inhibitors exert their effect by

blocking the MAPK pathway (45). However, they have

considerable toxicity and a short-lived efficacy. The biological

characteristics of our molecular subtypes have uncovered future

avenues for clinical research, including the use of EZH2 inhibitors

and immunotherapy as primary or adjuvant therapies.

Our study is limited by a lack of prospective validation, but the

clinical implications of our work to date are clear. We describe novel

molecular subgroups of PTC and identify new potential therapeutic

targets. We identify, with specificity, patient subgroups at low-risk

and high-risk of disease recurrence. Most importantly, we offer a

means to refine and improve clinical care in the future by outlining

a diagnostic test that simplifies clinical decision making.
4 Methods

4.1 Patients and transcriptional data for
prognostic model

To train and validate the prognostic classifier, we used the

RNA-seq dataset from PTC primary tumor samples. These are
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available in the Cancer Genome Atlas (TCGA) consortium database

(https://portal.gdc.cancer.gov/). Details of the patient inclusion

criteria, sites of sample collection, and transcriptional analysis

methodology can be found elsewhere (9). The data were

randomly split into thirds. Two thirds (N = 335) were assigned to

be the discovery dataset and the remaining third was assigned to be

the validation set (N = 167). Additional accompanying TCGA data

(e.g., mutation data and copy number variation data) were

downloaded using the TCGAbiolinks package (version 2.19.0)

(46) and from Genomic Data Commons (47). Harmonized

molecular data were used (aligned to hg38).

Two-tailed Student’s t-tests, ANOVA tests, correlations,

Fisher’s Exact tests, Pearson Chi-squared tests and McNemar’s

test were conducted using IBM-SPSS v.28.0 statistical software

(IBM). P and N values are indicated in the figure legends or in

the figures themselves. The R package smoothROCtime was used

for time-dependent ROC curve estimations (48). Unless otherwise

stated, P < 0.05 was considered significant.
4.2 Identification of prognostic genes

HighLifeR was designed to address the intrinsic problems with

Cox Proportional Hazard analysis in highly dimensional genomic

datasets. Specifically, the Cox method requires a minimum number

of events per variable studied, and has limited capacity filtering of

the most impactful, yet non-parallel, variables (genes), limiting its

suitability for multivariable analysis of high-dimension genomic

datasets. HighLifeR leverages the Partial Cox Regression method of

Li and Gui (49). In the HighLifeR algorithm, the multivariable Cox

proportional hazards are estimated through recursive generation of

predictive latent components. This was done using a partial least

squares (PLS) extension on survival data by testing millions of

combinations of genes and patients in a regulated machine learning

environment. The training population is also randomized into

“virtual cohorts” over the course of 20 rounds of testing, each

composed of at least 70% of patients, with resampling. This

approach limits the effect from outliers and substantially reduces

the dataset dimensionality, and it can be used to generate a PC-R

based model for predicting survival outcomes. It is applicable when

prior knowledge is limited, such as in genomic studies. At the same

time, it is possible to adjust for known prognostic factors by

stratifying the virtual cohorts.

Three main components of the HighLifeR statistical pipeline

include: 1. massively-parallel combinatorial rounds to establish the

prognostic associations for each gene in the variable space; 2.

selection of variables (genes) with the highest potential from step

1 for the purpose of developing an accurate and comprehensive, yet

parsimonious, prognostic classifiers; and 3. construction of a

composite prognostic scoring model. Wide implementation of

randomization procedures in the pipeline, including sample

allocation to discovery and validation sets and in combination

rounds, reduces the possibility of detecting a sample set-

dependent prognostic profile. To select prognostic genes, we

required genes to be consistently ranked among the top 200 genes

based on their association with time to recurrence and have a
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prognostic impact (Wald statistic) greater than the half of the

maximum Wald statistic in our training set (>4.7).
4.3 Identification of risk classes

We identified prognostic genes using HighLifeR and then

conducted unsupervised clustering in the discovery dataset to see

how patients were grouped based on the expression of these genes.

We then created Kaplan-Meier survival curves to compare groups

identified by unsupervised clustering and tested for group

differences (Log-Rank Test) using IBM-SPSS v.28.0 statistical

software (IBM). Once clusters in the training set were

determined, genes in the clusters were used to build the

prognostic classifiers. These gene clusters were then compared

using the test dataset. Prognostic model development and testing

were conducted using the WEKA software suite (version 3.8.4) (50).

Heatmaps and unsupervised clustering were conducted in R using

the ComplexHeatmap package (version 2.10.0) (51).
4.4 Differential mutation

Raw maf files containing mutation data were analyzed.

Oncoplots and coOncoplots were created for visualization using

the R package maftools (version 2.6.05) (52). Differential mutation

was also conducted using maftools which performs Fisher’s test to

compare mutations frequency between two groups.
4.5 Differential expression

RNA-seq data (HT-Seq counts) were downloaded, prepared, and

normalized using TCGAbiolinks. Differential expression was

conducted using the EdgeR method (53). The low-risk group served

as the reference group. We used log2 Fold Change >1 and adjusted p

values <0.05 to identify differentially expressed genes. mRNA

functional analysis included submitting differentially expressed genes

to IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/

products/ingenuitypathway-analysis) and Gene Set Enrichment

(GSEA) (54) analysis using the 50 molecular signatures called the

Hallmark gene sets.
4.6 Differential methylation

Beta values (Infinium Human Methylation 450k platform) were

downloaded using the GDC Data Transfer Tool User (version

1.6.1). Somatic differentially methylated CpGs analysis was

conducted using the TCGAanalyze_DMC function in

TCGAbiolinks. Significance cut-offs were an adjusted p-value of

<0.05 and a mean difference in beta values > 0.2. Once differentially

DNA methylated genes were identified, integration of the

differentially expressed genes allowed us to explore genes which

were hyper-methylated and down-regulated and/or hypo-
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methylated and up-regulated in each risk group compared with

the low-risk group (which always served as the reference group). A

starburst plot was created for each risk comparison for visualization

of the methylation and gene expression relationships. In the

starburst plots, the p-values are multiplied by the sign of

difference of beta values. The dashed black lines indicate the p-

value at 0.05. The function of the genes highlighted in the starburst

plots was examined manually or using IPA software.
4.7 Differential miRNA

BCGSC miRNA Profiling Pipeline data were downloaded using

TCGAbiolinks. Differentially expressed miRNA were identified

using the DESeq2 package (55). miRNA-gene pairs were

identified, which corresponded to functional validation

publications reported by MiRTarBase (version 9.0) (56), for

stronger (luciferase reporter, qPCR, western blot) and weaker

experimental evidence types. Differentially downregulated genes

were paired to differentially upregulated miRNA, and

differentially upregulated genes were paired to differentially

downregulated miRNA. These pairs were submitted to IPA for

pathway analysis.
4.8 Immune cell infiltration analysis

Immune cell fractions were estimated using the mixed sample

gene expression deconvolution algorithm CIBERSORT (57). Using

a set of 22 immune cell reference expression profiles (LM22

signature matrix), the relative abundance of immune cells in the

tissue were estimated. The overall fraction of each immune cell type

in the tissue was calculated by multiplying the CIBERSORT relative

abundance in the leukocyte fraction (LF), as explained

elsewhere (58).

The T cell-inflamed gene expression profile (GEP) was derived

across a variety of solid tumors. It is composed of 18 inflammatory

genes related to antigen presentation, chemokine expression,

cytolytic activity, and adaptive immune resistance, including

CCL5, CD27, CD274 (PD-L1), CD276 (B7-H3), CD8A,

CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E,

IDO1, LAG3, NKG7, PDCD1LG2 (PDL2), PSMB10, STAT1, and

TIGTT (59). The GEP scores were calculated as a weighted sum of

normalized expression values for the 18 genes listed above.
4.9 External validation set

To validate our prognostic model, we accessed another public

dataset containing RNA-Seq data from PTC tumors from 124

Korean patients with PTC (PRJEB11591) (22) and from 10 cases

of ATC (PRJNA523137) (11). Details regarding sequencing can be

found elsewhere (11, 22). FASTQ files were accessed from the

European Nucleotide Archive using BaseSpace (https://

basespace.illumina.com/home/indexIllumina, San Diego CA) and
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were subsequently analyzed using FASTQC for quality control

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc).

Salmon was used to quantify transcript abundance from RNA-Seq

reads on the Galaxy web interface (60, 61). TPM counts were scaled

prior to prognostication using our prediction model.
4.10 Targeted RNASeq for molecular
classification of clinical samples

This analysis was approved by the Health Research Ethics Board

of Alberta Cancer Committee (Ethics no. HREBA.CC-18-0285). All

patients included in this study provided written informed consent

and all methods and analyses of patient materials and data were

carried out in accordance with human subject research guidelines

and regulations. Fresh frozen papillary thyroid carcinoma samples

(N = 136) were acquired from the tumor bank in Edmonton,

Canada and stored at -80°C prior to analysis. RNA was extracted

using the RNeasy Mini Kit (Qiagen) according to manufacturer’s

instructions. The integrity of RNA was determined by

electrophoresis using 2100 Bioanalyzer (Agilent Technologies).

A custom panel was designed using probes for the 82 prognostic

genes and 10 internal controls. Internal controls were selected based

on their low expression variance between tumors; 5 were high

abundance genes, and 5 were low abundance genes. External RNA

controls developed by the External RNA Controls Consortium

(ERCC; Invitrogen/Thermo Fisher) composed of 92 unique

transcripts derived and traceable from NIST-certified DNA

plasmids were added for technical quality control.

cDNA synthesis and library preparation were performed

according to the Illumina RNA prep with enrichment (L)

tagmentation protocol. The prepared libraries were pooled and

sequenced on the Illumina MiSeq platform using the custom panel

designed using the HighLifeR prognostic genes, the internal controls

and the ERCC transcripts. MiSeq Reagents Kit v3 (Illumina) were

used according to the manufacturer’s instructions. Sequenced reads

were quality control (QC) checked using FastQC (version 0.11.9),

trimmed using Fastp (version 0.23.2), and, quantified using Salmon

(1.5.1) (60) using the quasi-mapping mode. FastQC, Fastp and

Salmon were run on Galaxy (version 22.05) Transcript level counts

were summarized to gene level using tximport (version 1.24.0). Gene

level data were used for the prediction using classification models

designed to classify tumors as Type 1, Type 2, or Type 3.
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