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Metabolic syndrome is a complex metabolic disorder that often clinically

manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and

hypertension. With the development of social and economic systems, the

incidence of metabolic syndrome is increasing, bringing a heavy medical

burden. However, there is still a lack of effective prevention and treatment

strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF

superfamily and is a key protein involved in the maintenance of metabolic

homeostasis, including reducing fat mass and lowering hyperglycemia, insulin

resistance and dyslipidemia. Here, we review the current regulatory mechanisms

of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and

hypertension, and discuss the possibility of FGF21 as a potential target for the

treatment of metabolic syndrome.
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1 A brief introduction of FGF21

Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily,

which consists of 22 related proteins from FGF1 to FGF23 (among which FGF15 and

FGF19 are homologous proteins in mice and humans, respectively) (1). FGFs consist of a

structure-related peptide superfamily of 150-300 amino acids, with a conserved core of

approximately 120 amino acids (2). FGFs are a class of polypeptide growth factors that are

widely expressed in various organs and tissues and are involved in several processes of cell

activity, including cell differentiation, cell proliferation, and embryonic development (3).

FGFs play a biological role by binding to four fibroblast growth factor receptors (FGFRs) on

the cell membrane. According to their sequences and functional properties, FGFs are

classified into seven distinct subfamilies: FGF19, FGF21 and FGF23 belong to the hormone

FGF subfamily (4, 5). Members of the hormone FGF subfamily all contain heparin-binding

domains that allow them to bind to heparin sulfate proteoglycan, which in turn can initiate

the interactions between FGFR and ligand and then activate downstream signaling

cascades. However, hormone-type FGFs have a low affinity for FGFR binding, and
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therefore require the participation of the coreceptor a-Klotho/b-
Klotho for effective binding (6, 7). The tissue specificity of a-
Klotho/b-Klotho expression restricts the site where hormone-type

FGFs play a physiological role (8).

FGF21 was cloned in 2000 by Nobuyuki Itoh’s team (9).

Subsequently, in 2005, Kharitonenkov et al. found that FGF21

intervention could effectively reduce plasma glucose and

triglyceride levels in ob/ob and db/db mice, and these metabolic

regulatory effects could be maintained until at least 24 hours after

FGF21 intervention (10). The FGF21 gene is located on human

chromosome 19 and has three exons encoding 209 amino acid

residues. The mouse Fgf21 gene is located on chromosome 7 and

encodes 210 amino acid residues (11). Both the human and mouse

preprotein of FGF21 contain a 30-amino acid hydrophobic domain

that acts as a signal for FGF21 and allows it to be secreted. Mature

human FGF21 contains 179 amino acid residues, while in mice, it

contains 180 amino acid residues (9, 12). The FGF21 protein is

highly conserved. In fact, 75% of its amino acid sequence is shared

between mice and humans, and 89% of its amino acid sequence is

shared between mice and rats (13, 14). Under physiological

conditions, serum FGF21 is mainly secreted by the liver, but

other tissues, including adipose tissue, heart, skeletal muscle and

the kidney, can also synthesize and secrete FGF21 under certain

circumstances (8). After the liver secretes FGF21 into circulation,

FGF21 binds to FGFR on the target organ; FGFR, which belongs to

the receptor tyrosine kinase (RTK) family (15, 16). Seven major

FGFR isoforms have been identified in mammals, namely, 1b, 1c,

2b, 2c, 3b, 3c, and 4 (17–19). Currently, FGFR1c/b-klothos and

FGFR3c/b-klothos activation are the major signaling pathways

mediating the physiological effects of FGF21 based on cellular

receptor activation assays and in vivo genetic models (20, 21).

When FGF21 binds to receptors on target organs (adipose tissue,

liver and muscle), it plays a role in metabolic regulation, including

the upregulation of fatty acid b oxidation, ketogenesis and

gluconeogenesis (22–24). In addition, adiponectin is a key

regulator of metabolic homeostasis (25), and FGF21 has also been

shown to strongly induce adiponectin transcription and secretion

(26). With the in-depth study of FGF21, its role and molecular

mechanism in regulating metabolism have been gradually revealed.

Here, we summarize the current research on the role of FGF21 in

metabolic syndrome to explore the potential of FGF21 as a potential

therapeutic target for metabolic syndrome.
2 Transcriptional regulation of FGF21

2.1 Peroxisome proliferator-activated
receptor a/g

PPARa is a transcription factor closely involved in metabolic

regulation, and PPARa is usually activated during energy

deprivation (27). In addition, a variety of drugs, such as

fenofibrate, can also induce PPARa activation (28). Fasting has

been shown to affect circulating FGF21 levels in the body. While

fasting for 2 days did not affect FGF21 levels, the circulating FGF21

levels were 74% higher after 7 days in participants than in control
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individuals (29). In addition, FGF21 levels were two times higher in

non-diabetic patients with hypertriglyceridemia than in the patients

in the control group and were 28% higher during fenofibrate

treatment (29). Further studies have shown that fasting regulates

the FGF21 concentration through the activation of PPARa (29). A

similar result was also observed in that participants treated with

PPARa agonists showed higher circulating FGF21 levels (30). In

addition, the FGF21 levels were very low in PPARa knockout mice

in both feeding and fasting states (31). Furthermore, Lundåsen et al.

demonstrated that there were PPARa response elements (PPREs)

in the promoter region of the mouse and human FGF21 genes, and

Inagaki et al. showed that PPARa can directly bind to FGF21

promoters to promote the transcription of FGF21 (32, 33). In

addition to PPARa, PPARg was also identified as a transcription

factor of FGF21. Zhou et al. showed that ampelopsin could

upregulate insulin sensitivity by activating PPARg, thereby

promoting the expression of FGF21 (34).
2.2 Activating transcription factor 4

ATF4, a member of the leucine zipper superfamily, is a

multifunctional transcription regulatory protein (35). ATF4 is

expressed in most mammalian cell types, and it can be involved

in various cellular responses to specific environmental stresses,

intracellular disturbances, or growth factors (36). Several studies

have also found that ATF4 is involved in the regulation of FGF21

expression under stress. Kim et al. found that mitochondrial

dysfunction induced by autophagy defects can promote FGF21

expression by inducing an increase in ATF4 (37). In addition,

treatment with a mitochondrial respiratory chain inhibitor also

induced FGF21 expression in an ATF4-dependent manner (37). In

addition, wogonin, a Scutellaria baicalensis root extract and one of

its components, could promote the expression of FGF21, thereby

improving metabolic diseases. When the expression of ATF4 was

inhibited by ATF4 siRNA, the effect of wogonin on promoting

FGF21 and improving metabolism was destroyed (38). Moreover,

the TAZ activator TM-25659 increases FGF21 mRNA and protein

levels and FGF21 secretion in C2 myotubes by activating the GCN2-

phosphoeIF2a-ATF4 signaling pathway, thus reducing fasting

blood sugar levels and inflammation (39). These results suggest

that ATF4 can mediate changes in the expression of FGF21 and

thus regulate metabolic homeostasis in the body under stress.

Further studies revealed the molecular mechanism by which

ATF4 regulates FGF21 expression. Wan et al. showed that the

changes in the expression of FGF21 under endoplasmic reticulum

(ER) stress are caused by the binding of ATF4 to the FGF21

promoter, thus promoting the transcription of FGF21 (40).

Similar results were also observed in ChIP and luciferase reporter

assays, which confirmed that AFT4 can bind to the promoter of

FGF21 to promote the expression of FGF21 (41). Moreover, TRIB3

(Tribbles homolog 3), another cellular stress-inducible gene, could

inhibit FGF21 expression by binding to ATF4 at the promoter of

FGF21 (42). Maruyama et al. showed that there were three response

elements for ATF4 in the promoter region of the FGF21 gene:

AARE1, AARE2 and AARE3 (43). Under stress conditions, ATF4
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regulates the expression of FGF21 by combining with these three

response elements.
2.3 NFE2-related factor 2

Nrf2 is a major regulator of cell redox status and detoxification

response (44). Dozens of protective genes have been identified that

are induced in an Nrf2-dependent manner in response to changes

in cell redox status (45). In addition to regulating cellular oxidative

stress, Nrf2 is also involved in the regulation of cellular metabolism.

Genetic or pharmacological activation of Nrf2 can lead to decreased

liver lipid levels (46). Moreover, Chartoumpekis et al. demonstrated

that Nrf2 knockout mice showed higher plasma levels of FGF21

than the mice in the control group after long-term high-fat feeding

(47). Similarly, the levels of mRNA and protein of FGF21 were

increased in the livers of Nrf2 knockout mice (48, 49). Furthermore,

the luciferase reporter plasmid showed that overexpression of Nrf2

could significantly inhibit FGF21 promoter activity (47). However,

different results have been observed regarding the relationship

between Nrf2 and FGF21. Intervention with an Nrf2 inducer in

db/db mice can effectively upregulate plasma FGF21 levels and

hepatic FGF21 expression (50). It seems that Nrf2 positively

regulates the expression of FGF21. These different results on the

relationship between Nrf2 and FGF21 may be due to different

experimental animal models and intervention methods and the role

of Nrf2 in regulating FGF21 still needs to be further studied in

the future.
2.4 Others

In addition to the abovementioned transcription factors, other

transcription factors are also involved in the regulation of FGF21

expression in different states. All-trans retinoic acid (RA), the main

active metabolite of vitamin A, exerts its regulatory role mainly by

binding to the three retinoic acid receptors (RARs) of the nuclear

receptor superfamily (51, 52). ob/ob mice treated with RAR agonists

showed an anti-obesity phenotype similar to that of mice expressing

FGF21 in the liver (53–55). Further studies showed that retinoic

acid intervention could promote FGF21 expression by promoting
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RARb-FGF21 promoter binding, and this result was also confirmed

by adenovirus-mediated RARb overexpression in the liver, which

continuously stimulated liver FGF21 production and secretion (55).

Another nuclear receptor, retinoic acid receptor-associated receptor

a (RORa), has also been identified to directly regulate the

transcription of FGF21. Overexpression of RORa promoted the

expression and secretion of FGF21, while inhibition of RORa
downregulated it (56). Mechanistically, there is a typical ROR

response element in the proximal promoter of the FGF21 gene, to

which RORa can bind to promote the transcription of FGF21 (56).

Nur77 is a member of the orphan nuclear hormone receptor 4A

subgroup, also known as nuclear receptor subfamily 4 group A

member 1 (NR4A1) (57). Overexpression of Nur77 increased

FGF21 expression in vivo and in vitro, while inhibition of Nur77

downregulated FGF21 expression (58). Further studies revealed that

Nur77 regulates FGF21 expression by binding to the FGF21

promoter (58). In addition, the Src homology 3 domain binding

kinase 1 (SBK1)-mediated phosphorylation of Nur77 at serine 344

may promote the translocation of Nur77 to the nucleus for binding

to the FGF21 promoter (59). Moreover, the transcription factors

cyclic adenosine monophosphate-responsive element-binding

protein H (CREBH) (60) and thyroid hormone receptor b (61)

can also bind to FGF21 promoters to promote FGF21 expression.

Taken together, multiple transcription factors have been identified

to modulate the expression of FGF21 under different

pathophysiological conditions (Figure 1), which sheds light on the

strategies to boost FGF21 content and its functions.
3 FGF21 and metabolic syndrome

3.1 Obesity

Obesity is an important clinical manifestation of metabolic

syndrome. Obesity not only causes a variety of metabolic diseases,

but also aggravates the progression of metabolic diseases. Therefore,

effective weight control is the basis of preventing metabolic diseases.

Currently, several studies have shown that FGF21 may be a

potential target for obesity treatment. The injection of

recombinant human FGF21 into the lateral ventricle of obese

mice can effectively increase insulin sensitivity and energy
FIGURE 1

Regulatory mechanism of FGF21 expression. The mRNA expression of FGF21 was upregulated by some transcription factors (PPARa, PPARg, ATF4,
RORa, RA, CREBH, TRs and Nur77) and inhibited by Nrf2. PPARa, peroxisome proliferator-activated receptor a; ATF4, activating transcription factor
4; RORa, retinoic acid receptor-associated receptor a; CREBH, cyclic adenosine monophosphate-responsive element-binding protein H; Nrf2,
Nuclear factor erythroid 2-related factor 2; PPREs, PPARa response elements.
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consumption (62). Moreover, FGF21 intervention in diet-induced

obesity and ob/ob mice resulted in energy expenditure changes,

enhanced fat oxidation, and the inhibition of liver new fat

production, thus improving the obesity phenotype (63). Exercise

improves the obesity phenotype in part through the effect of FGF21.

Geng et al. showed that the expression levels of FGFR1 and b-
Klotho were significantly reduced in adipose tissue of mice with

high-fat induced obesity. Their expressions levels were effectively

restored in adipose tissue by exercise, while these exercise-induced

protective effects were blocked by b-Klotho knockout (64).

Similarly, overweight and obese men showed significantly higher

serum FGF21 levels and significant weight loss after three weeks of

high-intensity interval training and high-intensity resistance

training compared to individuals in the control group (65). These

results suggest that exercise may contribute to weight loss in part by

increasing FGF21 secretion and improving FGF21 resistance in

adipose tissue.

Natural FGF21 proteins have poor pharmacokinetic properties,

and due to their small size, most of them are rapidly eliminated by

glomerular filtration, resulting in a short half-life (66, 67). In view of

the important role of FGF21 in obesity, the pharmaceutical industry

has developed FGF21 analogs or FGF21 receptor agonists to

overcome the shortcomings of the natural FGF21 protein, and

these treatments have entered the clinical stage. Foltz et al.

developed a monoclonal antibody, mimAb1, that specifically

activates the b-Klotho/FGFR1c signaling pathway in tissues and

obese cynomolgus monkeys showed significant weight loss after

mimAb1 intervention (68). Another FGF21 mimetic, LY2405319,

also showed significant weight loss in rhesus monkeys (69). FGF21

may reduce body weight through multiple pathways. FGF21 can act

on the central nervous system, thereby inducing sympathetic

activity and energy expenditure (70). In addition, the increased

expression of thermogenic genes, increased total and uncoupled

respiration, and enhanced glucose oxidation was also observed in

FGF21-treated brown adipocytes (71). Meanwhile, FGF21 also

promotes islet beta cell survival and increases insulin sensitivity

in peripheral tissues to maintain glucose and lipid homeostasis (72,

73). Therefore, the metabolic regulation mediated by FGF21

analogs may be an effective regimen for weight loss in future studies.
3.2 Diabetes mellitus

Diabetes is also an important clinical manifestation of metabolic

syndrome. The liver is a key organ of glucose regulation, and FGF21

secreted by the liver has been confirmed to be closely related to the

occurrence and development of diabetes. At present, several studies

have reported that FGF21 may be a biomarker for the occurrence of

diabetes. There were elevated serum levels of FGF21 in patients with

diabetes compared with control individuals (74). Moreover, serum

FGF21 levels increase during fasting in obese individuals and are

associated with insulin resistance (75). Similarly, the plasma FGF21

concentration was positively associated with homeostatic model

assessment of insulin resistance (HOMA-IR) in patients receiving

lifestyle hypoglycemic therapy only, and patients with higher

baseline plasma FGF21 concentrations also had a relatively high
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risk of glucose progression over a 5-year period (76). FGF21 levels

can also be used to assess the effectiveness of diabetes treatment.

Liver fat content was increased in newly diagnosed overweight

patients with type 2 diabetes combined with nonalcoholic fatty liver

disease (NAFLD) compared to individuals in the control group, and

was associated with high levels of FGF21. However, hepatic fat

content was positively correlated with the relative change in serum

FGF21 after 12 weeks of liraglutide treatment (77). The increase in

FGF21 levels in diabetes may be due to metabolic disorders and

decreased sensitivity to FGF21, so the compensatory synthesis and

secretion of more FGF21 by the liver is needed to maintain the

metabolic homeostasis of the body. These evidence to show FGF21

may be used as a biomarker in the diagnosis of diabetes.

Moreover, exogenous FGF21 intervention or overexpression of

FGF21 can significantly slow the onset of diabetes. Jimenez et al.

showed that when treated with FGF21, high-fat diet-fed or db/db

mice showed significant improvement in insulin resistance, and

inflammation and fibrosis in liver was alleviated (78). A similar

result was also observed in that intervention with recombinant

human FGF2 alleviated cognitive impairment in obese mice

induced by high-fat diet by a regulating impaired glucose

tolerance and improving insulin resistance (79).

FGF21 may improve insulin resistance through different

pathways. Pan et al. showed that overexpression of FGF21 in the

pancreas of db/db mice can effectively improve pancreatic

morphology, inhibit b cell apoptosis, and increase glucose

stimulation of insulin secretion (80). Mechanistically, FGF21

increases the expression of insulin gene transcription factor and

soluble N-ethylmaleimide-sensitive factor attachment protein

receptor (SNARE) proteins and activates the phosphatidylinositol

3-kinase (PI3K)/Akt signaling pathway to promote insulin secretion

(80). In addition, b-cell-specific knockout of b-klotho (coreceptor of
FGF21) led to impaired glucose-stimulated insulin secretion (GSIS)

and glucose intolerance in mice, while adenovirus-mediated b-
klotho overexpression alleviated the defect of islet GSIS in type 2

diabetic mice (81). Moreover, the insulin-sensitizing protein

adiponectin has also been shown to be a downstream effector of

FGF21. FGF21 intervention enhanced adiponectin expression and

secretion in adipocytes, thereby upregulating circulating

adiponectin levels in mice, while the effects of FGF21 on lowering

blood glucose and regulating insulin resistance were partially

inhibited when adiponectin was knocked out (82). Similarly,

FGF21 could effectively lower blood glucose levels and enhance

insulin sensitivity in ob/ob mice and diet-related obese mice only

when adiponectin function was present (83). In addition, the

overexpression of FGF21 in the liver can upregulate the

expression of genes involved in fatty acid oxidation, thus

accelerating energy expenditure and reducing steatosis (84). This

could also benefit the treatment of diabetes.

In addition to the manifestations of hyperglycemia and insulin

resistance, a variety of microangiopathies can also be caused by

diabetes. These microangiopathies result in damage to target

organs, such as diabetic cardiomyopathy (85), diabetic

nephropathy (86) and diabetic retinopathy (87). FGF21 has also

been reported to have a protective effect against diabetes

complications. FGF21 knockout diabetic mice showed earlier and
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more severe cardiac dysfunction, remodeling, and oxidative stress

(88) and the effective delivery of FGF21 to myocardial tissue

through the new drug delivery system can reduce myocardial

hypertrophy, cell apoptosis and interstitial fibrosis in diabetic

mice (89). Moreover, Jin et al. showed that treadmill exercise

alleviated diabetes-induced cardiac dysfunction in mice by

upregulating FGF21 sensitivity. Mechanistically, FGF21 activates

the AMPK/FOXO3/SIRT3 signaling pathway, thereby enhancing

mitochondrial function and improving diabetic myocardial injury

(90). In addition, FGF21 ameliorates myocardial damage in diabetes

by activating AMPK-AKT2-Nrf2-mediated antioxidant pathways

and AMPK-ACC-CPT1-mediated lipid-lowering effects (91).

FGF21 is also essential in slowing the progression of diabetic

nephropathy. Higher serum FGF21 levels were inversely

associated with the glomerular filtration rate in patients with

diabetes (92). However, the increased level of FGF21 in diabetic

nephropathy patients may be due to the increased compensatory

secretion of FGF21 in the body due to the presence of FGF21

resistance. However, because FGF21 is mainly excreted by the

kidney, FGF21 excretion is reduced and therefore retained in the

body when renal function is damaged. Cheng et al. demonstrated

that fenofibrate could reduce renal oxidative stress and

inflammation by upregulating the expression of FGF21 and

activating the Nrf2 signaling pathway in the diabetic state, and

these protective effects were eliminated in FGF21-deficient mice

(93). Similarly, recombinant human FGF21 intervention

significantly reduced the urinary albumin/creatinine ratio (ACR)

and inhibited renal mesangial dilation, thereby alleviating diabetic

kidney injury in db/db mice (94).

Although FGF21 has shown a protective effect in the treatment

of diabetes, the effect of FGF21 and its analogs on lowering blood

glucose levels is still not obvious in current clinical trials. This may

be related to the resistance of FGF21 in the long-term course of

diabetes. In the future, treatment with FGF21 in combination with

drugs or exercise to improve FGF21 resistance may be a potential

approach for the treatment of diabetes and its complications. In

addition, FGF21 may also be used as a biomarker in the diagnosis of

diabetes in the future.
3.3 Hyperlipemia

Hyperlipidemia is also a common clinical manifestation of

metabolic syndrome. After strictly matching the BMI of subjects,

serum FGF21 levels were positively correlated with serum total

cholesterol, triglyceride and LDL cholesterol levels. The most

significant correlation was between FGF21 and triglycerides, and

FGF21 levels were independently associated with pericardial fat

volume (95). In addition, Liu et al. showed that recombinant

FGF21 intervention reduced cholesterol levels by promoting brown

adipose tissue (BAT) activation and white adipose tissue (WAT)

browning, thereby enhancing fatty acid uptake into BAT and brown

WAT for metabolism (96). Moreover, dietary protein dilution

upregulated the expression of FGF21 and accelerated the oxidative

utilization of fatty acids in tissues, thus effectively alleviating
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hypertriglyceridemia and fatty liver (97). In addition to accelerating

the oxidation of fatty acids, FGF21 can also reduce cholesterol

synthesis and reduce hypercholesterolemia by inducing adiponectin

production in adipose tissue, which inhibits the transcription factor

cholesterol regulatory element binding protein-2 (98). Similarly,

restoring the function of FGF21 can inhibit the expression of

SREBP-1c and thus inhibit lipid synthesis in the liver and

upregulate the expression of adipose triglyceride lipase (ATGL) and

hormone-sensitive lipase (HSL) in WAT to promote lipolysis (99).

Moreover, FGF21 treatment significantly reduced plasma levels of

nonesterified fatty acids (NEFAs) and hepatic triglyceride (TG).

Furthermore, FGF21 also promoted the catabolism of TG-rich

lipoproteins in white adipose tissue and brown adipose tissue (100).

Nowadays, there are some clinical trials to reveal the role of FGF21 in

reducing lipid levels in patients. Treatment of overweight/obese type

2 diabetic patients with the long-acting FGF21 analogue (PF-

05231023) significantly reduced circulating triglyceride and low-

density sterol levels and increased high-density lipoprotein and

adiponectin levels (101). Similarly, several other FGF21 analogues

are also effective in lowering lipid levels in patients (102–104). These

findings strongly support the lipid-lowering effects of FGF21.

However, the molecular mechanisms and targets of FGF21 should

be further elucidated to better avoid its potential side effects.
3.4 Hypertension and atherosclerosis

FGF21 mRNA levels were higher in hypertensive patients than

in healthy control individuals (105). Similarly, there were increased

serum levels of FGF21 in elderly patients with hypertension and

carotid atherosclerosis, and FGF21 levels can be used to diagnose

carotid atherosclerosis and predict prognosis (106). The association

between FGF21 and hypertension has also been observed in animal

models. FGF21 levels were significantly increased in the liver, heart,

and serum in a mouse model of angiotensin II-induced

hypertension compared to the control group (107). Additionally,

FGF21 knockout mice developed more severe hypertensive heart

disease, characterized by increased cardiac dysfunction and fibrosis

(107). FGF21 ameliorates hypertension and target organ damage

through different signaling pathways. Pan et al. also showed that a

lack of FGF21 exacerbates angiotensin II-induced hypertension

and vascular dysfunction, and this adverse effect can be reversed by

FGF21 supplementation (108). Mechanistically, FGF21 acts on

kidney and adipose tissue angiotensin-converting enzyme 2

(ACE2) by converting angiotensin II to angiotensin-(1-7),

thereby inhibiting hypertension and alleviating vascular damage

(108). The protective effects of FGF2 were partially blocked by

ACE2 deficiency (108). Moreover, the protective effects of FGF21

on cardiac hypertrophy, fibrosis, and apoptosis were suppressed by

SIRT1 elimination in Ang II-induced hypertensive mice (109).

Further studies showed that FGF21 could significantly upregulate

the activity of SIRT1 deacetylase, further activate the AMPK

signaling pathway, change the transcriptional activities of FoxO1

on its downstream target genes catalase (Cat), MnSOD (Sod2) and

Bim, and finally, inhibit the accumulation of reactive oxygen
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species to reduce heart injury (109). In addition, Refined-JinQi-

JiangTang tablets reduce hypertension by activating the FGF21/

FGFR1 signaling pathway (110). These results suggest that FGF21

may also be a potential target for hypertension treatment

(Figure 2). Atherosclerosis is also an important manifestation of

a metabolic disorder. In a clinical study involving 253 patients,

elevated serum FGF21 levels were reported as an independent risk

factor for coronary artery disease (111). Another study involving

670 patients also demonstrated a positive association between

serum FGF21 levels and carotid atherosclerosis, independent of

lipid levels (112). This implies that FGF21 can be used as a

biomarker of atherosclerosis. Moreover, studies have also shown

that increasing the expression of FGF21 can ameliorate

atherosclerosis. Sappanwood extract could regulate the FGF21/

SREBP-2 signaling pathway to alleviate lipid metabolism

disorders and atherosclerosis in rats (113). Moreover, Li et al.

found that aerobic exercise may increase the sensitivity of FGF21 to

inhibit the development of atherosclerosis (114). A similar result

was also observed in that treatment with exogenous FGF21 notably

reduced the aortic sinus plaque area of ApoE-/- mice (115). In

addition, FGF21 can also reduce atherosclerotic lesion severity by

accelerating the turnover of triglyceride-rich lipoproteins by

activating the brown adipose tissue and browning of white

adipose tissue (96).
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3.5 NAFLD

NAFLD is also a common metabolic disorder, and it is

estimated that more than 1 billion people have NAFLD

worldwide (116). Several studies have shown that FGF21 levels

were significantly lower in patients with NAFLD than in control

individuals (117–119). Liver-specific overexpression of FGF21

attenuated HFD-induced lipotoxicity in mice. Furthermore,

hepatic FGF21 overexpression ameliorated hyperglycemia and

hypertriglyceridemia by activating thermogenic tissues and

reducing adipose tissue inflammation (75). Moreover, the

inhibition of FGF21 expression also promoted the transformation

of nonalcoholic steatohepatitis to hepatitis (120). In addition, a

clinical trial evaluating the safety and efficacy of efruxifermin, a

long-acting Fc-FGF21 fusion protein, in nonalcoholic

steatohepatitis showed that efruxifermin intervention significantly

reduced the hepatic fat fraction in patients with stage F1-F3

nonalcoholic steatohepatitis with an acceptable safety profile

(121). Moreover, a PEGylated human fibroblast growth factor 21

(FGF21) analogue pegbelfermin has also been shown to

significantly reduce liver fat fraction in patients with nonalcoholic

steatohepatitis (102). Similarly, obese patients with mild

hypertriglyceridemia had significant improvements in lipid levels

and liver fat mass and biomarkers of liver injury with LLF580 (an
FIGURE 2

FGF21 regulates intracellular metabolic homeostasis in different tissues. Multiple transcription factors can stimulate the transcriptional expression of
FGF21, and FGF21 circulates to the target organ to bind to the receptors. In adipose tissue, FGF21 increases thermogenesis, upregulates insulin
sensitivity, glucose uptake ability, and increases adiponectin secretion. In heart, FGF21 inhibits inflammation, apoptosis, and fibrosis. In liver, FGF21
enhances fatty acid oxidation and insulin sensitivity, while inhibits VLDL uptake and lipogenesis. Moreover, FGF21 can increase insulin secretion and
inhibit islet b cell apoptosis.
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FGF21 analog) treatment every 4 weeks (122). These results suggest

that targeting FGF21 may be a potential strategy for the treatment

of NAFLD.
4 Conclusion and future prospective

Here, we summarize recent studies on the relationship between

FGF21 and metabolic syndrome (obesity, diabetes, hyperlipidemia,

and hypertension), confirming the importance of FGF21 in

regulating metabolic syndrome. On the one hand, FGF21 can be

used as a biomarker to predict the occurrence and prognosis of

metabolic disorders in the early stage. On the other hand,

exogenous supplementation with FGF21 has also been proven to

be effective in relieving metabolic disorders. Although the results

were surprising, the use of FGF21 is as a treatment for metabolic

syndrome still requires further investigation. Natural FGF21 has

poor pharmacokinetics, so it needs to be modified to better play its

role. Currently, the development of FGF21 analogues or mimics

through biopharmaceutical engineering approaches also greatly

enriches the possibility of FGF21 as a therapeutic target for

metabolic diseases, such as the clinical trials of LY2405319 and

PF-05231023 in metabolic diseases are under way. In addition,

FGF21 can activate a variety of signaling pathways in the body, and

its side effects need to be further clarified. Moreover, the current

research on FGF21 and metabolic syndrome is mostly in the basic

experimental stage, and its clinical research needs to be further

strengthened. Although many aspects still need to be addressed,

FGF21 is s t i l l an idea l target for the treatment of

metabolic syndrome.
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