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While estrogens are well known for their pivotal role in the female reproductive

system, they also play a crucial function in regulating physiological processes

associated with learning and memory in the brain. Moreover, they have

neuroprotective effects in the pathogenesis of Alzheimer’s disease (AD).

Importantly, AD has a higher incidence in older and postmenopausal women

than in men, and estrogen treatment might reduce the risk of AD in these

women. In general, estrogens bind to and activate estrogen receptors (ERs)-

mediated transcriptional machineries, and also stimulate signal transduction

through membrane ERs (mERs). Estrogen-related receptors (ERRs), which

share homologous sequences with ERs but lack estrogen-binding capabilities,

are widely and highly expressed in the human brain and have also been

implicated in AD pathogenesis. In this review, we primarily provide a summary

of ER and ERR expression patterns in the human brain. In addition, we summarize

recent studies on their role in learning and memory. We then review and discuss

research that has elucidated the functions and importance of ERs and ERRs in AD

pathogenesis, including their role in Ab clearance and the reduction of

phosphorylated tau levels. Elucidation of the mechanisms underlying ER- and

ERR-mediated transcriptional machineries and their functions in healthy and

diseased brains would provide new perspectives for the diagnosis and treatment

of AD. Furthermore, exploring the potential role of estrogens and their receptors,

ERs, in AD will facilitate a better understanding of the sex differences observed in

AD, and lead to novel sex-specific therapeutic approaches.
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1 Introduction

Estrogens, a class of steroid hormones, are one of the major

female sex hormones produced primarily in the ovaries and plays a

crucial role in the development and maintenance of the female

reproductive system and secondary sexual characteristics. Even in

non-reproductive tissues and organs, estrogen exerts important

effects on various physiological systems in the body, including

bone health, cardiovascular health, and brain function in both

female and male (1–6). Especially, its decline due to menopause

or oophorectomy can lead to several health complications,

such as metabolic syndrome, osteoporosis, sarcopenia, frailty,

cardiovascular disease, and dementia (6–8).

Of the four major endogenous estrogens in women, estrone

(E1), estradiol (E2), estriol (E3), and estetrol (E4), E2 is the most

abundant throughout the reproductive lifespan, both in terms of its

absolute serum concentration and its potent estrogenic activity (9,

10). Like all steroid hormones, estrogens can readily diffuse across

the plasma membrane of cells (11). Inside a cell, they bind to and

activate estrogen receptors (ERs), members of the NR3 subgroup of

the nuclear receptor superfamily (12–14; Figure 1A). Once

activated, ERs modulate the expression of multiple genes at the

transcriptional level (15, 16). Humans possess the two primary

types of ERs, namely ERa and ERb, which activate gene

transcription by binding to the genomic element known as the

estrogen-response element (ERE), typically as a homo- or

heterodimer with coactivators, such as steroid receptor

coactivator-3 (SRC-3) and p300/CBP (17–19). Both ERa and ERb
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are widely expressed in various human tissues, including the

reproductive organs, breast tissue, bone, and brain, where they

regulate the growth, development, and maintenance of these tissues

(20). A subset of ERs associates with the plasma membrane, namely

membrane-associated ERa (mERa) and ERb (mERb), and belongs

to the membrane ERs (mERs) (21–24). These cell surface receptors

rapidly activate estrogen signaling through intracellular signaling

cascades (Figure 1A). In addition, another mER member, G

protein-coupled estrogen receptor 1 (GPER1), also long known as

G protein-coupled receptor 30 (GPR30), has been identified in

various human tissues, including the reproductive organs, breast

tissue, and brain (25–27; Figure 1A).

Estrogen-related receptors (ERRs), ERRa, ERRb, and ERRg,
have been identified as nuclear receptors with substantial sequence

similarity to ERs, thus belonging to the NR3 subgroup, but are

orphan nuclear receptors because their endogenous ligands have

long been unidentified and estrogens are also not their ligands (13,

14, 28; Figure 1B). Instead, their transcriptional activities are tightly

regulated by the interactions of peroxisome proliferator-activated

receptor-g (PPARg) coactivator 1-a (PGC-1a) and PGC-1b,
suggesting the molecular function of both PGC-1a and PGC-1b
as protein ligands for ERRs (29). ERRs are highly expressed in

almost all human tissues, including skeletal muscle, fat, and brain

(20, 30), where they play a role in regulating various physiological

processes by transcriptionally activating multiple target genes by

binding to the specific genomic element, called the estrogen-related

response element (ERRE), as a monomer, homodimer or

heterodimer (31–33).
B

A

FIGURE 1

ER- and ERR-mediated transactional regulation. (A) Transactional regulation by ERs, namely ERa and ERb, and membrane ERs (mERs). Endogenous
estrogens bind to ERs or mERs. ERs bind to estrogen responsive elements (EREs) to activate transcription of target genes, while mERs (mERa/b and
GPER1) mediate non-genomic effects of estrogens by stimulating activation of the protein kinase cascade, including MAPK signaling, which in turn
activates nuclear transcription factors (TFs). (B) Transcriptional regulation by ERRs. ERRs predominantly localize to the nucleus and preferentially bind
to estrogen-related receptor responsive elements (ERREs) to transcriptionally regulate the expression of target genes. PGC-1a/b act as co-activators
to activate the transcriptional activity of ERRs.
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This review focuses on the expression and functions of ERs and

ERRs in the brain, mainly in humans. In addition, we discuss the

implication of their roles in the pathogenesis of Alzheimer’s

disease (AD).
2 ER function in the brain and
association with AD

In this section, we summarize multiple neuronal functions of

ERs and their association with AD.
2.1 Expression of ERs in the brain

The expression of both ER transcripts is widely observed in

almost all cell types, namely neurons and glia, throughout the

human brain, but with different expression patterns and levels (34,

35) The transcripts of ESR1, the gene encoding ERa, are

predominantly expressed in the hypothalamus, amygdala,

cerebellum, and cortex, while the transcripts of ESR2, encoding

ERb, are mainly expressed in the hippocampus and cortex, with

lower expression levels than ERa (36). At the protein level, ERa
immunopositive cells are first detected in the cortex at 9 weeks’

gestation (GW), especially in the proliferating zone and cortical

plate, then gradually decrease during prenatal development, but

increase again from birth to adulthood (37–40). ERa protein

expression has also been demonstrated in the adult human

hippocampus. In the human cortical tissue, ERb initiates to be

detected in the proliferating zones at 15 GW and in the cortical plate

at 16-17 GW. Furthermore, ERb protein expression persists into

adulthood with a widespread distribution throughout cortical layers

II-VI (37–40). Like ERa protein, ERb has been detected in the

human hippocampus from approximately 15 GW into adulthood,

primarily in the pyramidal cells of Ammon’s horn and the dentate

gyrus (40). Both ERs are expressed in neurons and glial cells in

human cortical and hippocampal tissue during fetal development

(40). Notably, higher expression of ERb than ERa has been

observed in the adult human cerebral cortex and hippocampus,

suggesting that an important role of ERb in the human brain (37–

40). In the rat brain, besides the nuclear localization of ERs, mERa/
b proteins are also found in complementary distributions in

multiple regions, including the hippocampus and prefrontal

cortex (41). Furthermore, GPER1 is widely distributed, with

transcript and protein expression detected in nearly all regions of

the adult human brain, particularly in the cerebral cortex,

cerebellum, and basal ganglia (36, 42).
2.2 The physiological function of estrogens
and ERs in the brain

Several factors, including aging and hormonal status, likely

influence the expression of the ERs, ERa and ERb, in the human

brain. In the hippocampus of aged human brains, nuclear-localized
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ERa protein has been shown to increase in the dentate gyrus (DG)

and CA3 region, while decreasing in the CA1 region (43, 44),

suggesting changes in ERa-mediated transcriptional gene activation

in the human brain during aging. In addition, treatment with a

major estrogen, E2, increases nuclear-localized ERa in the human

brain and maintains ERa-mediated transcription, compensating for

hormonal loss during menopause (45). In contrast, GPER1

expression is unlikely to be affected by aging and surgical

menopause (46).

The physiological effects of estrogen and ER expression on learning

andmemory have been better characterized in rodents, such as rats and

mice, compared with in humans (47–51). In the rodent brain, estrogens

act on the hippocampus, a complex brain structure that is primarily

responsible for learning and forming new memories, where they

acutely modulate the electrophysiological properties of hippocampal

neurons (47, 49, 50). Through ERb, E2 induces acute potentiation of

excitatory postsynaptic currents (EPSCs) by selectively increasing

glutamate release at synapses characterized by low initial release

probability, while suppressing inhibitory neurotransmission in

hippocampal CA1 neurons through ERa (52, 53). In addition, E2

causes a rapid increase in dendritic spine density in the CA1 region of

the hippocampus (54) and can also rapidly enhance kainate-induced

currents in hippocampal neurons even in the absence of ERs (55).

Furthermore, even the membrane-impermeable estrogen, namely E2

conjugated to bovine serum albumin (E2-BSA), which cannot cross the

plasma membranes of living cells, is capable of eliciting rapid estrogen

signaling (56, 57). These observations suggest that, in addition to the

nuclear ERa/b-mediated pathway, estrogens act through a rapid,

membrane-initiated signaling pathway, likely mediated by mERa/b
and/or GPER1, that activates multiple protein kinase cascades,

including mitogen-activated protein kinase (MAPK) signaling, which

in turn modulates synaptic plasticity and neuroprotection by

stimulating the expression of multiple genes such as brain-derived

neurotrophic factor (Bdnf), a master regulator of neuronal cell survival,

synaptic plasticity, hippocampal function, and learning, in

hippocampal neurons (58–61). Estrogens also undergo metabolic

pathways such as sulfation and glucuronidation to form conjugated

metabolites that inactivate E2 (62). The balance between these

conjugated and unconjugated forms of estrogens in the brain may

contribute to brain health and neuroprotection against the

neurodegenerative process (63).
2.3 Estrogens and ERs associated with AD

AD is a progressive neurodegenerative disease that affects the

brain and leads to cognitive, memory, and behavioral decline (64–

67). The neuropathological hallmarks of AD are senile plaques and

neurofibrillary tangles (NFTs) (68, 69). Senile plaques are

extracellular structures composed predominantly of insoluble

deposits of amyloid b peptide (Ab) that are known to cause

neuronal damage and neuronal cell death, while NFTs are

aggregates of hyperphosphorylated tau protein within neurons

that cause cell death and cognitive impairment in AD (65, 70–

72). Ab pathology likely precedes and accelerates tau pathology,
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which together trigger neurodegeneration and cognitive decline

during AD development (65, 70, 73).

Notably, women have a higher lifetime risk of AD than men; the

population of women with dementia is estimated to be

approximately 1.69 times higher than the population of men with

dementia worldwide, and they have approximately three times

higher rates of disease progression with a broader range of

cognitive symptoms (74–76). Importantly, despite some

controversy, early estrogen replacement therapy (ERT), especially

when given before menopause, has been shown to reduce the risk of

AD in postmenopausal women (77). Estrogens have also been

shown to have neuroprotective effects in the brain of rodent

models of AD (78, 79). Moreover, increasing evidence suggests

that ERs, including nuclear-localized ERa/b, mERa/b, and GPER1,

play a role in AD pathogenesis (24, 45, 80, 81).
2.4 The role of ERs in AD pathogenesis

In the brain of AD patients, increased expression of the nuclear-

localized ERa proteins has been observed in neurons of the basal

forebrain, nucleus basalis of Meynert (NBM), medial mamillary

nucleus (MMN), and hypothalamus, while decreased expression has

been observed in hippocampal neurons (45, 80–86). Astrocytes are a

subtype of glial cells in the brain and spinal cord (87), and increased

numbers of nuclear ERa-positive astrocytes have been observed in the

CA1 region of the hippocampus in AD patients (88). For Ab clearance,
ERa has been shown to upregulate the transcription of the Ab
degrading enzyme, neprilysin (NEP), in human cellular models of

AD (89) (Figure 2A). Furthermore, ERa colocalizes with NFTs in the

hippocampus of AD brains, and also physically interacts with tau

protein, and this interaction is increased in AD brains (90). In addition,

tau overexpression suppresses ERa transcriptional activity, suggesting

that tau inhibits beneficial ERa signaling and neuroprotection through

interaction with ERa in AD brains (90).

Nuclear ERb proteins were significantly increased in the human

NBM and hippocampal neurons in AD patients, whereas less ERb
was expressed in frontal cortex neurons (80, 82, 91). In SH-SY5Y
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and Swedish mutant (K670N/M671L) amyloid-b precursor protein

(APP)-expressing HEK293 cells, which are human cell models of

AD, ERb promotes Ab degradation by interacting with autophagy

related 7 (ATG7) and further enhancing the autophagy machinery

(92; Figure 2A). Like ERa, ERb also upregulates the NEP

transcription to promote Ab clearance in cellular models (89;

Figure 2A). These observations suggest that ERb plays a beneficial

role in Ab clearance in AD. Notably, downregulation of several

oxidative phosphorylation (OXPHOS)-related proteins, including

ATP synthase subunits and cytochromes, has been demonstrated in

the temporal cortex of women with AD and cerebrovascular disease

(93). Furthermore, in women, ERb is associated with the

mitochondria in the frontal cortex, and mitochondrial-localized

ERb proteins are decreased in the frontal cortex of women with AD

(91). Given that ERb loss impairs the mitochondrial membrane

potential and function, it plays a neuroprotective role in modulating

neuronal mitochondrial health modulating mitochondrial health

(94–96; Figure 2A).

In the human cortex and hippocampus, mERa associates

with voltage-dependent anion-selective channel 1 (VDAC1) at the

plasma membrane to inactivate VDAC1 through phosphorylation,

which in turn inhibits Ab cellular entry and Ab-induced cell death

(97–100; Figure 2B). In support of this, activation of mERa/b alone

inhibits Ab-evoked neurotoxicity, oxidative stress, and apoptosis in

the mouse primary neurons (101). Indeed, a reduced association of

mERa with VDAC1 has been observed in the human cortex of AD

brains (100, 102), suggesting the anti-AD capacity of mERa/b.
The neuroprotective contribution of GPER1 in AD has been

highlighted in the rodent AD models (103). GPER1 inhibits Ab-
induced oxidative stress and neuronal cell death in rat neuronal

cells (104). Moreover, GPER1 has been observed to stimulate

extracellular signal-regulated kinase (ERK) signaling in rat

hippocampal neurons, leading to activation of synaptic

NMDA receptors and trafficking of AMPA receptors into

hippocampal synapses, which in turn causes a persistent

increase in synaptic efficacy, suggesting a role for GPER1 in

modulating neuronal plasticity in neurodegenerative diseases,

including AD (105).
B CA

FIGURE 2

Role of ERs and ERRs in AD pathogenesis. (A) ERa and ERb are involved in Ab clearance through transcriptional activation of the neprilysin (NEP)
gene. ERb also activates the autophagy machinery to remove Ab. In addition, it plays a neuroprotective role by regulating neuronal mitochondrial
health. (B) mERa/b inhibit Ab-induced neurotoxicity by inactivating a channel, VDAC1, at the plasma membrane. (C) ERRa, probably with PGC-1a,
suppresses the expression of BACE1 and the kinase activity of GSK-3b, leading to Ab clearance and tau phosphorylation (P-tau).
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3 ERR function in the brain and
association with AD

We have reviewed the association between ERRs and

AD pathogenesis.
3.1 ERR expression and function
in the brain

In humans, the ERRa transcripts, ESRRA, and proteins are widely

and highly expressed in almost all regions of the brain, including the

hippocampus, cerebral cortex, and cerebellum (36). The ERRg
transcripts, ESRRG, are also detected throughout the human brain,

but protein expression was detected at low levels in the cerebral cortex

and cerebellum, and undetectable in the hippocampus. Notably, these

two ERR proteins localize to neuronal cells, but not to glial cells, within

their expressed regions in the human brain. In contrast, the ERRb
transcript, ESRRB, and protein expression are observed at no or very

low levels in the human brain (36).

The roles of ERRa and ERRg in memory and learning have been

more extensively studied in rodents compared with in humans (59,

106, 107). The RNA expression pattern of all three ERRs, Esrra, Esrrb,

and Esrrg, in the rodent brain is similar to that in the human brain, and

the ERRa and ERRg proteins are abundantly expressed throughout the
mouse brain, including the cortex and hippocampus (36, 106, 108,

109), wheras ERRb is primarily expressed in the developing mouse

brain (110). Loss of neuronal ERRg in the cortex and hippocampus

impairs spatial learning and memory in mice (107). Long-term

potentiation (LTP) is further impaired in ERRg-deficient
hippocampal neurons, which are rescued by supplementation of the

mitochondrial substrate for ATP generation, pyruvate, suggesting a role

for ERRg in regulating neuronal cell metabolism (107). In contrast, the

cognitive abilities of ERRa knockout mice were comparable to those of

wild-type littermates (106). Meanwhile, endurance exercise increases

hippocampal fibronectin type III domain containing 5 (Fndc5) gene

expression in mice through an ERRa/PGC-1a transcriptional

complex, which in turn stimulates Bdnf gene expression, suggesting

that ERRa may act as a mediator of exercise-induced beneficial effects

that enhance cognitive function, including learning and memory.
3.2 Role of ERRs in AD

Accumulating evidence suggests a role for the ERR-mediated

transcriptional machinery in AD pathogenesis. In APP-expressing

HEK293 cells, ERRa inhibits Ab production (111; Figure 2C).

ERRa also downregulates the protein expression level of b-site
amyloid precursor protein cleaving enzyme 1 (BACE1), the major

b-secretase for Ab production in neurons (112). However, it has not

been demonstrated whether BACE1 gene expression is directly

regulated by ERRa at the transcriptional level. Furthermore,

ERRa attenuates phosphorylated tau levels with a concomitant

reduction in the phosphorylation of glycogen synthase kinase 3b
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(GSK-3b), an active form of the potent kinase for tau

hyperphosphorylation (111; Figure 2C). In the APP/PS1 mice, a

mouse model of AD that harbors human transgenes for both APP

with the Swedish mutation and presenilin-1 (PSEN1) with the

L166P mutation, ERRa RNA and protein expression levels are

reduced in the cortex and hippocampus (111). In addition, PGC-1a
RNA and protein expression levels are decreased in the AD brains

with disease severity (113). Hippocampal PGC-1a protein content

is inversely correlated with total Ab content (113). Although the

role of ERRg in the pathogenesis of AD remains largely unexplored,

despite its abundant expression in the human brain, these

observations suggest that the ERR/PGC-1a transcriptional

complex plays an important role in suppressing both Ab and tau

pathology throughout the progression of AD.
4 Conclusion

Strong evidences suggest that ERs and ERRs play important roles

in human brain function, including learning and memory, as well as in

the pathogenesis of AD, including the protection against Ab-induced
neurotoxicity and reduction of tau phosphorylation. Overall, however,

the molecular mechanisms underlying the neuroprotective effects of

ERs and ERRs in AD remain to be elucidated. Further studies are

required to fully understand their roles in brain function and AD

pathogenesis, which may lead to the development of novel therapeutic

targets for the treatment of AD. In addition, exploring the potential

roles of sex hormones, including estrogens, and their receptors in AD

will help to better understand the sex differences observed in AD, and

further lead to new sex-specific therapeutic approaches.
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