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mechanism of Ilex kudingcha
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and Yanchun Hu1*

1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary
Medicine, Sichuan Agricultural University, Wenjiang, China, 2Department of Animal Husbandry and
Fisheries, Guizhou Vocational College of Agriculture, Qingzhen, China
Herein, network pharmacology was used to identify the active components in

Ilex kudingcha and common hypertension-related targets. Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

were conducted, and molecular docking was performed to verify molecular

dynamic simulations. Six active components in Ilex kudingcha were identified;

furthermore, 123 target genes common to hypertension were identified.

Topological analysis revealed the strongly associated proteins, with RELA,

AKT1, JUN, TP53, TNF, and MAPK1 being the predicted targets of the studied

traditional Chinese medicine. In addition, GO enrichment analysis revealed

significant enrichment of biological processes such as oxidative stress,

epithelial cell proliferation, cellular response to chemical stress, response to

xenobiotic stimulus, and wound healing. Furthermore, KEGG enrichment

analysis revealed that the genes were particularly enriched in lipid and

atherosclerosis, fluid shear stress and atherosclerosis, and other pathways.

Molecular docking revealed that the key components in Ilex kudingcha

exhibited good binding potential to the target genes RELA, AKT1, JUN, TP53,

TNF, and IL-6. Our study results suggest that Ilex kudingcha plays a role in

hypertension treatment by exerting hypolipidemic, anti-inflammatory, and

antioxidant effects and inhibiting the transcription of atherosclerosis-

related genes.
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Ilex kudingcha, hypertension, network pharmacology, molecular target, molecular
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1 Introduction

Hypertension is the primary risk factor for mortality and the

most frequent reason for renal, cardiovascular, and cerebrovascular

disorders. Globally, approximately 1 billion individuals suffer from

hypertension; it is directly responsible for 13% of all fatalities (1). In

China, one in four individuals suffers from hypertension, with 40%

suffering from severe hypertension. However, most individuals are

unaware of their disease and receive inadequate care (2). The use of

antihypertensive drugs is the most effective method for lowering

blood pressure and preventing cardiovascular events; however, only

32.5% of patients with hypertension worldwide have controlled

blood pressure (3). In general, blood pressure is controlled by using

a combination of two or more antihypertensive drugs (4). In less

developed areas, maintaining adequate blood pressure control is

difficult because the medication is lowered (5). Epidemiological

studies have reported that the prevalence of resistant hypertension

is 10% among individuals with hypertension, with high

cardiovascular risk in this patient cohort (1). Furthermore,

despite conscientious clinical management, many adults with

resistant hypertension fail to achieve their recommended blood

pressure treatment targets on three antihypertensive medications or

require more than four medications to achieve their targets (6).

Considering the significant role of diet in blood pressure

homeostasis, the High Blood Pressure Clinical Practice Guidelines of

the American College of Cardiology/American Heart Association

recommend dietary strategies as a practical and acceptable approach

to control blood pressure (7). Hippocrates mentioned that “Let food be

thy medicine and medicine be thy food” (8). In China, Ilex species

exhibit a broad geographic range, and some species have been used to

develop daily herbal tea blends. Ilex kudingcha, a Chinese herbal tea,

possesses many health-improving properties (9). It is a well-known

traditional Chinese beverage in Southeast Asia. Ilex kudingcha contains

saponins, polyphenols, and flavones and exerts anti-inflammatory (10),

antioxidative (11), antiaging (12), anticancer (13, 14), antiobesity (15,

16), antihypertensive, and antidiabetic effects (17).

However, the ingredients and molecular mechanisms

underlying its antihypertensive effects remain unelucidated.

Network pharmacology combines system network analysis with

pharmacology, bioinformatics, and other disciplines to demonstrate

the multicomponent and multitarget drug treatment process from

the perspective of genes (18). By building a network associated with

“disease–phenotype–gene–drug,” the distribution, molecular

function, and signaling pathways of traditional Chinese medicine

(TCM) compounds may be investigated. At present, the basis and

mechanism of the pharmacodynamic components in TCMs are

frequently predicted using network pharmacology approaches (19).

Therefore, the present study aimed to use network pharmacology

and molecular docking to determine the molecular targets and

processes involved in hypotension treatment.
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2 Materials and methods

2.1 Screening of active ingredients and
target genes

The parameters oral bioavailability (OB) of 30% and drug-like

(DL) characteristic of 0.18 p were used in the Traditional Chinese

Medicine Systems Pharmacology (TCMSP) platform (http://

lsp.nwu.edu.cn/tcmsp.php) to screen the active ingredients in Ilex

kudingcha. The DrugBank database (https://www.drugbank.ca/)

and peer-reviewed literature were used to identify the expected

targets of the tested compounds. Furthermore, UniProt (https://

www.uniprot.org/) was used to standardize gene names and

compare target information. The Ilex kudingcha–ingredient–target

regulatory network was developed using Cytoscape 3.9.1 software.
2.2 Collection of hypertension-
related targets

The hypertension-related targets with high relevance were

chosen using GeneCards (https://genecards.org). The targets with

relevance scores of ≥1 were chosen based on the keyword

“hypertension.” The hypertension-related targets were identified

after weight removal and consolidation.
2.3 Identification of intersection targets
and development of the “drug–disease–
target” regulatory network

The hypertension-related target genes and intersection genes of

Ilex kudingcha were acquired using R software. Then, the Ilex

kudingcha–disease–target regulatory network was developed using

Cytoscape 3.9.1 software.
2.4 Protein–protein interaction network
and topological analysis

The intersection targets of Ilex kudingcha and hypertension

were imported into the STRING database (https://string-db.org/cgi/

input.pl). The species was limited to humans and a minimum

interaction score of 0.9 was used. The key targets were imported

into the Cytoscape program. The interaction network diagram of

the target proteins of the active ingredients in Ilex kudingcha and

hypertension-related target proteins was developed by sorting based

on degree value.
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2.5 Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes
enrichment analyses

R 4.2.2 with the “colorspace,” “stringi,” and “ggplot2” packages

was installed. The “DOSE,” “clusterProfiler,” and “annotationHub”

Bioconductor packages were used for Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses. For GO enrichment analysis, the function “enrichGO” was

employed. For KEGG enrichment analysis, the database

org.Hs.eg.db and the “enrich-KEGG” tool were used. The KEGG

database (https://www.kegg.jp/) was also used (doi: 10.18129/

http://b9.bioc.org.Hs.eg.db). For the parameters of the two

functions, species was set to “has,” and the filter values (P- and q-

values) were set to 0.05. A bubble graph was prepared to visualize

the top 10 enrichment findings, and Cytoscape 3.9.1 was used to

develop the KEGG regulatory network.
2.6 Molecular docking

Three-dimensional (3D) protein conformations with a crystal

resolution of <3, as determined using X-ray crystal diffraction,

were gathered by searching the Protein Data Bank (PDB) (https://

www.rcsb.org) for the target genes implicated in the first eight

protein–protein interaction (PPI) findings. The primary active

ingredients in Ilex kudingcha were retrieved in a two-dimensional

(2D) structure format from the PubChem website. The sdf files

were converted into the pdb file format using Discovery Studio

2019 software. PyMOL 4.3.0 software was used to separate the

original ligand and protein structures and to dehydrate and

remove the organics. Furthermore, AutoDock Vina 1.1.2

software was used to process the proteins as follows: non-polar

hydrogen was added, the Gasteiger charge was calculated, the AD4

type was assigned, and the flexible bonds of small molecules/

ligands were set to be rotatable. Based on the original ligand

coordinates, the docking box was adjusted to include all protein

structures. Furthermore, the receptor protein was set to a

semiflexible butt joint, and the Lamarckian genetic algorithm

was selected. The docking results were obtained by running

autogrid4 and autodock4; as a result, the binding energies were
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revealed. PyMOL 4.3.0 and Discovery Studio 2019 software were

used to analyze and visualize the forces in 3D and 2D.
2.7 Molecular dynamic simulation

To further elucidate the stability of protein–ligand binding,

GROMACS 2023.36 software was used for molecular dynamic (MD)

simulation. The AMBER force field was used to describe the proteins

and ligandmolecules. The water model was set to the SPCwatermodel.

The system temperature was set to a vacuum environment of 300 K,

and the simulation time was 100 ns. First, the energy balance of the

simulated system was determined by using the steepest gradient

algorithm under the absolute vacuum environment. After energy

balance, MD simulation was completed; thereafter, root mean square

deviation (RMSD) analysis of the simulation results was conducted to

analyze the relative binding stability between the two chains in the

simulation process. Furthermore, root mean square fluctuation

(RMSF), which demonstrates the structural adaptability of each

protein residue, was used to analyze the flexibility and intensity of

movement of the amino acid residues of the protein throughout the

simulation. The radius of gyration (Rg) was used to characterize the

compactness of the protein structure and changes in the looseness of

the peptide chain during the simulation. VMD software was used to

analyze the changes in the number of hydrogen bonds formed between

the two chains over time as well as to observe whether the bond was

stable from the interaction point of view.
3 Results

3.1 Screening of active ingredients and
target genes

The TCMSP database contains 94 active ingredients in Ilex

kudingcha. They were screened using an OB of ≥30% and a DL of

0.18. Subsequently, six active ingredients were obtained (Table 1).

The targets were predicted using DrugBank and UniProt. Finally,

179 targets were obtained (153 for quercetin, 1 for mairin, 63 for

kaempferol, 37 for beta-sitosterol, 11 for (+)-catechin, and 1 for

(−)-catechin gallate). Figure 1 illustrates the Ilex kudingcha–

ingredient–target regulatory network.
TABLE 1 The active ingredients of Ilex kudingcha.

Herbs ID Compound OB (%) DL

Ilex kudingcha MOL000098 Quercetin 46.43 0.28

Ilex kudingcha MOL000211 Mairin 55.38 0.78

Ilex kudingcha MOL000422 Kaempferol 41.88 0.24

Ilex kudingcha MOL000358 Beta-sitosterol 36.91 0.75

Ilex kudingcha MOL000492 (+)-Catechin 54.83 0.24

Ilex kudingcha MOL006504 (−)-Catechin gallate 53.57 0.75
frontiers
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3.2 Identification of intersection targets
and development of the “drug–disease–
target” regulatory network

A total of 2,459 hypertension-related target genes were

obtained, with 123 intersection targets between Ilex kudingcha

and hypertension (Figure 2). Figure 3 illustrates the Ilex

kudingcha–ingredient–target–hypertension regulatory network.

The active ingredients kaempferol and quercetin were associated

with 42 and 111 target genes, respectively. Therefore, they were
Frontiers in Endocrinology 04
classified as multitarget and multieffect compounds. The genes

PTGS1, PTGS2, PRKACA, and PPARG were associated with the

highest number of active components.
3.3 PPI network and topological analyses

The 123 intersection targets were imported into the STRING

database to construct the PPI network; the species was limited to

humans and a minimum interaction score of 0.9 was used. As shown

in Figure 4, 123 protein nodes and 377 edges were obtained for the

intersection genes. In the PPI network, the degree centrality of a node is

simply the number of edges it has. The higher the degree, the more

central the node is. The interaction network diagram of the target

proteins of the active ingredients and hypertension-related target

proteins of Ilex kudingcha was obtained by ranking the proteins based

on their degree value. Finally, 105 core target genes were obtained. As

demonstrated in Figure 5, the higher the degree value, the darker the

color and the larger the circle. The main targets were RELA, AKT1, JUN,

TP53, TNF, and MAPK1, with degree values of 58, 58, 58, 56, 50, and

50, respectively.
3.4 Analysis of GO function and KEGG
enrichment of related targets

GO enrichment analysis revealed the gene functions at three levels:

biological process (BP), cellular component (CC), and molecular
FIGURE 2

A Venn diagram of the Ilex kudingcha–hypertensive target.
FIGURE 1

An illustration of the Ilex kudingcha–ingredient–target regulatory network.
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function (MF). BP was mainly associated with response to oxidative stress,

epithelial cell proliferation, cellular response to chemical stress, response to

xenobiotic stimulus, and wound healing. CC was mainly associated with

the membrane raft, membrane microdomain, vesicle lumen, secretory

granule lumen, cytoplasmic vesicle lumen, and plasmamembrane raft.MF

was mainly associated with DNA-binding transcription factor binding,

RNA polymerase II-specific DNA-binding transcription factor binding,
Frontiers in Endocrinology 05
signaling receptor activator activity, receptor–ligand activity, cytokine

receptor binding, and cytokine activity (Figure 6).

KEGG enrichment analysis revealed that the antihypertensive

mechanism of Ilex kudingcha was mainly concentrated in lipid and

atherosclerosis, fluid shear stress and atherosclerosis, the AGE-RAGE

signaling pathway in diabetic complications, human cytomegalovirus

infection, the TNF signaling pathway, chemical carcinogenesis receptor
FIGURE 3

An illustration of the Ilex kudingcha–ingredient–target–hypertension regulatory network.
FIGURE 4

The protein–protein interaction network.
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activation, hepatitis B, prostate cancer, and Chagas disease (Figure 7).

The genes associated with the highest number of pathways were AKT1,

RELA, andMAPK1 (Table 2). Lipid and atherosclerosis may be themost

important pathway for Ilex kudingcha to treat hypertension (Figure 8).
3.5 Molecular docking

The structures of the small molecules quercetin (PubChem CID:

5280343) and kaempferol (PubChem CID: 5280863) were downloaded

from PubChem. Furthermore, the AKT1, RELA, TNF, IL-6, JUN,

MAPK1, RB1, and TP53 proteins with PDB IDs of 2uvm, 1nfi, 5uui,

1alu, 1JUN, 6g54, 1ad6, and 6ggc, respectively, were downloaded from

PDB. The binding energies between quercetin and AKT1, RELA, TNF,

IL-6, JUN, MAPK1, RB1, and TP53 proteins were −6.1 kcal/mol, −7.4

kcal/mol, −8.8 kcal/mol, −7.0 kcal/mol, −5.7 kcal/mol, −8.4 kcal/mol,

−7.4 kcal/mol, and −7.1 kcal/mol, respectively. Furthermore, the

binding energies between kaempferol and AKT1, RELA, and TNF

proteins were −6.1 kcal/mol, −7.4 kcal/mol, and −8.8 kcal/mol,

respectively. The docking results were less than −5 kcal/mol. In

general, if the binding energy of the ligand to the target protein is
Frontiers in Endocrinology 06
less than −5, the binding between the ligand and receptor protein is

stable. Table 3 displays the detailed results. Figure 9 comprehensively

illustrates several regional molecular docking structures.
3.6 MD simulation

Molecular docking revealed that quercetin interacts with TNF

primarily via the formation of hydrophobic forces and hydrogen

bond forces. It binds to the amino acid residues VAL-17, PRO- 20,

and ARG- 32 of the receptor protein via four hydrophobic bonds

and to ALA- 18, ARG- 32, GLY- 148, GLN- 149, VAL- 150, and

amino acid residues of the receptor protein via seven hydrogen

bonds (Figure 9D). To further elucidate the stability of protein–

ligand binding, an MD simulation was performed.

3.6.1 RMSD
The RMSD curve revealed the RMSD of the structure during the

simulation. The movement trajectory of the binding complex

demonstrated that the amplitude of quercetin and TNF was small

during the whole simulation process. Furthermore, the RMSD curve
FIGURE 5

An illustration of the core target sequencing.
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of quercetin revealed that quercetin vibrated near 0–0.15 nm in the

whole simulation process and near 0–0.1 nm in the first 30 ns

(Figure 10A). Moreover, the RMSD curve of TNF demonstrated

that the RMSD value kept vibrating at approximately 0.1–0.2 nm at

30 ns, followed by an upward trend of vibration to 0.2–0.3 nm and

finally maintaining dynamic stability (Figure 10B). Taken together,

the results suggest that the complex structure reached a stable

conformation after 30 ns.
Frontiers in Endocrinology 07
3.6.2 RMSF
RMSF analysis, which indicates the structural fitness of each

protein residue, was performed in this study to analyze the flexibility

and exercise intensity of amino acid residues in the protein

throughout the simulation. After the amino acids of the TNF

protein 5uui were completely sequenced and the discontinuous

part was reordered, RMSF analysis was performed. The TNF

protein showed weak jitter in simulation, with the amplitude
FIGURE 6

GO enrichment analysis of Ilex kudingcha targets in hypertension treatment. The horizontal axis of the BP, CC, and MF bubble diagram indicates the
number of genes enriched in each item, while the color represents the enrichment significance based on the corrected P-value.
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distribution ranging from 0.05 to 0.4 nm; the peak value appeared at

Res9, Res97, and Res100; and the RMSF value was the largest. The

reason was Res 9 was present at the N-terminal of the protein, and the

flexibility of the two ends of the protein was relatively large

(Figure 11). To summarize, the RMSF value at both ends of the

protein was large, whereas that of the amino acid residues was

generally small, indicating stable protein–ligand binding.

3.6.3 Rg
Rg can help characterize the compactness of a protein structure

and a change in the peptide chain looseness of a protein during

simulation. Here, the overall vibration amplitude of the TNF

protein was small and remained relatively stable at 1.5–1.55 nm

(Figure 12), indicating that the protein–ligand complex remained

relatively stable during simulation.
Frontiers in Endocrinology 08
3.6.4 Hydrogen bonds
The number of hydrogen bonds formed between the TNF

protein and quercetin was analyzed with time during a 100-ns

simulation. A maximum of three hydrogen bonds were formed

at 100 ns, whereas no hydrogen bonds were formed near 90 ns.

Mostly, hydrogen bonds were formed 1–2 (Figure 13).
4 Discussion

TCM is beneficial for treating complicated medical conditions

owing to its holistic approach. However, multiple targets,

components, and pathways associated with the action mechanism

of TCM in disease treatment complicate its development (20). The

properties of a Chinese medicinal formula and its mode of action,

such as integrity, systematization, and comprehensiveness, are

similar to those of network pharmacology (21). The study of the

pharmacological mechanisms of Chinese medicines can be well-

fitted into pharmacology equations (22).

In the present study, a network pharmacological analysis was

performed on the active pharmaceutical components of Ilex

kudingcha for hypertension. The active compounds quercetin and

kaempferol showed the highest number of targets. In the Liu et al.

study, the PPI network analysis results showed that the main

antihypertensive components of Ginkgo folium included

kaempferol, quercetin, and luteolin (23). Ye et al. found that the

antihypertensive active ingredients of Eucommia ulmoides included

quercetin, kaempferol, and rutin (24). Yang et al. reviewed Chinese

herbal prescriptions for hypertension and found that components

including quercetin, luteolin, linolenin, and kaempferol were closely

associated with the regulatory targets of hypertension (25).

Moreover, the present molecular docking results showed that the

active components exhibited effective binding ability with most of

the target genes. Quercetin is a typical natural flavonoid, which is a

secondary metabolite found in plants and is thought to be one of the

bioactive substances found in fruits and vegetables; it is beneficial in

maintaining cardiovascular health (26). Quercetin is advantageous

in decreasing blood pressure and inflammation at the highest

effective dosage of 500 mg of the aglycone form (27). Kaempferol,

another natural flavonoid, is an effective anti-inflammatory,

antioxidant, and anticancer agent and is documented in treating
FIGURE 7

The KEGG bubble. The horizontal axis of the KEGG bubble diagram
represents the gene proportion enriched in each entry, while the
vertical axis indicates the enrichment degree according to the
corrected P-value.
TABLE 2 The enrichment pathways corresponding to the intersection genes.

Term Description Count Gene ID

has05417
Lipid and

atherosclerosis
31

AKT1|BAX|BCL2|BCL2L1|CASP3|CASP8|CD40LG|CHUK|CYP1A1|IKBKB|IL1B|IL-6|CXCL8|JUN|MMP1|MMP3|
MMP9|NFE2L2|NFKBIA|NOS3|PPARG|PRKCA|MAPK1|RELA|CCL2|SELE|TNF|TNFRSF1A|TP53|VCAM1|NCF1

hsa05418
Fluid shear stress and

atherosclerosis
28

AKT1|BCL2|CAV1|CHUK|GSTM1|GSTM2|GSTP1|HMOX1|IFNG|IKBKB|IL1A|IL1B|JUN|MMP2|MMP9|NFE2L2|
NOS3|PLAT|RELA|CCL2|SELE|TNF|TNFRSF1A|TP53|VCAM1|VEGFA|KEAP1|NCF1

hashsa05163
Human

cytomegalovirus
infection

27
AKT1|BAX|CCND1|CASP3|CASP8|CDKN2A|CHUK|EGFR|IKBKB|IL1B|IL-6|CXCL8|MYC|NFKBIA|PRKACA|PRKCA|

PRKCB|MAPK1|PTGS2|RAF1|RB1|RELA|CCL2|TNF|TNFRSF1A|TP53|VhasA

hsa05207
Chemical

carcinogenesis
receptor activation

26
AHR|AKT1|BIRC5|AR|CCND1|BCL2|CYP1A1|CYP1A2|CYP1B1|CYP3A4|EGF|EGFR|GSTM1|GSTM2|JUN|MYC|PGR|

PPARA|PRKACA|PRKCA|PRKCB|MAPK1|RAF1|RB1|RELA|VEGFA
frontiersin.org

https://doi.org/10.3389/fendo.2023.1216086
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liao et al. 10.3389/fendo.2023.1216086
several illnesses, including diabetes, obesity, and cancer (28).

Quercetin and kaempferol exert the most s ignificant

hypolipidemic effects at a low concentration of 15 mM (29).

Kaempferol exerts its effect in various ways, including decreasing

the activity of human T cells and via phosphoinositide-3-kinase

(PI3K)/AKT via human T-lymphotropic virus type 1 signaling

pathways. The leukemia/lymphoma virus inhibits the production

of several proteins that are the hallmarks of epithelial–mesenchymal
Frontiers in Endocrinology 09
transition, such as Slug, N-cadherin, E-cadherin, and Snail and

indicators of metastasis, including matrix metallopeptidase 2 (28).

The core genes were obtained based on the PPI network, and

the main targets were RELA, AKT1, JUN, TP53, TNF,MAPK1, IL-6,

RB1, CAV1, and EGFR, and their degree values were 58, 58, 58, 56,

50, 50, 44, 32, 32, and 32, respectively. AKT1 is associated with

hypertension, and AKT1 mutations greatly increase the risk of

hypertension. Furthermore, due to damage to AKT1 signaling
FIGURE 8

An important pathway of Ilex kudingcha treatment of hypertension disease—lipid and atherosclerosis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1216086
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liao et al. 10.3389/fendo.2023.1216086
TABLE 3 Binding energies of the Ilex kudingcha key components to the target gene molecules.

Compounds Compound
target

Docking
score

Interaction

H-Bond interaction Hydrophobic
interaction

P-Cation
interaction

P-P stacking
interaction

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Quercetin

Quercetin–
AKT1 complex

−6.1

3.2 SER-2 3.6 GLN-113

3.8 SER-2

3.3 ASP-3

3.0 THR-105

Quercetin–
RELA complex

−7.4

3.0 GLN-29 3.6 GLN-247 2.9 LYS-221

3.9 ARG-246 3.9 GLN-247

4.0 LYS-218 3.6 LYS-221

3.0 GLN-247 3.9 LYS-221

2.9 LYS-221 3.9 VAL-244

Quercetin–TNF
complex

−8.8

3.9 ALA-18 3.5 VAL-17

3.1 ARG-32 3.8 VAL-17

3.2 GLY-148 3.5 PRO-20

3.9 GLN-149 3.6 ARG-32

3.1 VAL-150

3.1 VAL-150

Quercetin–IL-6
complex

−7.0

2.8 ARG-30 4.0 LEU-33

3.9 ASP-34 4.0 LEU-33

2.9 ARG-30 3.8 GLN-175

4.1 ARG-182 3.9 LEU-178

4.0 ARG-179

Quercetin–JUN
complex

−5.7

3.0 ARG-302 2.9 ASN-299

3.1 ARG-302 3.9 ASN-299

3.0 ASN-291 3.7 LEU-294

3.2 GLN-290 3.7 LEU-294

3.1 SER-292 3.5 ALA-295

3.1 ALA-298

Quercetin–
MAPK1
complex

−8.4

3.1 ASP-167 3.5 LYS-54

4.1 ALA-35 3.6 VAL-39

2.9 MET-108 3.7 ILE-31

4.0 LYS-114

Quercetin–RB1
complex

−7.4

3.1 SER-391 3.5 TYR-454

4.1 SER-391 3.6 ILE-388

2.7 GLU-458 2.9 ARG-455

3.4 ARG-455

4.0 ARG-455

(Continued)
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pathways, insulin cannot be effectively transported to the vascular

system by the action of endothelial nitric oxide synthase (eNOS),

leading to obesity and insulin resistance, followed by artery

dysfunction and hypertension (30, 31). TNF and IL-6 are two

proinflammatory cytokines associated with atherosclerosis, plaque

development, and increased cardiovascular risk (32–34). In the

present study, the core targets were involved in abnormal biological

processes including inflammatory responses, lipid metabolism,

vascular endothelial functions, and energy metabolism, which

lead to hypertension.

GO enrichment was performed to identify disease–drug

intersection genes. The findings revealed that the biological

effects of the active ingredients of Ilex kudingcha were exerted

via signaling cytokine receptor binding, cytokine activity,

receptor–activator activity, and receptor–ligand activity
Frontiers in Endocrinology 11
binding of transcription factors, which may have affected

membrane rafts, membrane microdomains, cytoplasmic

vesicle lumens, secretory granule lumens, plasma membrane

rafts, and vesicle lumens, thus contributing to cellular responses

to oxidative stress, epithelial cell proliferation, and biological

processes including wound healing, reaction to xenobiotic

stimulation, and chemical stress. The KEGG enrichment

analysis indicated that the action mechanism of I lex

kudingcha in non-hypertensive atherosclerosis was primarily

associated with l ipids, fluid shear stress , and human

cytomegalovirus infection, the AGE–RAGE signaling pathway

in diabetes complications, and TNF activation of the chemical

carcinogenesis signaling pathway. The lipid and atherosclerosis

map (Figure 8) showed that the active ingredients of Ilex

kudingcha acted on many targets and formed an interactive
TABLE 3 Continued

Compounds Compound
target

Docking
score

Interaction

H-Bond interaction Hydrophobic
interaction

P-Cation
interaction

P-P stacking
interaction

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Distance
(Å)

Amino
acid

Quercetin–TP53
complex

−7.1

2.8 PRO-219 3.9 GLU-224

3.0 ASN-200 3.5 THR-230

4.0 HIS-233 3.0 GLU-221

4.0 GLU-221

3.6 VAL-218

3.6 ILE-232

Kaempferol

Kaempferol–
AKT1 complex

−6.1

3 PHE-88 2.5 ASN-53 3.6 ARG-25 3.2 PHE-27

2.8 PHE-88 2.6 LYS-14

3.3 ASN-53 2.8 LYS-14

3.8 ASN-53 3.5 LYS-14

4.0 ASN-53 2.5 ARG-25

3.9 LYS-14 3.3 ARG-25

2 ARG-23 3.8 PHE-27

1.8 ARG-23

Kaempferol–
RELA complex

−7.4

2.8 ARG-30 3.5 PHE-187

3 ARG-30 3.7 ALA-188

2.8 ASN-190 3.8 ASN-155

3 PRO-189

Kaempferol–
TNF complex

−8.8

4 PHE-144 3.8 VAL-17

3.9 VAL-17

3.9 VAL-17

3.8 PRO-20
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relationship with atherosclerosis, fluid shear stress, and MAPK,

TNF, and PI3K/AKT signaling pathways, all of which helped

regulate oxidative stress and vascular hardness. TNF inhibits

inflammatory responses while reducing blood pressure and

excreting salt through the kidneys (35). The PI3K/AKT

signaling pathway controls the cytoskeletal rearrangement

and phenotypic transformation of arterial smooth muscle

cells, affects the excitability of sympathetic nerves and the
Frontiers in Endocrinology 12
function of vascular endothelial cells, and antagonizes

angiotensin II (36, 37). Dyslipidemia and hypertension are

considerable risk factors associated with the development of

atherosclerotic cardiovascular illnesses (38) and induce various

vascular events by promoting atherosclerosis occurrence and

development as well as plaque formation (39–41). The

pathophysio logica l interact ion between hypertension

and dys l i p idemia , wh i ch inc ludes ox ida t i v e s t r e s s ,
B

C

D

E

A

FIGURE 9

Partial diagram of molecular docking: (A) AKT1–quercetin, (B) IL-6–quercetin, (C) MARK1 –quercetin, (D) TNF– quercetin, and (E) AKT1–kaempferol.
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proinflammatory activities, renin–angiotensin–aldosterone

system activation, and endothelial dysfunction, has been

supported by accumulating evidence (42). A considerable

positive effect of lipid-lowering therapy has been observed in

older patients with obesity and hypertension; the therapy

markedly lowers obesity-related indicators including blood

pressure , l ip id leve l s , and glucose leve l s as wel l a s

considerably improves atherosclerosis-related symptoms

without side effects (43). Several in- vivo experiments have

shown that the Ilex kudingcha extract reduces atherosclerosis

in apoE-deficient mice by decreasing cholesterol buildup in

ma c r o p h a g e s ( 4 4 ) . C o n s i d e r i n g t h e i r e ff e c t s o n

hemorheological properties, the total saponins in Ilex

kudingcha may possess considerable therapeutic value for

treating hypercholesterolemia and atherosclerosis (45). Ilex

kudingcha exerts potent anti-inflammatory effects on LPS-

induced inflammatory responses by inhibiting NF-kB and

MAPK pathways (10). Dioscorea opposita Thunb., a common

staple food in China, exerts antihypertensive effects by
Frontiers in Endocrinology 13
inhibiting the endothelin-converting enzyme and antioxidant

activity in 2K1C hypertensive rats (46). Furthermore, the

binding activity of the protein and its ligand was explained by

molecular docking in the present study. The results showed that

quercetin and kaempferol bound well to the corresponding

target proteins. Small molecules interacted with proteins

mainly by forming hydrophobic and hydrogen bonds. The

lowest binding energy of TNF with quercetin and kaempferol

was −8.8 kcal/mol, followed by −8.4 kcal/mol of MARKI with

quercetin. The docking result was less than −7.0 kcal/mol,

indicating that the ligand and receptor exhibited strong

binding activity (47). The MD simulation analysis results

confirmed the stable binding of TNF and quercetin. MD

simulation has been widely used in the biomedical field to

study conformational transformations caused by protein

mutations or ligand binding/debinding. It provides some

findings that are difficult to obtain in traditional biochemical

or pathological experiments, such as the detailed effects of

mutations on protein structures and protein–protein/ligand
BA

FIGURE 10

RMSD of quercetin and TNF protein 5uui. (A) Quercetin; (B) TNF protein 5uui.
FIGURE 11

RMSF analysis of TNF protein.

FIGURE 12

Rg analysis of TNF protein.
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interactions at the atomic level (48). MD simulation can

provide valuable information in deciphering the functional

mechanisms of several biomolecules including proteins/

peptides, overcoming existing sampling limitations in docking

analysis (49).

5 Conclusion

Ilex kudingcha can play a role in lowering blood pressure via

multiple components, targets, and pathways. This study

provides insights into how the hypolipidemia-, antioxidation-,

and atherosclerosis-related gene inhibitory effects of Ilex

kudingcha are associated with its mode of action in treating

hypertension. The action targets include RELA, AKT1, TNF, IL-

6, and MARK1. Studies that are pertinent to these findings rely

on data from already-existing databases and lack experimental

validation. Therefore, further studies are required to verify the

accuracy of the present findings in vitro and in vivo.
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FIGURE 13

The number of hydrogen bonds with time during 100 ns simulation.
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