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Serotonin stimulates female
preoptic area kisspeptin neurons
via activation of type 2 serotonin
receptors in mice
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1Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent,
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Background: The neuroendocrine control of ovulation is orchestrated by

neuronal circuits that ultimately drive the release of gonadotropin-releasing

hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in

luteinizing hormone (LH) secretion. While estrogen feedback signals are

determinant in triggering activation of GnRH neurons, through stimulation of

afferent kisspeptin neurons in the rostral periventricular area of the third ventricle

(RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter

systems have been shown to regulate the LH surge. Among these, several lines

of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has

an excitatory, permissive, influence over the generation of the surge, via

activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which

this occurs, however, are not well understood. We hypothesized that 5-HT exerts

its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-

dependent manner.

Methods: We tested this using kisspeptin neuron-specific calcium imaging and

electrophysiology in brain slices obtained from male and female mice.

Results: We show that exogenous 5-HT reversibly increases the activity of the

majority of RP3VKISS1 neurons. This effect is more prominent in females than in

males, is likely mediated directly at RP3VKISS1 neurons and requires activation of

5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however,

does not significantly vary during the estrous cycle.

Conclusion: Taken together, these data suggest that 5-HT2 receptor-mediated

stimulation of RP3VKISS1 neuron activity might be involved in mediating the

influence of 5-HT on the preovulatory LH surge.

KEYWORDS

hypothalamus, GnRH neuronal network, preovulatory surge, GCaMP-based calcium
imaging, action potential firing
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1 Introduction

Fertility in all mammals is ultimately controlled by

gonadotropin-releasing hormone (GnRH) neurons, which drive

the release of anterior pituitary gland gonadotropins luteinizing

hormone (LH) and follicle-stimulating hormone. In females of

spontaneously ovulating species, the rise in circulating estrogen

(E) concentration stimulates the mid-cycle surge in GnRH and LH

secretion that causes ovulation (1). Because GnRH neurons do not

express E receptor a (ERa), the receptor required for the

preovulatory surge (2–6), these cells rely on afferent ERa-
expressing neurons, the GnRH neuronal network, to relay E

feedback information (7). An important part of this network for

mediating preovulatory E positive feedback is the preoptic area

(POA) subpopulation of kisspeptin (KISS1) neurons found in two

contiguous nuclei – the anteroventral periventricular nucleus and

the periventricular nucleus – referred to together as the rostral

periventricular area of the third ventricle (RP3V) (8, 9). RP3VKISS1

neurons express ERa, undergo physiological changes in response to

E positive feedback, project to GnRH neurons and can drive GnRH

neuron action potential firing and surge-like LH secretion [reviewed

in (10–12)].

Although E positive feedback is an obligatory determinant of

the preovulatory surge in spontaneous ovulators (1), many other

cues regulate this neuroendocrine event through actions of

neuropeptides and neurotransmitters on the GnRH neuronal

network [for reviews see (7, 13–22)]. Among these, many lines of

evidence indicate that the monoamine neurotransmitter serotonin

(5-hydroxytryptamine, 5-HT) plays a role in the LH surge in

rodents. Lesions of the dorsal raphe nucleus (DR), which

comprises 5-HT-producing neurons, inhibit the LH surge (23–

26). Further suggesting a role for endogenously released 5-HT,

depletion of 5-HT and 5-HT receptor antagonism both suppress the

LH surge (24, 27–31). Moreover, blockade of type 2 5-HT (5-HT2)

receptors prevents the surge (32–34) while activation of 5-HT2

receptors is sufficient to restore the surge in animals with a DR

lesion (26), indicating that 5-HT2 receptors might play a

central role.

The mechanisms through which 5-HT might regulate the LH

surge, however, are not fully understood. While evidence suggests

that 5-HT neurons might influence the surge via indirect

mechanisms (35–37), a direct influence on the GnRH neuronal

network may also be at play. Indeed, 5-HT neuronal fibers are

found in the RP3V (38–40) as well as in the vicinity of GnRH

neurons in the POA (41), some of which originate in the DR (42).

These projections might be important seeing that 5-HT release in

the hypothalamus, including the POA, increases during the surge

and that neurotoxic lesion of 5-HT neuron fibers in the POA

prevents the surge (28, 43). At the cellular level, 5-HT can increase

or decrease action potential firing and GnRH release via activation

of multiple 5-HT receptors in immortalized GnRH neurons

maintained in culture (44, 45). Some of these effects are seen in

native GnRH neurons recorded in brain slices, where, curiously,

most (≈75%) female GnRH neurons are inhibited by 5-HT, via a 5-

HT1 receptor-mediated mechanism, whereas only a subset exhibits
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5-HT2 receptor-mediated increases in activity (46). The impact of

5-HT neurotransmission on the LH surge, therefore, cannot be fully

accounted for by effects of this neurotransmitter on GnRH neurons.

We hypothesized here that the impact of 5-HT on the LH surge

is mediated, at least in part, through regulation of RP3VKISS1

neurons upstream of GnRH neurons. Using GCaMP-based

calcium imaging and electrophysiology in brain slices, we

investigated the effect of 5-HT on RP3VKISS1 neuron activity and

the role of 5-HT2 receptors therein.
2 Materials and methods

2.1 Animals

Mice expressing the genetically encoded calcium indicator

GCaMP6f (47) in kisspeptin neurons were generated by crossing

mice that express the Cre recombinase enzyme (Cre) in kisspeptin

cells (Kiss1-Cre; Jackson laboratory stock #023426) (48) with mice

that express Cre-dependent GCaMP6f at the ROSA26 locus (flox-

STOP-GCaMP6f; Jackson laboratory stock #028865) (49). Male and

female offspring heterozygous for the Kiss1-Cre and flox-STOP-

GCaMP6f alleles (Kiss1-Cre::GCaMP6f) were used in calcium

imaging experiments. Female mice expressing the humanized

renilla green fluorescent protein (hrGFP) in kisspeptin neurons

(Kiss1-hrGFP; Jackson laboratory stock #023426) (50) were used in

electrophysiology experiments. All experimental mice were adults

(2-6 months). Female estrous cycle stage was determined by vaginal

lavage (5 µL H2O) taken between zeitgeber time (ZT) 1 and 3 or

post-mortem (ZT2.5-5.5). Aqueous vaginal smears were stained

with methylene blue and cytology examined under light

microscopy to assess estrous cycle stage (51). Mice were group-

housed with littermates under controlled temperature (23 ± 2°C)

and lighting (12h light/dark) conditions with ad libitum access to

food and water. Mice were assigned to experiments based on their

genotype, sex, and on their estrous cycle stage as needed. All

experiments were approved by Kent State University ’s

Institutional Animal Care and Use Committee.
2.2 Fixed brain slice preparation
and imaging

To visualize the distribution of GCaMP6f-expressing neurons

in the RP3V of male and female mice, two male and two female (one

diestrus and one proestrus) Kiss1-Cre::GCaMP6f mice were deeply

anesthetized via intraperitoneal injection of 3 mg/mL pentobarbital

before being perfused through the heart with 4% paraformaldehyde

(PFA). The brains were then dissected out and placed in 4% PFA for

1 hour before being transferred to 20% sucrose in 0.1 M phosphate-

buffered saline. The brains were then cut in 3 series of coronal

sections (30 mm thick) using a freezing microtome. The tissue was

mounted onto superfrost charged slices, air dried, and coverslipped

using an aqueous mounting medium (ProLong™ Gold antifade

mountant, Thermofisher). Epifluorescence images were taken in the
frontiersin.org
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RP3V region using a DMR microscope (Leica Microsystems)

equipped with an ORCA-FLASH 4.0 V3 Digital CMOS

(Hamamatsu, Japan), controlled by the MicroBrightField

Neurolucida Software (MBF Bioscience).
2.3 Live brain slice preparation

Brain slices were prepared as previously described (52, 53).

Briefly, mice were decapitated following isoflurane anesthesia, and

their brains quickly removed. Coronal brain slices (200 mm thick)

containing the RP3V were cut using a vibrating blade microtome

(HM650V, Microm International GmbH) in an ice-cold solution

containing (in mM): 87 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,

0.5 CaCl2, 6 MgCl2, 25 glucose and 75 sucrose. Brain slices were left

to incubate at 30-34°C for at least 1 hour in artificial cerebrospinal

fluid (aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 26 NaHCO3,

1.25 NaH2PO4, 2.5 CaCl2, 1.2 MgCl2 and 11 glucose. All solutions

were equilibrated to pH 7.4 with a mixture of 95% O2/5% CO2.

Female mice were killed between ZT2.5 and 5.5 and males between

ZT2 and 4.5.
2.4 Calcium imaging and electrophysiology

Individual brain slices obtained from Kiss1-Cre::GCaMP6f or

Kiss1-hrGFP mice were placed under an upright epifluorescence

microscope (either Scientifica, UK or Prior Scientific, UK) and

constantly perfused (1.5 mL/min) with warm (32-34°C) aCSF.

Variations in intracellular calcium concentration ([Ca2+]i) in

RP3VKISS1 neurons were estimated by measuring fluorescence

changes in individual GCaMP6f-expressing RP3V neurons in

slices from Kiss1-Cre::GCaMP6f mice. Slices were illuminated

through a 40x immersion objective, using a light-emitting diode

light source (pE300ultra LED; CoolLED, UK) filtered for blue light

excitation (460-487 nm; Semrock, USA). Epifluorescence (emission

500-546 nm; Semrock, USA) was collected using an ORCA-FLASH

4.0 LT+ CMOS camera (Hamamatsu). LED and camera were

controlled and synchronized with the m-manager 1.4 software

(54). After a ≥15-minute stabilization period in the recording

chamber, a focal plane including several fluorescent cell bodies

was chosen and acquisitions (100 ms light exposure at 2 Hz for 10-

15 minutes) started. Low intensity LED illumination was used (≈0.1

to 0.8 mW) to minimize GCaMP6f photobleaching.

RP3VKISS1 neuron spontaneous action potential firing was

recorded in brain slices from Kiss1-hrGFP mice. GFP-expressing

RP3V neurons were visualized using brief LED illumination

(excitation and emission as above) and subsequently approached

with glass recording micropipettes using infrared differential

interference contrast illumination. Recording micropipettes (tip

resistance: 3-6 MΩ) were made with borosilicate glass (cat.

#BF150-110-7.5, Sutter Instruments, USA), pulled using a Model

P-1000 micropipette puller (Sutter Instruments). Action potential

firing was recorded in voltage-clamp mode (no holding potential

applied) in the minimally invasive cell-attached configuration (12-

30 MΩ initial seal resistance). Glass micropipettes were filled with
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aCSF and the recording configuration was achieved by applying the

lowest amount of suction required to detect spontaneous, fast,

downward deflections in the current trace (spikes), which

correspond to single action potentials (55). Electrical signals were

recorded, filtered at 2 kHz, and digitized at 10 to 20 kHz using a

double integrated patch amplifier (Sutter Instruments, USA), and

acquired with the SutterPatch software (Sutter Instruments, USA).

All calcium imaging and electrophysiology experiments were

performed between ZT3.5 and 10.
2.5 Drug applications

All drugs were dissolved to the appropriate stock concentration in

water or in DMSO, aliquoted and stored at -20°C. Stock were diluted to

working concentrations in aCSF prior to performing experiments.

Final DMSO concentration never exceeded 0.1%. All drugs were bath-

applied. Agonists were applied for one or two minutes after a ≥ three-

minute baseline period in electrophysiology and in calcium imaging

experiments. Antagonists and blockers were applied continuously to

the slice for ≥ five minutes before a recording started and for the

duration of the recording. In calcium imaging experiments, cell

viability was routinely tested at the end of the experiments by

applying the glutamate receptor agonists (S)-a-Amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA; 10-20 mM) or L-glutamate

(100 mM), or by raising extracellular [K+] (+ 10 mM KCl).

AMPA (cat. #0254), the 5-HT2 receptor antagonists 6-[2-[4-[Bis(4-

fluorophenyl)methylene]-1-piperidinyl]ethyl]-7-methyl-5H-thiazolo

[3,2-a]pyrimidin-5-one (ritanserin; cat. #1955) and 1,2,3,4,10,14b-

Hexahydro-2-methyldibenzo[c,f]pyrazino[1,2-a]azepine

hydrochloride (mianserin; cat. #0997), the 5-HT2A receptor agonist (4-

Bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine

hydrobromide (TCB-2; cat. #2592), the 5-HT2C receptor agonist 8,9-

Dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-a]quinoxalin-5(6H)-

one hydrochloride (WAY161503; cat. #1801), the 5-HT3 receptor

agonist 1-(6-Chloro-2-pyridinyl)-4-piperidinamine hydrochloride

(SR57227; cat. #1205), the 5-HT4 receptor agonist (±)-4-Amino-5-

chloro-N-[1-[(3R*,4S*)-3-(4-fluorophenoxy)propyl]-3-methoxy-4-

piperidinyl]-2-methoxybenzamide (cisapride; cat. #1695), the 5-HT6

receptor agonist 3-[(-3-Fluorophenyl)sulfonyl]-N,N-dimethyl-1H-

pyrrolo[2,3-b]pyridine-1-ethanamine dihydrochloride (WAY208466;

cat. #3904), the 5-HT7 receptor agonist (2S)-5-(1,3,5-

Trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS19; cat. #1968)

and 5-HT hydrochloride (cat. #3547) were purchased from Tocris

(Bio-techne, USA). L-glutamate (cat. #HB0383) was purchased from

HelloBio (USA) and tetrodotoxin citrate (cat. #T-550) from Alomone

labs (Israel).
2.6 Analysis

For calciumimaging,GCaMP6ffluorescence image time-serieswere

processed in the FIJI software (56). Regions of interest (ROIs) were

drawn around individual, in-focus fluorescent somata [12.1 ± 0.5

(ranging 4 to 24) and 9.2 ± 1.0 (ranging 7 to 14) ROIs per slice in

females and males, respectively]. Mean fluorescence intensity within
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each ROIwasmeasured in each frame. Fluorescence intensity data were

analyzed using scripts written in R (http://www.r-project.org/). For each

ROI, normalized fluorescencewas calculated as Ft
F � 100, where F is the

baseline fluorescence intensity calculated as the mean fluorescence

intensity over a one-minute period preceding agonist applications and

Ft is the fluorescence measured at any time point. Time-dependent

bleaching was corrected by subtracting the normalized fluorescence

obtained in an ROI that did not contain a fluorescent cell within the

RP3V (empty ROI). This approach could not be used for recordings of

the effect ofAMPA,L-glutamate orKCl as these treatments inducedvery

large increases in fluorescence that contaminated the empty ROI,

thereby causing unacceptable distortions of traces upon subtraction.

ROIs in which normalized fluorescence traces reversibly increased from

baseline for a period of at least 2 minutes, around the time of agonist

application,were recordedasbeingexcited.For illustrationandstatistical

comparisons, agonist effects were calculated as the mean normalized

fluorescence over 30 seconds at the peak of the effect minus that over 30

seconds of baseline.

For electrophysiology, spikes were detected using the threshold

crossing method. Spike time stamps were organized into ten-second

bins and the mean firing rate calculated for each bin. To determine

if 5-HT affected the spontaneous firing of RP3VKISS1 neurons,

baseline firing was first measured as the mean firing rate during

the two minutes preceding 5-HT application. Recordings in which

the mean firing rate changed by greater than twice the standard

deviation of baseline (2 × SD) during the five minutes after 5-HT

first entered the bath were recorded as displaying a response to 5-

HT. For statistical comparisons, firing rates were averaged over a

one-minute period during baseline and at the peak of 5-HT effect.

In total, 800 GCaMP6f-expressing cells in 64 slices from 45

female mice and 55 GCaMP6f-expressing cells in 6 slices from 5

male mice were analyzed in calcium imaging experiments, while 17

GFP-expressing cells in 11 slices from 7 female mice were analyzed

in electrophysiology experiments. These numbers are broken down

by experiments in the results section.

Statistical analyses were performed using Prism 9.0 (GraphPad,

USA). Data are reported in the text and tables as mean ± SEM, and

in figures as mean ± SEM or ± 95% confidence intervals.

Comparisons between two independent groups were made using

the Mann-Whitney test and those between two paired groups using

the paired t-test or the Wilcoxon signed rank test, as appropriate.

Comparisons between multiple groups were made with the

Kruskal-Wallis test with Dunn’s post-tests. Comparisons of

proportions were made using Fisher’s exact tests. Differences were

considered statistically significant for p< 0.05.
3 Results

3.1 5-HT stimulates RP3VKISS1 neuron
activity in a sex-dependent, but not
estrous cycle-dependent, manner

The effects of 5-HT on RP3VKISS1 neuron activity were assessed

using calcium imaging in brain slices from male and female Kiss1-
Frontiers in Endocrinology 04
Cre::GCaMP6f mice (Figures 1A, B). In slices from female mice,

two-minute bath applications of 5-HT (10 mM) resulted in transient

increases in GCaMP6f fluorescence in the majority of RP3VKISS1

neurons (Figures 1C, E). In slices obtained from male Kiss1-Cre::

GCaMP6f mice, 5-HT-induced increases in fluorescence could also

be observed (Figures 1D, F), but these responses were seen much

less frequently (see below).

Because 5-HT signaling may be involved in the generation of

the LH surge, we examined RP3VKISS1 neuron responses to 5-HT

across the estrous cycle. As illustrated in Figure 2A, 5-HT-induced

increases in RP3VKISS1 neuron fluorescence could be seen in slices

from diestrous, proestrous and estrous mice and were larger than

those seen in slices from male mice. The proportions of RP3VKISS1

neurons excited by 5-HT were similar at all cycle stages (diestrus:

85.3%, proestrus: 87.5%, estrus: 82.0%; p > 0.18, Fisher’s exact tests)

and were significantly higher than in males (29.1%; p < 0.001,

Fisher’s exact tests; Figure 2B and Table 1). The magnitude of

RP3VKISS1 neuron responses to 5-HT significantly varied across

these groups, with male responses significantly smaller than those in

females at any estrous cycle stage, but no statistical differences

across the estrous cycle (Table 1; Figure 2C). Smaller responses to 5-

HT in males versus females could not be explained by a reduced

ability of male RP3VKISS1 neurons to mount changes in [Ca2+]i, as

responses to the glutamate receptor agonist AMPA were, in fact,

larger in males than in females in those slices that were tested in this

manner (Table 2).

Together, these observations indicate that RP3VKISS1 neuron

responses to exogenous 5-HT are – to some extent – sex-dependent,

being more prominent in females. Female responses, however, are

not affected by the estrous cycle. The remainder of the study was

conducted in brain slices from females.
3.2 5-HT increases female RP3VKISS1

neuron action potential firing

We then investigated if the effect of 5-HT was associated with

changes in electrical activity in RP3VKISS1 neurons. In slices from

female Kiss1-hrGFP mice, we recorded individual RP3V GFP-

expressing neurons in the cell-attached configuration. Bath

applications of 5-HT (one minute, 50 mM) increased action

potential firing in just over half (52.9%) of RP3VKISS1 neurons (9

out of 17 neurons in 8 slices from 5 mice [1 di- and 4 estrus];

Figures 3A, C), decreased it in a few cells (2 cells [11.8% of total] in 2

slices from 2 mice [1 di- and 1 estrus]; Figures 3B, C), or did not

affect firing (6 neurons [35.3% of total] in 5 slices from 4 mice [1

pro-, 1 di- and 2 estrus]). In those RP3VKISS1 neurons that were

stimulated by 5-HT, action potential firing increased from 2.20 ±

0.42 to 6.33 ± 1.40 Hz (p < 0.01, t = 3.66, df = 8, paired t-test;

Figure 3D). In the two cells inhibited by 5-HT, spontaneous firing

(0.73 and 0.12 Hz) was transiently silenced in both cases.

These observations indicate that 5-HT primarily stimulates

RP3VKISS1 neuron action potential firing. While 5-HT could also

suppress firing in RP3VKISS1 neurons, this was seen much

less frequently.
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3.3 The effect of 5-HT on female RP3VKISS1

neuron [Ca2+]i is direct

We next tested whether the effect of 5-HT is direct or mediated

through the release of an intermediary factor by cells within the

slice. To do this, we used a protocol in which slices from Kiss1-Cre::

GCaMP6f females were exposed to 5-HT (two minutes, 10 mM)

twice at a 15- to 20-minute interval, the second 5-HT application

being carried out in the presence of the voltage-gated sodium

channel inhibitor tetrodotoxin (TTX; 0.5 mM) to block electrical

activity in the slice. This concentration of TTX is sufficient to inhibit
Frontiers in Endocrinology 05
action potential generation in ex vivo preparations (57–59). As

illustrated in Figure 4A, 5-HT-induced increases in RP3VKISS1

neuron fluorescence persisted in the presence of TTX. In control

conditions, 57 out of 68 cells (83.8%) were stimulated by 5-HT. In

the presence of TTX, 53 of these neurons (77.9% of the total; p =

0.51, Fisher’s exact test; Figure 4B) displayed 5-HT-induced

increases in normalized fluorescence. On average, 5-HT increased

RP3VKISS1 neuron normalized fluorescence to a similar extent

whether in the absence (2.72 ± 0.37%) or in the presence of TTX

(2.34 ± 0.37%; n = 57 from 7 slices in 4 mice [2 pro-, 1 di- and 1

estrus]; p = 0.24, Wilcoxon test; Figure 4C).
B

C

D

E

F

A

FIGURE 1

5-HT stimulates RP3VKISS1 neuron activity. (A, B) Low magnification (10X) epifluorescence images of endogenous GCaMP6f fluorescence in fixed
coronal slices (30 mm thick) including the RP3V from a diestrous female (A) and a male (B) mouse. Insets i and ii are 20X magnification images of
areas framed (dashed lines) in the low magnification images. Similar GCaMP6f-expressing cell distribution was observed in two different animals of
each sex. White arrowheads indicate individual GCaMP6f-expressing neurons. 3V: third ventricle. Scale bars are 200 mm (50 mm in i and ii). (C, D)
Epifluorescence images (40X magnification, average projection of 240 frames) of endogenous GCaMP6f fluorescence in acute coronal slices (200
mm thick) including the RP3V obtained from an estrous female (C) and a male (D) mouse. Ovals and numbers indicate individual regions of interest
(ROIs) each including a single cell. Dashed lines delineate the border of the 3V. Scale bars 25 mm. (E, F) Normalized fluorescence traces for the ROIs
delineated in C and D. Blue shading indicates the timing of 5-HT bath applications. Please note the difference in scale for normalized fluorescence in
female (E) versus male traces (F).
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This finding indicates that the effect of 5-HT on RP3VKISS1

neuron activity is likely direct.
3.4 Activation of 5-HT2 receptors mimics
the effect of 5-HT in female RP3VKISS1

neurons

Because female RP3VKISS1 neurons express genes for multiple

stimulatory 5-HT receptor subtypes, including htr2a, htr2c, htr3a,

htr4, htr6 and htr7 (60), we next examined if activating these 5-HT

receptors could increase [Ca2+]i in female RP3VKISS1 neurons.

Increases in RP3VKISS1 neuron activity could be seen in response

to bath-applications of the agonists TCB-2 (1 mM; 5-HT2A

receptors; 2 di-, 1 pro- and 1 estrous mice), WAY161503 (10 mM;
Frontiers in Endocrinology 06
5-HT2C receptors; 3 diestrous mice), SR57227 (1 mM; 5-HT3

receptors; 4 diestrous mice), cisapride (1 mM; 5-HT4 receptors; 3

diestrous mice), WAY208466 (10 mM; 5-HT6 receptors; 3 diestrous

mice) and AS19 (10 mM; 5-HT7 receptors; 1 di-, 3 pro- and 1 estrous

mice) (Figures 5A, B and Table 3). However, activating 5-HT2A and

5-HT2C receptors resulted in greater proportions of stimulated

RP3VKISS1 neurons (≈55-70%) than activating other receptor

subtypes (Figure 5C and Table 3). In addition, activating 5-HT2C

receptors resulted in significantly larger responses than activating

other 5-HT receptors, whereas responses to 5-HT2A receptor

activation were rather moderate in magnitude (Figure 5D

and Table 3).

Taken together, these observations indicate that the female

RP3VKISS1 neuron population expresses multiple functional

excitatory 5-HT receptor subtypes. However, of these, activation
B C

A

FIGURE 2

The effect of exogenous 5-HT on RP3VKISS1 neuron activity across the estrous cycle and in males. (A) 5-HT-induced changes in RP3VKISS1 neuron
normalized fluorescence across the estrous cycle and in males. Traces are means (black) ± 95% confidence intervals (grey). (B) Similar proportions of
RP3VKISS1 neurons were stimulated by 5-HT across the estrous cycle. This proportion was significantly lower in males. Numbers in bars are sample
sizes (excited cells/total cells). (C) Peak 5-HT effect did not vary as a function of estrous cycle stage but was significantly smaller in males. Numbers
in bars are sample sizes. Letters indicate results of statistical tests [Fisher’s exact tests in (B) Kruskal-Wallis and Dunn’s post-tests in (C)]. Bars with
different letters are significantly different (p < 0.05; see Table 1 for details).
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of 5-HT2 receptors, in particular 5-HT2C, most closely mimics the

effect of 5-HT on female RP3VKISS1 neurons.
3.5 5-HT stimulates female RP3VKISS1

neuron activity via activation of 5-HT2
receptors

Based on these findings, we then sought to determine the role of

5-HT2 receptors in mediating the effect of 5-HT on RP3VKISS1

neuron activity. Using a dual 5-HT application protocol like that

described above, we tested the impact of 5-HT2 receptor antagonists

on RP3VKISS1 neuron responses to 5-HT. As illustrated in

Figure 6A, the antagonist ritanserin (5 mM), which prevents the

LH surge in rats (34), almost completely blocked the effect of 5-HT

in RP3VKISS1 neurons. 69 out of 85 cells (81.2%) were stimulated by

5-HT in control conditions. In the presence of ritanserin, 31 of these

(36.5% of the total; p < 0.001, Fisher’s exact test) had 5-HT-induced

increases in normalized fluorescence (Figure 6B). On average, 5-

HT-induced changes in RP3VKISS1 neuron normalized fluorescence

were substantially reduced by ritanserin (0.29 ± 0.10% versus 3.37 ±

0.32% in the absence of antagonist; n = 69 in 5 slices from 5 mice [2

pro-, 2 di- and 1 estrus]; p < 0.001, sum of signed ranks (W) =

-2387, Wilcoxon test; Figure 6C). The same held true when only

those cells that were excited by 5-HT in the presence of ritanserin

were considered (Table 4). Similar results were obtained with the

antagonist mianserin (10 mM). In its presence, only 8 out of 75 cells

(10.7% versus 80.0% [60 out of 75] in control; p < 0.001, Fisher’s

exact test; Figure 6D) were excited by 5-HT. Moreover, 5-HT-
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induced increases in normalized fluorescence were significantly

suppressed by mianserin (-0.53 ± 0.22% versus 2.61 ± 0.42% in

the absence of antagonist; n = 60 in 6 slices from 5 mice [1 pro-, 2

di- and 2 estrus]; p < 0.001, sum of signed ranks (W) = -1718,

Wilcoxon test; Figure 6E), even when only cells stimulated by 5-HT

in the presence of the antagonist were considered (Table 4).

Together with the results obtained using 5-HT receptor

agonists, these data indicate that the effect of 5-HT on RP3VKISS1

neurons is – for the most part –mediated by 5-HT2 receptors, likely

through the combined effect of 5-HT2A and 5-HT2C

receptor activation.
4 Discussion

We report here using GCaMP-based [Ca2+]i imaging and

electrophysiology that exogenous 5-HT stimulates the activity of a

majority of RP3VKISS1 neurons in female mice. This effect is

observed in higher proportions of RP3VKISS1 neurons – and with

larger magnitudes – in females than in males. In females, however,

the effect of 5-HT does not significantly vary between estrous cycle

stages. Lastly, we find that 5-HT-induced excitations are likely

mediated directly at RP3VKISS1 neurons and that these effects

require activation of 5-HT2 receptors. Together, these

observations suggest that stimulation of RP3VKISS1 neurons might

be a mechanism through which 5-HT influences the LH surge

in rodents.

A large proportion of female RP3VKISS1 neurons (> 80%)

exhibited increases in [Ca2+]i in response to 5-HT in brain slices
TABLE 1 RP3VKISS1 neuron responses to 5-HT across the female estrous cycle and in males.

Diestrus Proestrus Estrus Male

Total cell number 184 144 206 55

Excited cell number (proportion) 157 (85.3%) 126 (87.5%) 169 (82.0%) 16 (29.1%)

Fisher’s exact tests
p = 0.63 versus

proestrus
p = 0.18 versus estrus

p = 0.41 versus
diestrus

p < 0.001 versus diestrus, proestrus and
estrus

Peak Dnormalized fluorescence (excited cells
only)

2.12 ± 0.17% 1.98 ± 0.16% 2.88 ± 0.21% 0.69 ± 0.26%

Kruskal-Wallis testa p < 0.001, K-S statistic = 22.37

Dunn’s post-tests
p > 0.99 versus

proestrus
p = 0.20 proestrus versus

estrus
p = 0.12 versus

diestrus
p < 0.001 versus diestrus and proestrus

p < 0.001 versus estrus

Slice (mouse) number 14 (10) 12 (11) 17 (10) 6 (5)b
athe Kruskal-Wallis test was used to test for statistical differences across all 4 groups (males, di-, pro- and estrous females).
bthe 16 male neurons that responded were in 4 slices from 3 different males.
TABLE 2 Response of female and male RP3VKISS1 neurons to stimulation by AMPA.

Female Male

Total cell number 299a 16a

Peak Dnormalized fluorescence (excited cells only) 18.75 ± 0.85% 27.49 ± 3.70%

Mann-Whitney test p = 0.01, Mann-Whitney U = 1496

Slice (mouse) number 27 (20) 4 (3)
aincludes only those cells that responded to 5-HT.
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from Kiss1-Cre::GCaMP6f mice. In slices from Kiss1-hrGFP mice,

5-HT caused an increase in action potential firing in > 50% of

RP3VKISS1 neurons. Increases in [Ca2+]i induced by 5-HT likely

result from opening of voltage-gated Ca2+ channels in response to

action potential firing and/or to subthreshold membrane

depolarization, from G-protein-dependent Ca2+ release from

internal stores, or from a combination thereof (10, 61). As the

cell-attached patch-clamp recording configuration does not give

access to subthreshold membrane potential fluctuations – nor to

changes in [Ca2+]i – the proportions of neurons that responded to

5-HT applications with elevations in [Ca2+]i and in firing rates

cannot be directly compared. Interestingly, 5-HT suppressed firing

in a small subset (≈ 10%) of RP3VKISS1 neurons in electrophysiology

experiments. It is possible that such responses were not seen with
Frontiers in Endocrinology 08
our [Ca2+]i imaging because, at least under our recording

conditions, this approach does not effectively resolve inhibitions

in those cells that display low resting activity levels (10, 61).

Nevertheless, our observation that 5-HT stimulated activity in a

majority of RP3VKISS1 neurons is in line with a recent report that 5-

HT increases firing in arcuate kisspeptin (ARCKISS1) neurons (62),

suggesting that stimulation by 5-HT is a common feature of

hypothalamic kisspeptin neurons. Somewhat contrastingly, only a

small proportion of adult female GnRH neurons (< 40%) are

stimulated by 5-HT, whereas most (≈ 75%) are inhibited (46).

The stimulatory effect of 5-HT on RP3VKISS1 neuron [Ca2+]i
was largely resistant to blockade of action potential firing,

suggesting that responses to 5-HT were mediated primarily

through action potential-independent VGCC opening and/or
B C D

A

FIGURE 3

5-HT effects on female RP3VKISS1 neuron action potential firing. (A, B) Example traces and corresponding rate-meters illustrating the excitatory
(A) and inhibitory (B) effects of 5-HT on female RP3VKISS1 neuron firing. Blue shading indicates the timing of 5-HT bath applications. (C) Proportions
of RP3VKISS1 neurons that showed increased, decreased or no change in firing in response to 5-HT. (D) In those cells that were excited by 5-HT, the
increase in firing was statistically significant. **p < 0.01 paired t-test. Numbers above bars are sample sizes.
B CA

FIGURE 4

The effect of 5-HT on female RP3VKISS1 neuron activity is direct. (A) 5-HT was applied twice to brain slices from female mice, at 15-to-20-minute
intervals. The first application (control; left) was carried out in the absence of drugs whereas the second was conducted in the continuous presence
of tetrodotoxin (TTX; right) to block action potentials. Traces are means (black) ± 95% confidence intervals (grey) and include those RP3VKISS1

neurons that were stimulated by 5-HT upon the first application (n = 57). Blue shading indicates the timing of 5-HT bath applications. (B) Similar
proportions of RP3VKISS1 neurons were stimulated by 5-HT in the presence and in the absence of TTX. Numbers in bars are sample sizes (excited
cells/total cells). (C) The peak magnitude of the 5-HT effect was similar in the presence and in the absence of TTX. Only RP3VKISS1 neurons excited
by 5-HT upon the first application were included in this analysis. The number above the bars is the sample size.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1212854
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Buo et al. 10.3389/fendo.2023.1212854
mobilization of intracellular Ca2+ stores. This also reveals that

RP3VKISS1 neuron [Ca2+]i responses to 5-HT were independent

on electrical activity within the brain slice and, therefore, resulted

from direct 5-HT actions at the kisspeptin neurons. Moreover,

RP3VKISS1 neurons displayed excitatory responses to 5-HT2A, 5-

HT2C, 5-HT3, 5-HT4, 5-HT6 and 5-HT7 receptor activation. This
T
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reveals that RP3VKISS1 neurons may express multiple functional 5-

HT receptor subtypes. However, activation of 5-HT2C and – to a

lesser extent – 5-HT2A receptors most closely mimicked the

stimulatory effect of 5-HT. Importantly, the stimulatory effect of

5-HT was blocked by the 5-HT2 receptor antagonists ritanserin and

mianserin. Together, these observations indicate that 5-HT
B

C D

A

FIGURE 5

Responses of female RP3VKISS1 neurons to excitatory 5-HT receptor agonists. (A, B) Average responses of female RP3VKISS1 neurons stimulated by 5-
HT2A (A) and 5-HT2C (B) receptor agonists. Colored shading indicates the timing of agonist applications. Traces are means (black) ± 95% confidence
intervals (grey). (C) Proportions of female RP3VKISS1 neurons stimulated by 5-HT receptor agonists. Numbers in bars are sample sizes (excited cells/
total cells). (D) Magnitude of the effect of different 5-HT receptor agonists. Only RP3VKISS1 neurons that responded to agonists were included in this
analysis. Numbers above bars are sample sizes. Letters above bars represent the results of statistical tests [Fisher’s exact tests in (C) and Kruskal-
Wallis and Dunn’s post-tests in (D)]. Bars that do not share a letter are significantly different (p < 0.05, see Table 3 for details).
ABLE 3 RP3VKISS1 neuron excitatory responses to 5-HT receptor agonists in female mice.

TCB-2 WAY161503 SR57227 Cisapride WAY208466 AS19

Total cell number 37 68 84 78 75 54

Excited cell number
(proportion)

20 (54.1%) 48 (70.6%) 16 (19.0%) 26 (33.3%) 14 (18.7%) 12 (22.2%)

Fisher’s exact tests
p < 0.001 versus
SR57227 and
WAY208466

p < 0.001 versus SR57227,
cisapride, WAY208466 and

AS19

p < 0.05 versus
cisapride

p < 0.05 versus
TCB-2

p < 0.05 versus
cisapride

p < 0.01 versus
TCB-2

Peak Dnormalized
fluorescence (excited cells

only)
1.33 ± 0.28% 3.21 ± 0.28% 0.54 ± 0.14% 1.03 ± 0.29% 0.37 ± 0.20% 0.53 ± 0.14%

Kruskal-Wallis testa p < 0.001, K-S statistic = 62.09

Dunn’s post-tests / p < 0.01 versus TCB-2
p < 0.001
versus

WAY161503

p < 0.001 versus
WAY161503

p < 0.001 versus
WAY161503

p < 0.001
versus

WAY161503

Slice
(mouse) number

5 (4) 5(3) 7 (4)b 6(3) 5(3)b 5(5)b
athe Kruskal-Wallis test was used to test for statistical differences across the effect of all 6 agonists (TCB-2, WAY161503, SR57227, cisapride, WAY208466 and AS19).
bRP3VKISS1 cells showing excitatory responses to SR57227, WAY208466 and to AS19 were found in 6 slices from 4 mice, in 4 slices from 3 mice and in 3 slices from 3 mice, respectively.
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B C

D E

A

FIGURE 6

5-HT2 receptors mediate the effect of 5-HT on female RP3VKISS1 neuron activity. (A) 5-HT was applied twice to female brain slices, at 15-to-20-
minute intervals. The first application (control; left) was carried out in the absence of drugs whereas the second was conducted in the continuous
presence of ritanserin (right), a 5-HT2 receptor antagonist. Light blue shading indicates the timing of 5-HT bath applications. Traces are means
(black) ± 95% confidence intervals (grey). (B) Proportions of RP3VKISS1 neurons stimulated by 5-HT significantly decreased in the presence of
ritanserin. ***p < 0.001, Fisher’s exact test. Numbers in bars are sample sizes (excited cells/total cells). (C) Ritanserin significantly decreased the peak
magnitude of the 5-HT effect. ***p < 0.001, Wilcoxon signed rank test. Number above bars is the sample size. (D) Mianserin significantly reduced the
proportions of RP3VKISS1 neurons stimulated by 5-HT. ***p < 0.001, Fisher’s exact test. Numbers in bars are sample sizes (excited cells/total cells).
(E) The peak magnitude of the 5-HT effect was significantly suppressed by mianserin. ***p < 0.001, Wilcoxon signed rank test. Number above bars is
the sample size. Only RP3VKISS1 neurons that responded to 5-HT upon the first bath application were included in the analyses displayed in (C, E).
TABLE 4 Excitatory effects of 5-HT in the presence of 5-HT2 receptor antagonists ritanserin or mianserin.

Control (Peak Dnormalized
fluorescence)

In antagonist (Peak
Dnormalized fluorescence)

number of cells
(slices; mice)

Wilcoxon signed rank tests

Ritanserin 2.99 ± 0.38% 0.55 ± 0.10% 31 (3; 3a) p < 0.001, sum of signed ranks W = -490

Mianserin 5.31 ± 1.62% 0.03 ± 0.66% 8 (5; 4a) p < 0.05, sum of signed ranks W = -32
F
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aritanserin: 2 pro- and 1 estrous mice; mianserin: 1 pro-, 1 di- and 2 estrous mice.
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stimulates RP3VKISS1 neuron activity by acting at 5-HT2 receptors,

including 5-HT2A and 5-HT2C receptors. 5-HT is also reported to

stimulate the activity of ARCKISS1 neurons, but this is mostly

mediated by 5-HT4 receptors (62). The two main populations of

hypothalamic kisspeptin neurons may, therefore, have different

functional 5-HT receptor make-ups. Nevertheless, our

observations in RP3VKISS1 neurons are in line with previous

reports that ritanserin prevents the LH surge in rats (33, 34), and

that activation of 5-HT2A and 5-HT2C receptors restores the LH

surge in DR-lesioned female rats (26). Seeing the pattern and

pharmacology of RP3VKISS1 neuron responses to 5-HT – and, as

discussed above, that 5-HT may primarily inhibit female GnRH

neurons (46) – we propose that the stimulatory effect of 5-HT we

report here might be involved in mediating the previously reported

excitatory influence of 5-HT neurotransmission on the LH surge

(27–30, 32–34).

5-HT responses were found in a substantially and significantly lower

proportion of RP3VKISS1 neurons in males (≈ 35%) than in females.

Further, those male RP3VKISS1 neurons that were stimulated by 5-HT

displayed much smaller responses than their female counterparts.

Although we cannot fully rule out that a proportion of the GCaMP6f-

expressing cells that we recorded in slices from male mice were RP3V

neurons that do not, in fact, express Kiss1 (10, 63–65), this suggests that

5-HT excitatory effects in RP3VKISS1 neurons display some degree of sex-

dependence. As the LH surge mechanism, including many aspects of the

RP3VKISS1 → GnRH neural circuit, is sexually differentiated in rodents

(66–69), this observation suggests that 5-HT signaling in RP3VKISS1

neurons might be part of the mechanism activating these cells for the

surge. On the other hand, we find that the impact of 5-HT on RP3VKISS1

neuron activity did not significantly change between estrous cycle stages,

with similar proportions of neurons stimulated and similar response

magnitude. This suggests that regulation of 5-HT2 receptor function in

RP3VKISS1 neuronsmight not be amechanism through which these cells

are specifically activated for the proestrous surge. Rather, this suggests

that 5-HT might have a permissive effect on RP3VKISS1 neuron activity

as it does on the surge in vivo (15). On the other hand, 5-HT content and

turnover in the hypothalamus, including the POA, might fluctuate

around the time of the proestrous surge in a diurnal manner (28, 70,

71). Whether 5-HT release in the vicinity of RP3VKISS1 neurons

fluctuates in a time- and estrous cycle-dependent manner is unknown

but would be anticipated to affect RP3VKISS1 neuron activity.

5-HT-containing fibers are detected within the RP3V in male

and female rats (38–40), but it is unknown whether these fibers are

in the vicinity of kisspeptin neurons. The origin of these fibers is

also unknown. They may originate in the DR as lesions of this area,

more so than lesions of the medial raphe nucleus, prevent the LH

surge (23–26). Curiously, electrical stimulation of the DR fails at

altering the LH surge in proestrous rats (24), whereas this

manipulation can evoke LH secretion in E-replaced OVX rats

(72) and result in a subtle prolongation of LH secretion evoked

by stimulation of the POA (73). DR neurons project directly to POA

GnRH neurons (42); whether they project to RP3VKISS1 neurons

will need to be established by tract-tracing experiments. It should be

noted that 5-HT transporter-immunoreactive fibers are seen in

close apposition to ARCKISS1 neurons (62). As ARCKISS1 neurons

might be involved in regulating the LH surge (74–78), it is possible
Frontiers in Endocrinology 11
that these fibers contribute to the influence of 5-HT on the surge. As

discussed above, the pharmacology of ARCKISS1 neuron responses

to 5-HT does not match that of the influence of 5-HT on the

surge, however.

Lastly, the type of information that 5-HT neurons relay to the

GnRH neuronal network to regulate the surge is unknown. 5-HT

may mediate the permissive effect of the metabolic hormone leptin

on the hypothalamic-pituitary-gonadal axis (79) and, indeed, the

DR is involved in many aspects of energy balance (80). Additionally,

5-HT signaling may be involved in regulating circadian rhythms

and responses to stressors (81–83), which also affect LH secretion

and the surge (20, 21). Further studies will be required to determine

the precise contribution of changes in 5-HT neurotransmission in

regulating the surge and whether this involves RP3VKISS1 neurons.

In conclusion, the findings reported here regarding the

stimulatory effect of 5-HT signaling on RP3VKISS1 neuron activity

contribute to our understanding of the brain circuits that control

ovulation in females.
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