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PM2.5 can cause adverse health effects via several pathways, such as inducing

pulmonary and systemic inflammation, penetration into circulation, and

activation of the autonomic nervous system. In particular, the impact of PM2.5

exposure on the liver, which plays an important role in metabolism and

detoxification to maintain internal environment homeostasis, is getting more

attention in recent years. In the present study, C57BL/6J mice were randomly

assigned and treated with PM2.5 suspension and PBS solution for 8 weeks. Then,

hepatic tissue was prepared and identified by metabolomics analysis and

transcriptomics analysis. PM2.5 exposure can cause extensive metabolic

disturbances, particularly in lipid and amino acids metabolic dysregulation.128

differential expression metabolites (DEMs) and 502 differently expressed genes

(DEGs) between the PM2.5 exposure group and control group were detected. The

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

showed that DEGs were significantly enriched in two disease pathways, non-

alcoholic fatty liver disease (NAFLD) and type II diabetes mellitus (T2DM), and

three signaling pathways, which are TGF-beta signaling, AMPK signaling, and

mTOR signaling. Besides, further detection of acylcarnitine levels revealed

accumulation in liver tissue, which caused restricted lipid consumption.

Furthermore, lipid droplet accumulation in the liver was confirmed by Oil Red

O staining, suggesting hepatic steatosis. Moreover, the aberrant expression of

three key transcription factors revealed the potential regulatory effects in lipid

metabolic disorders, the peroxisomal proliferative agent-activated receptors

(PPARs) including PPARa and PPARg is inhibited, and the activated sterol

regulator-binding protein 1 (SREBP1) is overexpressed. Our results provide a

novel molecular and genetic basis for a better understanding of the mechanisms

of PM2.5 exposure-induced hepatic metabolic diseases, especially in

lipid metabolism.
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1 Introduction

With the rapid development of the world population, economy,

and industrialization, energy consumption also grows increasingly.

Air pollution has become an urgent global health problem (1, 2).

Particulate matter 2.5 (particulate matter with an aerodynamic

diameter of ≤ 2.5 µm, PM2.5), as one of the main pollutants, can

penetrate the respiratory barrier simply with its extremely tiny

particle diameter by absorbing and combining with toxic

compounds (3, 4). Then it can reach almost all organs through

the bloodstream (5). Many epidemiological, animal, and in vitro

studies found that health effects can be caused by exposure to

airborne PM2.5, such as increased morbidity and mortality rates,

even at concentrations meeting the environmental criteria (6–8).

PM2.5 can lead to extensive inflammation (9) and irreversible

damage in almost all systems (10, 11), which causes respiratory

diseases like asthma and lung cancer (12, 13), circulatory diseases

like ventricular hypertrophy and heart disease (14), and

neurological diseases like retinopathy (15, 16).

As an important metabolic center of the body, the liver plays an

important role in maintaining the homeostasis of the internal

environment and energy system (17). It participates in the

regulations of the synthesis , storage, decomposit ion,

detoxification, transformation, and excretion of xenobiotics in the

organism (18, 19). The liver is critical in regulating lipid

metabolism, amino acid metabolism, steroid metabolism, and

many other metabolic pathways (20), of which metabolic

disorders can result in severe damage and the promotion of

function disturbances, for example, nonalcoholic fatty liver

disease (NAFLD) (21). NAFLD covers the hepatic pathological

change progression from steatosis to nonalcoholic steatohepatitis,

fibrosis, and cirrhosis (20, 22–24), and can notably increase the risk

of some more metabolic diseases such as diabetic cardiovascular

disease and cancer (17, 24).

Previous research indicated that PM2.5 exposure affects various

metabolic pathways in vivo (25), especially the pathways associated

with lipid metabolism (18). Recent studies have shown that the liver

has more obvious responses than the lung in metabolic disorders

induced by PM2.5 exposure (26). PM2.5 exposure possibly

contributes to dyslipidemia, vascular inflammation, lipid

dysfunction, and insulin resistance, and then accelerates lipid-

associated metabolic diseases such as atherosclerosis and type II

diabetes mellitus (T2DM) (14, 27, 28). The impact of PM2.5

exposure on the liver has been getting more attention these years.

Meanwhile, epidemiological studies suggested that airborne PM2.5

can improve the liver enzyme level (29), cause chronic liver

inflammation, and increase the risk of cirrhosis and liver cancer

(11, 30, 31). PM2.5 exposure has also been identified as an

independent risk factor for NAFLD (21, 23). Previous toxicologic

studies have shown that PM2.5 can transfer from the lung to the liver

through multiple routes (26, 32), and it may expedite the

progression of NAFLD through mechanisms such as

inflammatory responses, oxidative stress, and insulin resistance

(33, 34). PM2.5 exposure can induce insulin resistance (IR) via

endothelial dysfunction, affecting hepatic insulin signaling

pathways and suppressing the expression of peroxisome
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proliferator-activated receptors gamma (PPARg) and PPARa,
resulting in hepatic lipid accumulation (35, 36). Concurrently,

PM2.5 exposure can cause oxidative stress, leading to hepatic

tissue damage (37, 38). Moreover, exposure to PM2.5 may

promote the expression of proinflammatory cytokines in

adipocytesto and cause inflammation in NASH (39, 40).

This study randomly assigned C57BL/6J mice into two groups

and treated them with PM2.5 suspension and PBS solution for eight

weeks. The differences in liver tissue between the two groups,

especially in metabolism and gene expression, were compared to

investigate the impact of PM2.5 exposure on liver metabolism. The

histopathological changes, differential expression of genes, and

metabolites related to hepatic metabolic disorders were also

analyzed to elaborate on the basic and comprehensive condition

of the liver, illustrating the mechanism of injury triggered by PM2.5

exposure. To some extent, insights into hepatic metabolic

disturbances benefit understanding the molecular pathology of

metabolic diseases and exploring the potential therapeutic target.
2 Materials and methods

2.1 PM2.5 preparation and reagents

PM2.5 samples were collected and prepared according to

previous studies (41), collected at Shanghai Jiao Tong University

School of Medicine, Chongqing Road (S), Shanghai, China, from

December 2017 to January 2018. The sampling site was close to the

main traffic artery, and the surrounding area was densely populated.

PM2.5 samples were collected on glass fiber filters for biological

assay using a high-volume sampler (#2031, Lonying Company,

Shandong, China) or quartz filters for chemical assay using a high-

flow cascade sampler (#HFI 131, MSP Company, MN, USA) for

96 h. The collected PM2.5 sampling film was cut to the same size

(3 cm × 3 cm) and randomly mixed. PM2.5 samples were split into

four aliquots for chemical assay, which were analyzed for metal

elements, polycyclic aromatic hydrocarbons (PAHs), elemental and

organic carbon (EC and OC), and inorganic ion elements. The

remaining sampling membranes were freeze-dried to separate

PM2.5 for later animal experiments.

Metal elements in PM2.5 (Ca, Fe, Na, K, Al, Mg, Zn, Mn, Pb, Cu,

Ba, Ti, Si, Sb, V,Mo, Sn, Ni, As,W, Cd) weremeasured by inductively

coupled plasma mass spectrometry (# iCAP Q, ThermoFisher, MA,

USA). Also, 16 PAHs (Naphthalene, Alenene, Acenaphthene, Indeno

[1,2,3-cd]Pyrene, Benzo[b]Fluorathene, Fluorene, Pyrene, Benzo[k]

Fluorathene, Benzo[g,h,i]Perylene, Fluoranthene, Benzo[a]Pyrene,

Chrysene, Dibenz[a,h]Anthracene, Phenanthrene, Benz(a)

Anthracene, Anthracene) were analyzed by gas chromatography-

mass spectrometry (#*/7890A-5975C, Agilent, CA, USA). The

inorganic ion elements (Ca2+, Na+, K+, Mg2+, SO4
2-, NO2

-, NO3
-,

Cl-, PO4
3-) were analyzed by ion chromatography (#*ICS-5000+/900,

Dionex, CA, USA). Thermophotometry detected the EC and OC

content with a total organic carbon analyzer (#DRIModel 2015, DRI,

NV, USA). The Instrumental Analysis Center of Shanghai Jiao Tong

University provided the whole procedure of analysis and data. The

results are shown in Supplementary Table 1.
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PM2.5 samples were extracted for the biological assay by

immersing the filters in ultrapure water and sonicating for 30 min

(500 W, 40 kHz). Then they were recollected by a vacuum freeze

drier (FreeZone2.5, Labconco Company, MO, USA). The extracted

PM2.5 samples at 100 mg/mL concentration were stored at −80°C

before animal and cell exposure.
2.2 Design of animal experiment

C57BL/6J mice (6 weeks old, n=12), purchased from the Animal

Center of the Southern Model (Shanghai, China), were fed at relative

temperature and humidity with a normal diet and water, providing

ad libitum throughout the experiment. A total of twelve male mice

were randomly divided into two groups, regardless of gender. After 2-

week acclimation, mice in the PM2.5 group (n=6) were directly

intranasally treated with 10 mL PM2.5 suspension (100 mg PM2.5/

day) for 8 weeks, while the control group (n=6) were administered 10

mL phosphate buffer saline (PBS), which was in correspondence with

the previous studies (38). When the exposure ended, all mice were

subjected to a euthanasia procedure and then dissected. During the

euthanasia procedure, we used the Rodent Anesthesia Machine (Gas

Anesthesia, USA) with isoflurane as the anesthesia gas. We poured

isoflurane into the anesthetic volatile tank, which was connected to

the oxygen cylinder. Through the oxygen air blowing, volatile

isoflurane was used with a concentration of 1.5-3%. The mice were

anesthetized in 1-2 minutes and the body mass was measured. Then,

liver samples were collected, weighed, and finally stored in a −80°C

refrigerator for indicated experiments and analysis. Animal

experiments have been approved by the animal and ethics review

committee of the laboratory animal center at Shanghai Jiao Tong

University School of Medicine (Shanghai, China).
2.3 Liver histological staining

Frozen liver tissues were cut into sections (3-5 mm) with the

frozen slice system. Part of thesections were stained with

hematoxylin and eosin (H&E) for histology analysis according to

standard protocols (#E607318, Sangon Biotech (Shanghai) Co.,

Ltd.). The tissue sections were stained with lipid droplets with

freshly prepared Oil-Red-O solution (#E607319, Sangon Biotech

(Shanghai) Co., Ltd.) and nuclei with hematoxylin (#E607318,

Sangon Biotech (Shanghai) Co., Ltd.) to assess the lipid

accumulation in liver tissues. The specimens were observed and

photographed randomly in six fields of view by fluorescence

microscopy (Olympus, Japan). Meanwhile, quantitative analysis of

the Oil Red O positive area was analyzed with Image-Pro Plus 6.0

software (Media Cybernetics, Inc., USA), expressed as a percent.
2.4 Determination of hepatic TG and
FFA levels

Hepatic TG and FFA levels were measured by the Triglyceride

Detection Kit (#D799795, Sangon Biotech (Shanghai) Co., Ltd.), the
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Nonesterified Fatty Acid Detection Kit (#D799793, Sangon Biotech

(Shanghai) Co., Ltd.) according to the manufacturer’s instructions,

respectively. A BCA Protein Test kit (#C503021) was used to

calibrate TG and FFA levels.
2.5 Quantitative real-time PCR analysis

Total RNA from frozen liver tissue samples was extracted by

Trizol (Invitrogen, Carlsbad, CA, USA). The experiment was

conducted in the same way as in our previous study (38). The

target gene studied was ppara, while the reference gene was b-actin.
The corresponding primer pairs are designed from Primerbank

(https://pga.mgh.harvard.edu/primerbank/) as follows. ppara,
forward primer: AGAGCCCCATCTGTCCTCTC; reverse primer:

ACTGGTAGTCTGCAAAACCAAA; b-actin, forward primer:

GGCTGTATTCCCCTCCATATATCG; reverse pr imer :

CCAGTTGGTAACAATGCCATGT.
2.6 Protein level analysis

For immunofluorescence assay, frozen liver tissue sections were

prepared and performed for 30 min at normal temperature before

commencing with the staining protocol. Then, the slices were

washed with PBS three times and blocked with 5% Bovine Serum

Albumin (BSA) for 1 h. SREBP1 (#ab71983, 1:200, Abcam, USA)

and PPARg (#ab41928, 1:100, Abcam, USA) primary antibodies

were incubated overnight. Slides were incubated with Anti-rabbit or

anti-mouse IgG secondary antibody (#2975, #4408, 1:500, Cell

Signaling Technology, USA) for 1 h, followed by nuclear staining

with 4’,6-diamidino-2-phenylindole (DAPI) (#D9542, Sigma, USA)

for 30 s. Mounted slides were observed using fluorescence

microscopy (Olympus, Japan) to obtain the fluorescence images.

Western Blot analysis was operated as described in our previous

studies (38). The primary antibodies included anti-SREBP1

(#ab71983, 1:1000, Abcam, USA), anti-PPARg (#ab41928, 1:1000,

Abcam, USA), and anti-PPARa (#ab41928, 1:1000, Abcam, USA).

As loading control, b-Actin (#ab8226, 1:2000, Abcam, USA)

was used.
2.7 Quantitative detection of acylcarnitine
in liver

Acylcarnitine was profiled by liquid chromatography-tandem

mass spectrometry, and the detailed method was described

previously (42, 43). In brief, a total of 66 acylcarnitine were

measured, including free carnitine (C0), 11 short-chain

acylcarnitine (C2, C3, C3:0-OH, C4, C5, C5:0-2, C5:0-OH, C5:1,

C6, C6-DC, C7:0-DC), 24 medium-chain acylcarnitine (C8, C8:0-

OH, C10, C10-DC, C10:0-DC-OH, C10:1, C10:2-OH, C10:3-1,

C10:3-DC, C12, C12:0-DC, C12:0-OH, C12-OH, C14, C14:0-DC,

C14:0-OH, C14:1, C14:1-2, C14:1-DC-2, C14:2, C15:0-2, C15:2,

C15:2-DC, and C15:2-OH), and 30 long-chain acylcarnitine (C16,

C16:0-DC, C16:1, C16:1-DC, C16:1-OH, C16:2, C16:2-OH, C17,
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C17:1, C17:1-DC, C17:1-DC-OH, C17:2-OH, C17:3, C18, C18:0-

OH, C18:1-OH, C18:2-OH, C20, C20:0-OH, C20:1, C20:1-OH,

C20:2, C20:2-DC, C20:2-OH-1, C20:2-OH-2, C20:3, C20:3-OH,

and C20:4).
2.8 High-resolution mass spectrometric
analysis of liver sample

A total of eight mouse liver tissue samples were collected, and

tissue preparation strictly followed the procedure described in the

method METAB_NonTargeted_0001.00 (i.e., DMPA-labeling Kit

for Amine & Phenol/Hydroxyl/Carboxyl Metabolomics I). The LC-

MS analysis strictly followed the SOP (i.e., LC-MS Analysis for

Dansyl-labeled Amine&Phenol/Hydroxyl/Carboxyl Metabolomics)

using the HP-CIL Metabolomics Platform. Analysis was performed

using IsoMS Pro 1.2.10 (NovaMT Inc.) and NovaMT Metabolite

Database v1.0. A total of 8 samples assigned to 2 groups were

uploaded to IsoMS Pro 1.2.10. Data Quality Checks and Data

Processing were performed. Data were cleaned with peak pairs

where Mean (sample)/Mean (blank) was less than or equal to 4.0 at

a significance level of 0.05 and were filtered out. Peak pairs without

data present in at least 50.0% of all samples and 80.0% of samples in

any group were filtered out-the Ratio of Total Useful Signal

normalized data. Metabolite identification was performed using

the CIL library and LI library.

MetaboAnalyst 5.0 was used to analyze the differences between

the control group and the PM2.5 exposure group in endogenous

metabolites of the liver and to construct principal component

analysis (PCA) and partial least squares-discriminant analysis

(PLS-DA) models. Identifying the perturbed biological pathways

on the differential metabolite data was performed using the Kyoto

Encyclopedia of Genes and Genomes (https://www.kegg.jp, KEGG).

Quantitative enrichment analysis (QEA) was performed using a

generalized linear model to estimate a Q-statistic for each

metabolite set, which describes the correlation between

compound concentration profiles, X, and clinical outcomes, Y. All

the pathways with adjusted p-value <0.05 were considered as the

biological pathways perturbed by chronic exposure to PM2.5.

Differential metabolites were defined according to the following

criteria: FC > 1.5 or FC < 0.67 with a p-value < 0.05 and a q-value

< 0.05.
2.9 High-throughput RNA sequencing

Total RNA was isolated and purified using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

procedure. Each sample’s RNA amount and purity were

quantified using NanoDrop ND-1000 (NanoDrop, Wilmington,

DE, USA). The RNA integrity was assessed by Bioanalyzer 2100

(Agilent, CA, USA) with RIN number >7.0 and confirmed by

electrophoresis with denaturing agarose gel. Poly (A) RNA is

purified from 1mg total RNA using Dynabeads Oligo (dT) 25-

61005 (Thermo Fisher, CA, USA) using two rounds of purification.

Then the poly (A) RNA was fragmented into small pieces using
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Magnesium RNA Fragmentation Module (NEB, cat.e6150, USA)

for 94°C 5-7min. Then the cleaved RNA fragments were reverse-

transcribed to create the cDNA by SuperScript™ II Reverse

Transcriptase (Invitrogen, cat. 1896649, USA), which were next

used to synthesize U-labeled second-stranded DNAs with E. coli

DNA polymerase I (NEB, cat.m0209, USA), RNase H (NEB,

cat.m0297, USA) and dUTP Solution (Thermo Fisher, cat.R0133,

USA). An A-base is then added to the blunt ends of each strand,

preparing them for ligation to the indexed adapters. Each adapter

contains a T-base overhang for ligating the adapter to the A-tailed

fragmented DNA. Single- or dual-index adapters are ligated to the

fragments, and size selection was performed with AMPureXP

beads. After the heat-labile UDG enzyme (NEB, cat.m0280, USA)

treatment of the U-labeled second-stranded DNAs, the ligated

products are amplified with PCR by the following conditions:

initial denaturation at 95°C for 3 min; 8 cycles of denaturation at

98°C for 15s, annealing at 60°C for 15 sec, and extension at 72°C for

30 sec; and then final extension at 72°C for 5 min. The average

insert size for the final cDNA library was 300 ± 50 bp. At last, we

performed the 2×150 bp paired-end sequencing (PE150) on an

Illumina Novaseq™ 6000 (LC-Biotechnology CO., Ltd., Hangzhou,

China) following the vendor’s recommended protocol.

Raw data were filtered to remove the reads with the connector

(adaptor), reads containing more than 5% ambiguous nucleotides,

and low-quality reads (mean Q-value <20) using Cutadapt before

analysis. Statistics of the raw sequencing amount, the effective

sequencing amount, Q20, Q30, GC content, and comprehensive

evaluation were performed. Total RNA was isolated and sequenced

by Lc-Bio Technologies Co., Ltd. (Hangzhou, China). The data of

RNA sequencing (RNA-SEQ) is stored in csv format after

conversion, and the analysis of significant differences between

samples and the relative quantification of the transcripts is

performed by means of the DESeq2 package in R. The p-values of

0.05 were set as the threshold for significantly differential

expression. The screening criteria for differentially expressed

genes were defined as genes with FC > 1.50 or FC < 0.67 with p-

value < 0.05. Meanwhile, pathway enrichment analysis was

performed for differentially expressed genes by KEGG and Gene

Ontology (GO). KEGG enrichment analyses of differentially

expressed genes were implemented, and p-value<0.05 were

considered significantly enriched.
2.10 Data processing and statistical analysis

The experimental data of acylcarnitine (ten samples in each

group) were expressed as the Mean ± standard error of Mean

(`Mean ± SEM) and analyzed with SPSS Statistics 26.0 software,

using Student-t test (two-side). GraphPad Prism5 software was used

for statistical analysis and bar plot across all staining counts data.

Differences between the two groups were considered to be

significant when the p-value < 0.05. The relationship between

differential metabolites and differentially expressed genes.

Cytoscape v3.9.0 was used to plot the network diagram for the

selected parts with a p-value < 0.001. The correlation analysis

between DEGs and DEMs was evaluated by the cor function in
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the R package and the network plot was performed with Cytoscape

v3.9.0. The analysis of metabolomics and transcriptomics data,

which was performed with four independent samples in each

group (transcriptomics control group only with three groups)

were generated with MetaboAnalyst 5.0 and OmicStudio (https://

www.omicstudio.cn), showing with the PCA plots, volcano plots,

advanced heatmap plots, and enrichment plots. The significant

enriched biological pathways performed for DEMs and DEGs were

screened with relative counts number, enrich factors and p-value of

the selected enriched pathways. Information in detail about

OmicStudio was shown elsewhere (44, 45).
3 Result

3.1 Chemical composition analysis of PM2.5

To evaluate the physical and chemical composition of PM2.5,

metal elements, polycyclic aromatic hydrocarbons (PAHs),

elemental carbon (EC) and organic carbon (OC), and inorganic

ionic elements were detected. As illustrated in Supplementary

Table 1, Calcium (9865 ng/mg), Sodium (3794 ng/mg), Iron

(2418 ng/mg), and Potassium (1362 ng/mg) were the main

elements in PM2.5. The content of Naphthalene was the highest

and much higher than the other 14 PAHs, up to 6.73 ng/mg.

Acenaphthene, Pyrene, and Benzo[b]Fluorathene were 0.89 ng/mg,

0.76 ng/mg, and 0.67 ng/mg, respectively. The cation and anion

contents in PM2.5 were mainly as followings: NH4
+ (3992 ng/mg),

Ca2+ (1189 ng/mg), K+ (865 ng/mg), Mg2+ (147 ng/mg), SO4
2-

(3767 ng/mg), NO3
- (2343 ng/mg), Cl- (74 ng/mg), PO4

3- (68 ng/
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mg). The content of organic carbon (OC) and elemental carbon

(EC) were 641 ng/mg and 177 ng/mg, respectively, as the ratio of

OC/EC was 3.62.
3.2 Effects of PM2.5 exposure on
histopathological analysis

After 8-week PM2.5 exposure, there was no significant difference

in body weight (Figure 1A) and liver weight (Figure 1B) compared

with the control group. To evaluate the effects of PM2.5 exposure on

the liver of mice, we assessed the histological changes. As shown in

the H&E staining results (Figure 1C), obvious pathological changes

in the liver, including visible hepatic steatosis, irregular hepatic

cords arrangement, and partial cytoplasmic vacuolation, can be

seen in the PM2.5 exposure group, demonstrating the significant

liver damage caused by PM2.5.
3.3 General analysis of hepatic metabolism
profile after PM2.5 exposure

Then the metabolomics analysis of tissue was performed to

investigate the effect of PM2.5 exposure on the liver. The principal

components analysis (PCA) was carried out to visualize variation in

identified metabolites between the PM2.5 exposure group and the

control group (Figure 2A). The results showed that PC1 represents

52.51% of the variation, and 26.2% is represented by PC2. Correlation

analysis was executed to test the relevance and repeatability between

samples (Figure 2B). It can be seen that the PM2.5 exposure group was
B

C

A

FIGURE 1

The Effect of PM2.5 exposure on the body weight, liver weight, and hepatic histology in mice. (A) Body weight; (B) Liver weight; (C) Representative
pathological changes revealed by H&E staining of liver tissue. (a) Control; (b) PM2.5. Scale bar, 100 µm. n.s not significant.
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separated from the control group, indicating that endogenous

substances in the PM2.5 exposure group have changed compared

with the control group, manifested in some specific metabolites.

The total of 645 metabolites annotated by two groups are shown

in the volcano plot (Figure 2C), which was constructed by plotting

each metabolite’s fold change (FC) against the p-value. For

comparison of the PM2.5 exposure group and the control group,

the analysis showed 67 peak pairs with FC>1.5, p-value<0.05 (in

red), and 61 peak pairs with FC<0.67, p-value< 0.05 (in blue).

Hierarchical clustering analyses were used to elaborate on

accumulating the 128 differential metabolites. Figure 2E shows

the part of the top 43 differential metabolites between the two

groups (FC>2 or FC<0.5, p-value< 0.05), and a more detailed view is

shown in Supplementary Figure 1. Differential metabolites between

the two groups are mainly amino acids and derivatives, lipids and

lipid-like molecules, organic acids and derivatives, and nucleosides,

nucleotides, and nucleotide analogs. The metabolites that decreased

most significantly under PM2.5 exposure are 2-hydroxymuconate

semialdehyde and 1,3,5-trihydroxy benzene. However, 1-

Phenylethylamine, Glutaconic acid, Mesaconic acid, and

Prostaglandin C2 increased remarkably (Supplementary Figure 2).

According to the KEGG analysis, there are a total of 37 KEGG

pathways enriched in the PM2.5 exposure group (Supplementary

Table 2). Moreover, the top 20 pathways include alanine, aspartate,

glutamate metabolism, pyrimidine metabolism, vitamin B6

metabolism, arginine biosynthesis, arginine, proline, and purine

metabolism etc, which are presented in Figure 2D. All these

significantly enriched pathways mainly gather on amino acid and

fatty metabolism, followed by glucose and vitamin metabolism. Six

pathways (butanoate metabolism, fatty acid biosynthesis, arachidonic

acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid

metabolism, and a-Linolenic acid metabolism) are associated with

fatty metabolism. Furthermore, amino sugar and nucleotide sugar

metabolism, galactose metabolism, and citrate cycle (TCA cycle) were

three pathways related to glucose metabolism.
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3.4 General analysis of hepatic gene
expression profiles after PM2.5 exposure

In addition to the metabolomics analysis, transcriptomics

analysis was performed to provide an overview of changes in

hepatic gene profile after PM2.5 exposure and to explore the

deeper effects of PM2.5 exposure on the liver. Correlation analysis

was executed to test the relevance and repeatability between samples

(Figure 3A). The results showed that the control samples were

reproducible, while PM2.5 exposed samples had a high

pairwise correlation.

Initially, setting the threshold as FC>1.5 or FC<0.67 with a p-

value<0.05, a total of 502 differently expressed genes (DEGs) (291

upregulated DEGs and 211 downregulated DEGs) were found

between the PM2.5 exposure group and control group (Figure 3B).

GO and KEGG analyses were performed to understand these

DEGs’ functions better. It was found that 25 KEGG pathways

(Supplementary Table 3) and 599 GO terms were significantly

enriched, respectively. In Figure 3E, the top enriched GO terms

are in three subclasses including biological process, cellular

component, and molecular function. Meanwhile, 25 KEGG

significantly enriched pathways are mainly related to fatty and

amino acid metabolism. It is worth noting that PM2.5 exposure also

significantly affected three signaling pathways: TGF-b signaling,

AMPK signaling, and mTOR signaling. Moreover, the pathways of

diseases related to metabolic disorders, such as NAFLD and T2DM,

were also significantly enriched under PM2.5 exposure. The top 20

enriched pathways, according to the KEGG database, are shown in

Figure 3D. We also performed a taxonomic analysis to demonstrate

the proportion of significantly expressed genes in these DEGs

subclasses. Under Metabolism terms, these DEGs mainly reacted

in five main subclasses, including Metabolism of cofactors and

vitamins, Xenobiotics biodegradation and metabolism, Amino acid

metabolism, Metabolism of other amino acids, and lipid

metabolism (Figure 3C).
B
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FIGURE 2

The Effect of PM2.5 exposure on the hepatic metabolites in mice. (A) PCA score plot. (B) Correlation analysis of all the biological samples. (C)
Volcano plot of significant metabolites. (D) Cluster heatmap of differential metabolites. (E) KEGG enrichment analysis of differential metabolites. The
y-axis represents the enrichment pathway, while the x-axis represents the enrichment ratio. The dot sizes represent the metabolites number. The
color represents the p-value.
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3.5 Effects of PM2.5 exposure on hepatic
levels of acylcarnitine

Combining the metabolomics and transcriptomics data, we

found that, though several different pathways are involved,

pathways related to lipid metabolism were significantly

highlighted in both the gene expression and metabolites in the

PM2.5 exposure group. Previous studies have proved that

acylcarnitine, a kind of ester in carnitine, plays a key role in fatty

acid oxidation. So, we measured the acylcarnitine levels in the liver

tissue to observe the lipid metabolic level. The standardized

quantitative detection result of acylcarnitine in the liver is

presented in Table 1, presented in terms of mean ± standard

error of the Mean, median, and minimum-maximum for each

acylcarnitine profile of the PM2.5 exposure group and the control

group. Sixty-six kinds of acylcarnitine were detected in the two

groups, and 23 carnitine content significantly changed among them.

Comparing acylcarnitine levels in control and PM2.5 exposure,

groups revealed a significant decrease only in C14:1-2 (*p<0.05).

Meanwhile, a significant increase was observed in average C0, C3:0-

OH, C5:0-OH, C6-DC, C7:0-DC, C10:0-DC-OH, C10:2-OH,

C10:3-DC, C14:0-DC, C15:2-DC, C16, C16:0-DC, C16:1, C16:1-

DC, C17:1, C18, C18:1, C18:1-OH, C20:0, C20:0-OH, C20:2-OH-2,

C20:3 levels (*p<0.05). There was no statistically significant

difference in other acylcarnitine levels (p>0.05). The analysis of

hepatic acylcarnitine levels showed that the lipid metabolism of the

liver was disordered.
Frontiers in Endocrinology 07
3.6 Correlation analysis on metabolomics
and transcriptomics

We further verified the relationship between metabolomics and

transcriptomics under PM2.5 exposure. Significant lipid metabolism-

related differential metabolites were detected through pathway

enrichment analysis with differential metabolites. Besides

Leukotriene B4, lipid metabolism-related metabolites were

significantly reduced (Figure 4A). Moreover, two signaling

pathways (mTOR/AMPK) and two disease-associated gene

pathways (type 2 diabetes, NAFLD) were identified through the

enrichment of DEGs by KEGG. We analyzed and observed the

correlation of the enriched DEGs in these pathways and added one

other top enriched signaling pathway (PI3K-Akt), which showed that

the IRS1 gene played a central role and the pathways were interrelated

and influenced each other (Figure 4B). By performing a correlation

analysis between the global DEM and DEG, using the standard of rho

> 0.5 and p-value < 0.05, the results showed a broad correlation

between DEM and DEG (Data not shown). To further observe the

changes and correlations related to lipid metabolism, the screened

metabolites related to lipid metabolism were used as the main nodes.

The divergent selection of related DEGs was performed using the

analysis criteria of rho > 0.80 and p-value < 0.005. A significant

clustering was observed, with two centers formed around Leukotriene

B4 and other lipid metabolites (Figure 4C).We found that amino acid

and carbohydrate metabolism in the KEGG pathway correlated

(Supplementary Figure 3).
B C
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FIGURE 3

The effect of PM2.5 exposure on the hepatic gene expression in liver tissue. (A) Correlation analysis of all the biological samples. (B) Volcano plot
showing the DEGs in the liver. KEGG (D) and GO (E) enrichment of class bar plot. The y-axis represents the enrichment of the subclass, while the x-
axis represents a percent of genes. The bar’s color represents the different KEGG main classes (see color scale). (C) KEGG Enrichment scatter plot of
DEGs. The y-axis represents the enrichment pathway, while the x-axis represents the rich factor. The dot sizes represent the gene number. The
color represents the p-value.
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TABLE 1 Acylcarnitine values of liver tissue.

Control PM2.5

pMean ± SEM Mean ± SEM

Median(min-max) Median(min-max)

C0 (free carnitin) 4.93 ± 0.29 7.61 ± 0.61 0.002

5.05(3.3-5.99) 8.5(4.23-9.32)

C3:0-OH 0.24 ± 0.04 0.41 ± 0.04 0.01

0.23(0.06-0.42) 0.46(0.2-0.57)

C5:0-OH 0.34 ± 0.02 0.46 ± 0.04 0.022

0.35(0.22-0.43) 0.41(0.34-0.74)

C6-DC 1.34 ± 0.17 2.39 ± 0.26 0.003

1.16(0.71-2.3) 2.45(1.3-4.02)

C7:0-DC 0.41 ± 0.04 1.06 ± 0.1 <0.001

0.38(0.28-0.63) 0.98(0.81-1.85)

C10:0-DC-OH 0.02 ± 0 0.07 ± 0.01 <0.001

0.02(0.01-0.03) 0.07(0.04-0.15)

C10:2-OH 0.03 ± 0.01 0.06 ± 0.01 0.012

0.03(0.01-0.07) 0.06(0.03-0.09)

C10:3-DC 0.08 ± 0.01 0.22 ± 0.02 <0.001

0.08(0.05-0.12) 0.21(0.15-0.39)

C14:0-DC 0.06 ± 0.01 0.11 ± 0.01 <0.001

0.07(0.03-0.1) 0.11(0.08-0.16)

C14:1-2 0.1 ± 0.02 0.05 ± 0.01 0.037

0.09(0.03-0.27) 0.04(0.03-0.08)

C15:2-DC 0.05 ± 0.01 0.08 ± 0.01 0.015

0.05(0.03-0.08) 0.08(0.04-0.13)

C16 3.23 ± 0.44 6.71 ± 1.41 0.039

2.99(1.5-5.74) 4.78(2.83-14.91)

C16:0-DC 0.22 ± 0.02 0.38 ± 0.04 0.003

0.21(0.13-0.31) 0.34(0.24-0.69)

C16:1 0.92 ± 0.1 1.68 ± 0.23 0.009

0.83(0.52-1.32) 1.47(0.79-2.92)

C16:1-DC 0.05 ± 0.01 0.1 ± 0.01 <0.001

0.05(0.03-0.08) 0.09(0.07-0.12)

C17:1 0.04 ± 0 0.08 ± 0.01 0.015

0.04(0.02-0.06) 0.06(0.04-0.14)

C18 1.92 ± 0.26 4.16 ± 0.68 0.01

1.87(0.86-3.78) 3.52(2.18-8.04)

C18:1 5.54 ± 0.66 11.16 ± 2.08 0.026

5.53(2.79-8.9) 7.64(5.4-22.47)

C18:1-OH 1.35 ± 0.18 2.01 ± 0.22 0.032

(Continued)
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3.7 Effects of PM2.5 exposure on disorders
of lipid metabolism

To further verify liver steatosis under PM2.5 exposure, we

performed Oil Red O staining of mice liver tissue to measure

concentrations of intracellular triglyceride stored in the lipid

droplets of hepatic cells, which was contrasted with quantitative

analysis of the ratio of oil red positive regions to total cell area

(Figure 5A). The PM2.5-treated group had higher lipid accumulation

in the hepatocytes than the control group (***p<0.001). In addition,

increases in hepatic triglyceride (TGs) and FFA levels were also

observed in PM2.5-exposed group (Figures 5B, C). These results

suggest that ambient PM2.5 exposure results in the accumulation of

lipids and elevation of FFA in the liver.
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Furthermore, studies have shown that the AMPK signaling

pathway, which is significantly enriched in the transcriptomics

analysis of our data, may be one of the key pathways to

regulating lipid metabolism and deposition. Related genes

participate in adipogenesis, such as the activated sterol regulator-

binding protein 1 (SREBP1) and the peroxisomal proliferative

agent-activated receptor gamma (PPARg). For further verification
of lipid metabolic disorders, an immunofluorescence technique was

performed to analyze the expression of SREBP1 and PPARg.
One of the key elements in hepatic metabolic disorder studies is

SREBP1, a major lipogenic transcription factor. Over-activation and

over-expression of SREBP1 can lead to an imbalance of lipid

homeostasis, prone to triglyceride accumulation and cirrhosis

(46). Consistent with previous research (47), significantly higher
TABLE 1 Continued

Control PM2.5

pMean ± SEM Mean ± SEM

Median(min-max) Median(min-max)

1.18(0.63-2.23) 1.86(1.11-3.29)

C20:0 0.09 ± 0.01 0.19 ± 0.02 0.004

0.08(0.04-0.19) 0.19(0.05-0.29)

C20:0-OH 0.06 ± 0.01 0.12 ± 0.01 0.001

0.06(0.04-0.09) 0.14(0.06-0.16)

C20:2-OH-2 0.03 ± 0 0.05 ± 0.01 0.035

0.03(0.02-0.05) 0.06(0.02-0.08)

C20:3 0.45 ± 0.05 0.62 ± 0.06 0.044

0.38(0.28-0.67) 0.53(0.36-1)
frontie
SEM, Standard Error of Mean; min-max, minimum-maximum.
B
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FIGURE 4

The effect of PM2.5 exposure on the correlation of DEMs and DEGs. (A) Relative expression of lipid metabolism-related DEMs. (B) Network(Pathway-
Gene) of significant enrichment of DEGs by KEGG. (C) Association analysis of transcriptomic and metabolomic variation. Connection network
between lipid metabolism-related DEMs and DEGs (rho > 0.80 and p-value < 0.005).
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expressions of SREBP1 were revealed in the PM2.5 exposed group

compared with the control group (p<0.001) (Figure 6A).

PPARg is another key gene regulating fatty acid storage by

activating genes that stimulate lipid ingestion and adipogenesis (48).

Our study showed that mice in the PM2.5 exposure group decreased

PPARg expression significantly compared to the control group as

detected by immunofluorescence assay (Figure 6A). To further verify

the immunofluorescence results, western blot analysis was performed

to detect the protein levels of SREBP-1 and PPAR-g in hepatic tissues.

The results showed that SREBP-1 was significantly upregulated, while

the opposite results were observed in the PPARg level (Figure 6B).
Considering that PPARa plays an important role in the

regulation of liver lipid metabolism (49), the effect of PM2.5

exposure on PPARa expression was evaluated by qPCR and

western blotting. As shown in Figure 6C, the level of PPARa
mRNA in the liver of PM2.5 was significantly reduced (p < 0.01).

Then, Western blotting was performed to confirm the

downregulation of PPARa (Figure 6D). These results indicated

that PM2.5-induced liver lipid metabolic disorders might be related

to the downregulation of PPARa and PPARg expression via

deceleration of lipoprotein transport and increased lipotoxicity (50).

4 Discussion

Air pollution PM2.5 not only has a huge impact on the

respiratory and cardiovascular systems but also seriously impacts
Frontiers in Endocrinology 10
the whole body and various organs through the plasma and into

peripheral tissues (51). Many researches have confirmed the central

function of the active oxygen (ROS) and inflammatory factors in the

regulation of PM2.5 multi-organ toxicity. Because PM2.5 is abundant

in active oxidants like metals, PAHs, and quinones (Supplementary

Table 1), it can induce ROS to form through lung redox reactions by

direct interaction between PM2.5 and pulmonary lining. Numerous

experiments have also shown that PM2.5 is responsible for forming

lipid peroxidation products, and inflammatory factors that diffuse

from the lungs could be transferred through the plasma and into

peripheral tissues, where they could cause oxidative stress,

inflammatory response, and, thus, damage (3, 5, 26, 44, 52).

As the liver is the core organ for detoxifying exogenous

chemicals, liver damage caused by PM2.5 exposure has attracted

more and more attention in recent years (17, 25, 28, 29). PM2.5

could directly affect the process of normal hepatic function by

enhancing inflammatory cytokines, ultimately elevating the risk of

NAFLD by abnormal lipids metabolism (44, 45). Besides, PM2.5-

caused destruction of tight junctions allows intestinal bacteria and

their toxic derivatives to leak, leading to liver inflammation and

even the development of NASH (53). A study by Wang (54) has

illustrated that long-term PM2.5 exposure can contribute to enteral

malnutrition and, subsequently, abnormal glucose metabolism,

which leads to the transfer of lipopolysaccharides into the

systemic circulation, exacerbating the process of NAFLD and

T2DM (44). More detailed functions need further verification and
B C

A

FIGURE 5

The effect of PM2.5 exposure on hepatic lipid accumulation in mice. (A) Liver pathology was assessed by Oil Red O staining. (a) Control; (b) PM2.5;
(c) Quantification of the percentage of liver oil deposits. (B) Quantitative enzyme-based assays of hepatic triglycerides (TG) levels. (C) Quantitative
enzyme-based assays of hepatic free fatty acids (FFA) levels. Data represent more than three independent experiments (Mean ± SEM). Scale bar, 100
µm, and 50 µm. n.s not significant. * p < 0.05, *** p < 0.001.
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exploration to provide new insight into our knowledge of the

potential molecular mechanism of hepatic injury by PM2.5

exposure. Our study provides a comprehensive description and a

partially targeted analysis of the differences in liver metabolism and

gene expression under PM2.5 exposure, especially lipid

metabolic disorders.

Previous studies have shown that dysregulation of hepatic lipid

metabolism plays an important role in various metabolic diseases

(24, 55). Nonalcoholic fatty liver disease, the most common liver

pathological change, is characterized by lipid accumulation and is

closely associated with metabolic syndrome (32, 33). Our study

found that the pathways of NAFLD and T2DM were significantly

enriched under PM2.5 exposure by the analyses of transcriptome
Frontiers in Endocrinology 11
data. In previous studies, PM2.5 exposure may accelerate the

occurrence of lipid-related metabolic diseases (27), such as T2DM

and NAFLD (21, 56), by inducing dyslipidemia (52, 57) and adipose

dysfunction (4), while the results of our analysis provide correlative

evidence of gene expression for it. The integrated metabolomics and

transcriptomics results showed that amino acid, carbohydrate, and

lipid metabolism were disordered (Supplementary Figure 3).

In this study, we further measured acylcarnitine levels in mice

liver tissue, which is widely used to screen for metabolic diseases

and identify some relevant biomarkers (19, 58). Acylcarnitine plays

an important role in maintaining normal liver function. As a

specific substrate for mitochondrial fatty acid b-oxidation, it can
help liver cells transfer fatty acids into mitochondria to provide
B

C D

A

FIGURE 6

The effect of PM2.5 exposure on the expression of SREBP1, PPARg, and PPARa in mice. (A) The immunofluorescence staining of SREBP1 and PPARg.
Nuclei were stained with DAPI. (a, d) Control; (b, e) PM2.5; (c, f) Graph quantifying SREBP1 and PPARg. (B) The expression of PPARg and SREBP1 after
PM2.5 treatment. (a) Western blotting of PPARg and SREBP1. (b, c) The quantification of the expression levels of PPARg and SREBP1. (C) Quantitative
real-time PCR analysis of PPARa mRNA expression. (D) The expression of PPARa protein in liver tissue. (a) Western blotting of PPARa. (b) The
quantification of PPARa protein level. b-Actin as a reference gene. Data represent more than three independent experiments (Mean ± SEM). Scale
bar, 100 µm. n.s not significant. ** p < 0.01, *** p < 0.001. n = 3 mice per group.
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energy for the body (19, 59), which is one of the major pathways of

lipid metabolism (60, 61). When mitochondrial function is

damaged, acylcarnitine accumulates, which can be a practical

indicator for predicting hepatotoxicity (62). Our results found a

significant accumulation of short-chain, medium-chain, and long-

chain acylcarnitine, consistent with a previous study finding that

PM2.5 exposure resulted in a significant accumulation of medium-

chain acylcarnitine (17). Acylcarnitine, with obvious differences and

stability under PM2.5 exposure among medium-chain or long-chain

acylcarnitine, can be further used as a biomarker to indicate liver

damage. Only myristoyl carnitine (C14:1) was decreased in

statistical significance, but there was no relevant research to show

its special mechanism in hepatocytes. At the same time,

acylcarnitine accumulation also represents mitochondrial

disorders to some extent and plays a key role in nonalcoholic

steatohepatitis (34).

PPARs, which act as nuclear hormone receptors, regulate the

transcription of genes associated with lipid metabolism and glucose

metabolism.It has three isoforms: PPARa, PPARb/d and PPARg.
Numerous researches have demonstrated that PPARa negatively

affects the proinflammatory and Acute Phase Reaction (APR)

signaling pathways, as observed in the Systemic Inflammatory,

Atherogenic, and Nonalcoholic Fatty Liver Disease (NASH)

models (63–67). As a key transcriptional regulator of

adipogenesis, PPARg plays a key role in lipid storage and lipid

droplet formation (63, 68). For instance, previous studies have

shown that exposure to PM2.5 inhibits PPARg signal transduction
(17), to which subsequent liver damage, such as triglyceride

accumulation and hepatic steatosis (46), can be partly attributed

(37). Zheng et al.’s studies showed that PM2.5 induced abnormal

lipid balance and decreased PPARg and PPARa expression in vivo

(63) and in vitro (37). In the present study, we also found that

PPARa and PPARg were significantly inhibited under PM2.5

exposure, indicating an imbalance of lipid homeostasis induced

by PM2.5. However, the related effect and mechanism of hepatic

steatosis need to be further studied, which may become a key step to

understanding the impact and prevention of PM2.5 on liver injury.

SREBP-1c is a major transcription factor that regulates hepatic

de novo lipogenesis through insulin (69). Furthermore, SREBP1

molecules mainly provide the building block by inducing lipid

synthesis in rapidly growing cells (46). Hepatic de novo

lipogenesis can be reduced, and excessive lipid accumulation can

be suppressed by modulating the AMPK/SREBP1c/FAS signaling

pathway (70). The role of SREBP-1c was demonstrated in a

transgenic mouse model overexpressing SREBP-1c in the liver,

which leads to the development of hepatic steatosis due to

increased lipogenesis (71). Our gene network (Figure 4B) shows

that the core node IRS1 is also related to SREBP-1c. Previous studies

have shown the decrease in IRS1 expression associated with

increased fa t synthes i s and s tea tos i s . Dock ing and

phosphorylation of Irs1/Irs2 in the cell can activate downstream

kinase cascades, such as the PI3K-Akt pathway. Akt, activated by

the pathway, can further inhibit hepatic gluconeogenesis but

simultaneously activate SREBP1c-mediated hepatic lipid

metabolism (72). In our study, it was demonstrated by fluorescent

staining that PM2.5 exposure leads to overexpression of SREBP1,
Frontiers in Endocrinology 12
promoting the development of steatosis, which is consistent with

previous findings (47).

According to the KEGG database, we found that there were

seven common significantly enriched pathways combining the

metabolomics and transcriptomics analysis data between the

PM2.5 exposure group and control group, including alanine,

aspartate and glutamate metabolism, phenylalanine, tyrosine, and

tryptophan biosynthesis, phenylalanine metabolism, retinol

metabolism, tyrosine metabolism, cysteine, and methionine

metabolism and glutathione metabolism. The thorough KEGG

pathway of the relationship between differential metabolites and

DEGs related to glutathione metabolism, retinol metabolism,

alanine, aspartate and glutamate metabolism, and cysteine and

methionine metabolism are shown in Supplementary Figure 1.

Glutamate is essential to adjust glutathione levels in the body as

the important substrate for synthesizing glutathione, which can

undergo intermediate conversion by glutamine (62). Our study

significantly altered the expression of glutathione (GSH) and L-

Glutamic acid at PM2.5 exposure. Although oxidized glutathione

(GSSG) was not a significantly altered metabolite, the GSH/GSSG

ratio decreased with PM2.5 exposure due to the significant decrease in

GSH. The decreased ratio is the hallmark of oxidative stress in the

hepatocytes (17, 73), which is consistent with the previous study that

exposure to PM2.5 may cause oxidative stress in the liver (26, 74).

IRS1 is essential to regulate insulin-dependent glucose

utilization and glycogen synthesis. The disruption of IRS1

signaling is a key and common mechanism in developing insulin

resistance in population and laboratory studies (75–77). In our

transcriptomic analysis, we found that the expression of the irs1 was

significantly downregulated in the PM2.5-exposed group, suggesting

that IRS1 might be an important pathway for preventing and

intervening in PM2.5-accelerated metabolic liver diseases. This

idea was supported by an earlier study, finding that total

flavonoids alleviate PM2.5-induced NAFLD by modulating the

IRS1/Akt and CYP2E1/JNK pathways (78). Leukotriene B4 (LB4)

could activate LB4r1 in hepatocytes, leading to cellular insulin

resistance (79). In a recent study, Li et al. suggest that the LB4/

Lb4r1 axis promotes the development of NAFLD by enhancing

lipogenesis in hepatocytes, potentially serving as a therapeutic target

for NAFLD (80). In the metabolomic analysis, we found LB4 was

significantly upregulated in the PM2.5-treated group, indicating that

LB4/Lb4r1 axis might participate in the PM2.5-induced abnormal

liver metabolism. Thus, IRS1 and LB4 might mediate the hepatic

pathological impact of PM2.5 exposure, which provides promising

directions for developing therapeutic interventions.

In addition, the other detrimental influence of PM2.5 exposure

can also be discovered with non-negligible abnormal phenomena

shown in our study, including inflammatory response, insulin

resistance, apoptosis, fibrosis, cofactor-related and vitamin-related

metabolic disorders (5, 37, 52, 66, 81). Since our experimental study

used single-sex mice and the gender differences were not considered,

which may be certain restrictions. In future studies, we will continue

to strengthen research on female mice to analyze further the distinct

effects of PM2.5 exposure in both genders. As the metabolism and

gene expression change depicted in our study, the specific effects and

mechanisms of those changes need further exploration and
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experimental verification. The results may provide a comprehensive

foundation and new insight into our knowledge of lipid accumulation

and chronic hepatic injury by PM2.5 exposure.
5 Conclusion

Our study demonstrated that PM2.5 could induce extensive

metabolic disturbances, particularly significant in lipid and amino

acid dysregulation, through in vivo experiments combined with

metabolomics and transcriptomics analyses. Meanwhile, our results

revealed lipid dysfunction and hepatic steatosis induced by PM2.5

exposure, manifested as acylcarnitine and lipid droplet

accumulation. Furthermore, we speculated and detected several

key transcription factors as the potential regulatory effects in lipid

metabolic disorders, PPARa, PPARg, and SREBP1, and found their

aberrant expression in the PM2.5 exposure group. Our study

provides a novel molecular and genetic basis for a better

understanding of the mechanisms of hepatic metabolic disorders

induced by PM2.5 exposure, which can provide new insights into the

toxicology of liver lipid metabolic disorders associated with air

pollution and the risk assessment of chronic liver diseases.
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