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Advantages of omics
approaches for elucidating
metabolic changes in diabetic
peripheral neuropathy

Hideji Yako*, Naoko Niimi, Shizuka Takaku and Kazunori Sango

Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
Various animal and cell culture models of diabetes mellitus (DM) have been

established and utilized to study diabetic peripheral neuropathy (DPN). The

divergence of metabolic abnormalities among these models makes their

etiology complicated despite some similarities regarding the pathological and

neurological features of DPN. Thus, this study aimed to review the omics

approaches toward DPN, especially on the metabolic states in diabetic rats and

mice induced by chemicals (streptozotocin and alloxan) as type 1 DMmodels and

by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM

models. Omics approaches revealed that the pathways associated with lipid

metabolism and inflammation in dorsal root ganglia and sciatic nerves were

enriched and controlled in the levels of gene expression among these animal

models. Additionally, these pathways were conserved in human DPN, indicating

the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to

better understand the association of metabolic changes with morphological and

functional abnormalities in DPN.
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1 Introduction

The term “omics” indicates a comprehensive discipline in biology, such as genes

(genomics), RNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics),

and metabolic fluxes (fluxomics). Omics techniques have been utilized to elucidate the

phenotype of cells or tissue during development, differentiation, aging, and disease

progression (1, 2). In particular, these techniques have helped discover biomarkers for

metabolic diseases [e.g., diabetes mellitus (DM), non-alcoholic fatty acid liver disease,

metabolic syndrome, obesity] and develop corresponding pathogenesis-based remedies (3,

4). Type 2 DM is characterized by multiple metabolic disorders, such as hyperglycemia,

dyslipidemia, dysinsulinemia, and obesity, resulting from genetic and lifestyle-associated
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factors. Continuous diabetic condition exposure develops and

progresses to chronic complications, such as diabetic peripheral

neuropathy (DPN), retinopathy, and kidney disease. The increasing

use of omics approaches in basic and clinical research has resulted

in an improved understanding of the pathobiochemical features of

diabetes-related abnormalities (5, 6).

DPN is the earliest and most frequent type 2 DM complication

and is characterized by distal symmetrical neurological

manifestations with axonal length-dependent damage and myelin

injury leading to the loss of sensory, motor, and autonomic

functions (7, 8). DPN progression increases the risk of infection,

foot ulcer, and fatal arrhythmia; however, its pathogenesis remains

largely unclear, and therapies better than glycemic control are

unavailable to prevent and reduce these unfavorable events (9).

Therefore, developing effective pathogenesis-based remedies for

DPN has been long awaited. Type 2 DM-related abnormalities,

such as hyperglycemia, hyperlipidemia, insufficient vascular supply,

and impaired insulin signaling, have been proposed as contributing

factors to DPN. In particular, continuous hyperglycemia enhances

the fluxes into glycolytic collateral pathways [e.g., polyol pathway,

hexosamine pathway, diacylglycerol pathway, advanced glycation

end products (AGEs) pathway] in neurons, Schwann cells, and

vascular endothelial cells (Figure 1).

The augmentation of these pathways results in mitochondrial

dysfunction, increased reactive oxygen species, AGE accumulation,

endoplasmic reticulum stress upregulation, dysregulation of lipid

metabolism, induction of inflammatory response, mitochondrial

damages, reduced neurotrophic factor synthesis and/or availability

etc. (10–14) (Figure 2). In particular, the polyol pathway and aldose

reductase, a rate-limiting enzyme in this pathway, have been
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examined in detail. Epalrestat, an aldose reductase inhibitor, has

been developed and used for the treatment of DPN in Japan.

However, its clinical efficacy was found to be insufficient for the

patients with progressive DPN and high HbA1c (15). Because of the

limited validity of the single drug (9), the combination of several

pathogenesis-based agents toward DPN has been attempted (16, 17).

Despite these findings, the complicated crosstalk among the

pathogenic factors and the different phenotypes induced by

hyperglycemia among the cell types make it difficult to understand

the pathogenesis of DPN. Omics approaches have been frequently

utilized for the study of DPN because of the decided advantages for

elucidating the comprehensive biological changes and the relationship

among the pathometabolic pathways (Figure 3). Because diabetic

model animals show different profiles such as strains, procedure of

diabetes induction, duration of hyperglycemia etc., it is difficult to fully

comprehend the pathometabolism in the peripheral nervous system

(PNS). We reviewed the studies regarding metabolic changes in the

PNS of the model animals to better understand the pathophysiology of

DPN. This review briefly introduces the characteristics of the

representative omics approaches, then focuses on the omics studies

with cell, animal and human DPN, including our recent study. This

review does not address other omics approaches (e.g., glycomics,

and microbiomics).
2 Omics studies of animal
DPN models

Animal models of DM provide insight into the pathogenesis of

DPN. Pathophysiological features of DPN in the rodent models of
FIGURE 1

Schematic representation of glucose metabolism. Hyperglycemia enhances the flux into glycolysis (light blue), TCA cycle (light green) and glycolytic
collateral pathways such as polyol (brown), hexosamine (orange), diacylglycerol (dark blue), AGE (yellow) and pentose phosphate (dark green)
pathways. ACO, aconitase; ALD, aldorase; AR, aldose reductase; CoA, coenzyme A; CS, citrate synthase; FH, fumarate hydratase; F6P, fluctose-6-
phosphate; GAPDH, glucose-3-phosphate dehydrogenase; GFAT, glutamine fructose-6-phosphate amidotransferase; GNA1, glucosamine 6-
phosphate N-acetyltransferase; GPAT, glycerol-3-phosphate acyltransferase; GPI, glucose-6-phosphate isomerase; G3P, glycerol-3-phaoshate;
G3PDH, glycerol-3-phosphate dehydrogenase; G6P, glucose-6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase; HK, hexokinase; IDH,
isocitrate dehydrogenase; LPAAT, lysophosphatidic acid acyltransferase; MDH, malate dehydrogenase; 2-OGDH, 2-oxglutarate dehydrogenase; PAP,
phosphatidate phosphatase; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP, phosphoenol pyruvate; PFK, phosphofructo kinase;
PGM3, phosphoacetylglucosamine mutase; PK, pyruvate kinase; 6PGDH, 6-phosphogluconate dehydrogenase; 6PGL, 6-phosphogluconolactonase;
RPE, ribulose-phosphate-3-epimerase; RPI, ribose-5-phosphate isomerase; SCS, succinyl CoA synthetase; SDH, sorbitol dehydrogenase; SDH (C II),
succinate dehydrogenase (complex II); UAP, UDP-N-Acetylglucosamine pyrophosphorylase. Red allows: Enhancement of flux under diabetes.
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type 1 and type 2 DM have been well-documented (18–20);

however, the divergence of metabolic abnormalities among these

models makes its etiology complicated. Elucidating the

comprehensive changes in the levels of genes, proteins,

metabolites, and metabolic fluxes in dorsal root ganglia (DRG)

and sciatic nerves (SN) is beneficial to better understand DPN

pathophysiology. Here we discuss these changes in diabetic rats and

mice induced by chemicals [streptozotocin (STZ) and alloxan

(ALX)], genetic mutations (MKR and db/db), and high-fat diet

(HFD) (Supplementary Table 1). There are abundant reviews of

pathophysiological features in these DPN models (18–20). We

concisely describe metabolic and neurological lesions in

these models.

STZ and ALX are commonly used chemicals to induce

nonobese type 1 DM in rodents through pancreatic b cell death
Frontiers in Endocrinology 03
induction by alkylation or necrosis, respectively. The animals

treated with these chemicals display hyperglycemia and

dysinsulinemia with reduced nerve conduction velocity (NCV)

and intraepidermal nerve fiber density (IENFD), accompanied by

hypo- or de-myelination (18–20). These animals exhibit allodynia

in response to thermal and mechanical stimuli (18–20), whereas a

recent report shows hypoalgesia in STZ mice (21).

MKR mice, which possess a mutant dominant-negative insulin-

like growth factor-1 receptor (KR-IGF-1R) specifically targeted to

skeletal muscle, exhibit features of nonobese type 2 DM, such as

hyperglycemia, dysinsulinemia and dyslipidemia (22), and reduced

NCV, accompanied by hypoalgesia (23). A model of type 2 DM

with the phenotypes of obesity, chronic hyperglycemia, pancreatic b
cell atrophy, and dyslipidemia consisted of db/db mice generated by

homozygous mutation of the leptin receptor. These mice exhibit
FIGURE 3

Schematic representation of omics approaches. Omics approaches are utilized to elucidate comprehensive changes in DNA (genomics), RNA
(transcriptomics), protein (proteomics), metabolite (metabolomics), and metabolic flux (fluxomics) in cell biology, such as pathogenesis,
development, and phenomenon. Multiomics is a combination of these techniques.
FIGURE 2

Schematic representation of the pathogenesis of DPN. AGE and unfolded protein accumulation, polyol and other glycolytic collateral pathway
activation, and oxidative and endoplasmic reticulum stress enhancement in neurons (green), Schwann cells (blue) and vascular endothelial cells (red)
under diabetic conditions leading to dying-back axonal degeneration.
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reduced NCV without myelin damage (18–20). Leptin-deficient

BTBR ob/ob mice are also a model of type 2 DM, and exhibit the

phenotypes of obesity, hyperglycemia and dyslipidemia,

accompanied by DPN phenotypes such as decreases in MNCV,

SNCV and IENFD, and increases in hind paw withdrawal latency to

a thermal stimulus (24). In the HFD models, rodents are fed with

45%–60% of fat to render obese type 2 DM, such as hyperglycemia,

hyperinsulinemia, and dyslipidemia. These models display reduced

NCV (18–20). HFD C57BL/6 mice have shown different DPN

phenotypes depending on the source and percentage of fat, and

duration of feeding. The mice fed in HFD containing 45 and 60%

lard for 34 and 31 weeks (final ages of 37- and 36-week-old)

exhibited thermal hypoalgesia and decreased motor and sensory

NCV and IENFD (25, 26). The mice fed in chow of 54% vegetable

oil for 8 weeks (15-week-old at final age) exerted mechanical, but

not thermal allodynia, decreased motor, but not sensory NCV, and

no significant effects on IENFD (27). The mice fed with 42%

anhydrous milk fat exhibit mechanical and thermal allodynia

(28). In addition to the different fat sources and percentages,

strain (29) and sex (30) of HFD-mice have impacts on pain and

insulin resistance of mice, respectively. These studies indicate that

various diabetic conditions have differential effects on the PNS; the

impact on metabolism in the PNS appears to be far more

complicated than expected. We summarized metabolic changes of

omics studies in diabetic model rodents (Supplementary Table 1).
2.1 Genomics

DNA includes information that plays essential roles in living

organisms. Genomics is the study of the whole or partial

information of the DNA sequences in several organisms, and

clarifies the function of DNA sequences (31). The sequence of the

human whole genome contains 2.85 billion nucleotides and consists

of 20,000–25,000 protein-coding genes (32). Genomics covers

genetic variations, such as single nucleotide polymorphism (SNP),

rare variants, and copy number variants, which are involved in

disease development and progression (31). Therefore, detecting

these variations will help elucidate the etiology of diseases and the

development of corresponding effective remedies.

Although the correlations between DPN and the SNPs of

transketolase (33) and vascular endothelial cell growth factor (34,

35) have been reported in patients with diabetes, it remains unclear

how these SNPs are involved in the pathogenesis of DPN.
2.2 Transcriptomics

Transcriptomics focuses on RNA profiles in cells and organ

under several conditions and diseases. It is also the quantitative

analysis for RNAs, including messenger RNA (mRNA) and non-

coding RNA such as micro RNA (miRNA). The expression of these

RNAs varies by cell type, organ, and environment, in contrast to the

ubiquity of the genome. Microarray and Next-generation RNA-

sequence (RNA seq) analyses measure the abundance of transcripts

via hybridization to defined complementary probes and the
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abundance of cDNA from the number of counted transcripts,

respectively. Because of an unbiased and more sensitive

methodology than microarray, RNA seq is considered as an

alternative technique to elucidate the comprehensive changes of

gene expression (36). RNA seq has been developed for single cell

transcriptomics (37) and spatial transcriptomics (38); the former

measures the abundance of cDNA in a single cell, while the latter

measures cDNA levels and locates the single cells in the tissue.

Microarray or RNA seq are described in Supplementary Table 1.

Microarray analysis revealed the significant enrichment of gene

ontology (GO) terms, such as glycolysis, tricarboxylic acid (TCA)

cycle, and fatty acid oxidation in SN of 24-week-old db/db mice as

compared with age-matched control mice (39, 40). Guo et al. (41)

evaluated mRNAs correlated with the predicted miRNAs using a

combination of mRNA and miRNA microarrays. The targeted

mRNAs of DRGs of STZ (65 mg/kg intraperitoneal injection

(ip))-diabetic Sprague-Dawley (SD) rats with 8 weeks’ duration

were significantly enriched in the metabolic processes of fatty acid

and lipids, but not glucose, as compared to those of control rats,

according to GO terms and the Kyoto Encyclopedia of Genes and

Genomes pathway (KEGG pathway). Consequently, mRNAs

regulated by miRNAs control the metabolism of fatty acid and

lipids, but not glucose, in DRG from STZ-diabetic rats. These

findings suggest the alterations of glucose, fatty acid, and lipid

metabolism at the gene levels in DRG and SN of both type 1 and 2

DM models. In addition to the DPN pathogenesis elucidation,

transcriptomics has also been used in the therapeutic strategies

toward DPN. Pioglitazone, an agonist of peroxisome proliferator-

activated receptor g, ameliorates insulin resistance and differentially

controls the cellular metabolism in a tissue-specific manner (42).

Microarray and RNA seq revealed that genes involved in energy

metabolism were enriched, whereas those involved in inflammation

were unchanged in SN in db/db mice treated for 11 weeks with

pioglitazone, as compared with non-treated db/db mice (43, 44).

Pioglitazone treatment also ameliorated intraepidermal nerve fiber

density, but not motor and sensory nerve conduction velocities in

the mice. Therefore, metabolic regulation by pioglitazone may be

effective for the maintenance of small fibers, whereas inflammation

may be more involved in large fiber injuries.

The genes associated with inflammatory responses in SNs of male

ob/ob mice were enriched as compared with ob/+ mice at 5 weeks, but

not 13 weeks of age. In addition, the enrichment of those genes in SNs

of ob/ob mice was similar to that of db/db mice (24). The genes

associated with regulation of lipase activity and inflammatory response

were enriched in SNs of 26-week-old female ob/ob mice, compared

with male ob/ob mice (45). There are differences in pathogenesis of

DPN between sexes regardless of genetic background. The genes

associated with lipid metabolism were enriched in the conversion

into a standard diet in SN of HFD (60% kcal lard) and STZ (75 and 50

mg/kg, ip)-induced diabetic C57/BL mice (46). These transcriptomic

studies using microarray and RNA seq demonstrated the enrichment

of the genes involved in lipid metabolism. The pathways of lipid

metabolism are also reversible; therefore, lipid metabolism is one of the

therapeutic candidates of DPN.

Single cell RNA seq is useful for analyzing the characterization

of single cells. By using the technique, the mechanical allodynia-
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associated cluster (MAAC) was observed in DRGs of STZ (60 mg/

kg, ip)-injected SD rats with mechanical allodynia. The genes

enriched in MAAC recapitulated neurofilament, axon, synapse,

and receptor-related biological processes, but not metabolic

processes. The gene expression pattern of MAAC was close to

that of peptidergic nociceptor neuron cluster; whereas MAAC

decreased the genes involved in inflammatory response (47).

Further studies with regard to these phenomena may clarify the

pathobiology of pain symptoms. SNs in HFD (60% high fat)-

induced diabetic C57BL/6J mice for 17 weeks’ duration were

divided into 4 Schwann cell subpopulations (non-myelinating,

myelinating, immature, and repair) and a distinct macrophage

cluster. Immature Schwann cells in HFD-mice predicted a

transition to myelinating Schwann cell cluster and then

macrophage cluster associated with changing the expression of

genes involved in lipid metabolism and inflammatory response

(48). These findings also imply that lipid metabolism and

inflammatory response are deeply involved in the development

and progression of DPN.

Furthermore, these pathogenic factors are conserved in SN and

DRG among different models of diabetes, thereby being the targets

of pathogenesis-based therapy for DPN.
2.3 Proteomics

Proteomics is a large-scale study of amounts of peptide and

protein, and allows us to identify the comprehensive changes of

protein expression depending on cellular physiological states (49).

Discordance between the protein level and mRNA level of the

molecule occasionally occurs because the amount of protein is

influenced by transcriptional regulation, translational efficacy, and

proteostasis such as protein turnover (50). Moreover, the amount of

intracellular protein in cells reflects these processes; whereas,

extracellular protein in cells must be concerned to be loss of

protein due to secretion. Therefore, directly assessing the quality

and quantity of proteins is important for analyzing cellular profiles.

The amounts of enzymes involved in glycolysis, TCA cycle, and

oxidative phosphorylation were upregulated in SN of STZ-diabetic

rats with 12 weeks’ duration compared with that of control rats;

whereas no significant differences were observed in the amounts of

these enzymes in DRG between the two kinds of rats (51). However,

another study revealed that the number of mitochondrial proteins

associated with oxidative phosphorylation in DRG was significantly

downregulated in STZ-diabetic rats with 22 weeks’ duration

compared with control rats (52). These findings provide the

pathophysiological evidence that DPN lesions progress from

distal to proximal portion, and glucose flux may initially increase

and then decrease as the duration of diabetes advances. In contrast

to STZ-diabetic rats, the amounts of enzymes in charge of

glycolysis, TCA cycle, and lipid biosynthesis were downregulated,

and those in charge of lipid catabolism were upregulated in both SN

and DRG in 21-week-old db/db mice compared with littermate

(53). These findings imply that dyslipidemia, which is the

characteristic pathometabolism in db/db mice, may be involved in

the altered metabolism in the peripheral nervous tissues.
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Mitochondrial metabolism is also diminished by continuous

hyperglycemia, and further declined in addition to dyslipidemia.

Mitochondrial differentially expressed proteins in DRGs of mice fed

on HFD for 10 weeks were enriched in mitochondrial organization,

mitochondrial calcium ion transmembrane transport and

metabolism-related pathways (TCA and Respiratory Electron

Transport, and Pyruvate metabolism etc.) (54). Allodynia in these

mice was accompanied by mitochondrial morphological changes,

small fiber degradation, and calcium over-entering into

mitochondria in Nav 1.8-positive DRG neurons in response to

mechanical stimuli.

These findings demonstrate that the disturbances of glucose and

lipid metabolism in diabetic DRGs and SNs serve as one of the

causes of DPN. Mitochondrial homeostasis also plays an important

role in the metabolism of the PNS under diabetic conditions. It is no

doubt that proteomics is a useful technique to understand the

protein dynamics; however, the activity of enzymes is also

important to elucidate the alteration of metabolic flux in DPN.
2.4 Metabolomics

Metabolomics is an effective measure to evaluate the number of

metabolites in cells, organ, and biofluids. Metabolites are defined as

small molecules (<1,000 Da) besides lipids that have no animal

specificity and are more useful for measuring and analyzing

molecules than DNAs, RNAs, and proteins (55). Lipidomics is the

large-scale study of pathways and networks, and the technique for

identification and quantification of molecular lipid species in cells,

tissues, and biofluids. Lipids are classified into fatty acyls,

glycerolipids, glycerophospholipids, sphingolipids etc. (56);

whereas, endogenous metabolites are included in carbohydrates,

amino acids, fatty acids etc. (6). These substances are involved in

cellular functions (57). Despite some differences, lipidomics is

included in metabolomics in this review. Metabolic profiles are

closely linked to the phenotypes, such as cell states, biological

phenomena, and disease mechanisms, because metabolites are in

the downstream of DNAs, mRNAs, and proteins (58). Metabolic

profiles, mRNA/protein expression and extracellular environments

influence one another. Thus, metabolomic data are comparable

beyond animal species (55).

The amounts of glycolytic intermediates in SN were

significantly increased in STZ (150 mg/kg, ip)-diabetic C57/BL

mice (about 500 mg/dl in blood glucose) with 12 weeks’ duration

compared with control mice (59). Another study revealed no

significant differences in the TCA cycle metabolite, lactate, and

amino acid levels in SN between STZ (60 mg/kg/days, for 5

consecutive days ip)-diabetic C57/BL mice with 12 weeks’

duration and control mice; however, the progression of diabetes

(24 weeks) resulted in significant decreases in the TCA cycle

metabolite levels and increases in the lactate and sorbitol levels

compared with control mice, accompanied by increases in blood

glucose levels (from >400 to >500 mg/dl) and development of

mechanical and thermal hypoplasia (21). The progression of

diabetes with the increase in blood glucose levels correlates with

the changed flux of the glycolytic-TCA cycle. These findings suggest
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the enhanced glycolysis and sustenance of the TCA cycle in SN of

STZ-diabetic mice with 12 weeks’ duration, and the subsequent

disruption of mitochondrial function with longer hyperglycemia

exposure. In contrast to STZ-diabetic mice, no significant

differences were detected in the amounts of glycolysis

intermediates in SN between STZ (55 mg/kg, ip)-diabetic SD rats

with 12 weeks’ duration and control rats (51). The glucose and

pyruvate levels in SN of ALX (150 mg/kg, ip)-diabetic SD rats with

26 weeks’ duration were significantly reduced compared with those

of control rats, whereas no significant differences were observed

between the two kinds of rats in the amounts of glycolytic

intermediates, such as glucose-6-phosphate and fructose-1, 6-

bisphosphate (60). TCA cycle intermediates such as citrate and

malate were increased in tibial nerves of STZ-injected rats with 36

weeks’ duration (61). The reasons for milder metabolic changes in

SN of STZ-rats than STZ-mice remain unclear. The amounts of

glycolytic and TCA cycle metabolites in DRG and SN in 20- and 24-

week-old db/db mice were significantly decreased compared with

age-matched control mice (40, 62). These findings suggest more

detrimental influences of diabetes on the metabolism of peripheral

nervous tissue in db/db mice than in STZ mice, possibly because of

the pathogenic background of type 2 DM, such as obesity

and dyslipidemia.

Amino acids are catabolized to the glycolysis and TCA cycle

intermediates, such as pyruvate, acetyl CoA, oxaloacetate, 2-OG,

fumarate and succinyl CoA. Amino acids derived from pyruvate

(alanine and serine), acetyl CoA (isoleucine and leucine),

oxaloacetate (aspartic acid), 2-OG (histidine and arginine),

succinyl CoA (valine and isoleucine), and fumarate (tyrosine)

were elevated in the serum of STZ (60 mg/kg/days, for 5

consecutive days ip)-diabetic C57/BL mice with 12 and 22 weeks’

duration (21). Elevated branched-chain amino acids (valine, leucine

and isoleucine) decreased the flux into hexosamine pathway and

inhibited the activity of pyruvate dehydrogenase (PDH), which

mediates the conversion of pyruvate to acetyl CoA via O-

glycosylation in heart (63). PDH activity is also regulated in its

phosphorylation via pyruvate dehydrogenase kinase (PDK). PDH

phosphorylation and PDK activity increased in DRG of STZ (150

mg/kg, ip)-diabetic C57/BL mice with 3 weeks’ duration, and Pdk2/

4-deficient mice rendered diabetes by STZ showed milder MNCV

and SNCV deficit than wild-type mice (64). These findings suggest

that decreases in the TCA cycle intermediates resulting from the

reduced amino acid catabolism or intracellular transport and/or the

impaired PDH activity in the PNS lead to the development of DPN.

Changes in lipid components in the PNS may play a

pathological role in DPN (65, 66). Palavicini et al. (67) assessed

myelin and mitochondrial lipids of SN and DRG in obesity-

associated (pre)diabetes (db/db and HFD-fed mice) and nonobese

diabetes (STZ-injected and MKR mice) . Cerebroside,

phosphatidylethanolamine, and cardiolipin decreased in SN of

obesity-associated mice at 4 weeks (prediabetes), which further

decreased at 8 weeks; however, these lipids were not significantly

altered in DRG at any time points. The degree of this lipid loss in SN

plateaued with DPN progression. Conversely, nonobese diabetic

mice did not display significant changes in the amounts of myelin
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and mitochondrial lipids in SN. Freeman et al. (51) observed

changes in triacylglycerol species and reduction in palmitic,

stearic, and eicosanoic fatty acids in SN, but not DRG, in STZ (55

mg/kg, ip)-diabetic SD rats. These findings imply that more

detrimental lipid metabolism changes in SN than DRG under

diabetic conditions might be associated with dying-back axonal

degeneration or distal axonopathy in DPN. Moreover, the

divergence of metabolic abnormalities among diabetic animal

models may be attributable to pathogenic backgrounds, such as

obesity, dysinsulinemia, and dyslipidemia. HFD (60% lard)- and

combination with HFD and STZ-treated mice elevated triglycerides

in SN, accompanied by the increased expression of genes encoding

enzymes required for triglyceride synthesis. These increases and

DPN lesions were ameliorated by conversion to a standard diet in

both mice (46). These findings suggest that reversion of HFD to

standard diet ameliorates DPN pathology. Metabolomic studies

reveal that hyperglycemia induced by STZ and ALX tends to

increase intermediates of glycolysis and TCA cycle; whereas,

hyperglycemia and dyslipidemia induced by HFD and genetic

effects (db/db and MKR) tend to decrease intermediates of

glycolysis and TCA cycle. These findings imply that dyslipidemia

is a crucial factor in the development and progression of DPN.
2.5 Fluxomics

Metabolomics is an analytical method that identifies metabolite

levels at a specific point in time; however, metabolites are consumed

and produced in specific and complicated pathways. Metabolic flux is

the net result of gene and protein expression, enzyme activity and

metabolite concentration, determining physiological cell phenotypes

(68). By using isotope-labeled metabolites, fluxomics provides insight

into how metabolites of interest change and link through metabolic

pathways. The technique is useful for tracing the substances derived

from the targeted metabolites in metabolic pathways.

The metabolomic analysis results represent the metabolite levels

under static situations; however, almost all the metabolites are

converted into others via specific pathways. Therefore, metabolic

flux (fluxomics) evaluation is important to elucidate the

pathogenesis of DPN. The amounts of TCA cycle intermediates

derived from isotope-labeled glucose in SN of db/db mice were

significantly lower than those of control mice, but without

significant differences in the amounts of glycolytic intermediates

between the two kinds of mice. The amounts of TCA cycle

intermediates derived from isotope-labeled pyruvate in SN were

significantly increased in diabetic animals compared with control

littermates (40). These findings indicate that diabetic SN may

increase the uptake of pyruvate and/or its utilization for ATP

production rather than glucose. Metabolites originating from

isotope-labeled palmitate significantly increased in acylcarnitine,

citrate, and malate, but decreased in succinate in SN under diabetes

(40). These findings imply that either SN utilizes priority for fatty

acid to pyruvate in the TCA cycle, or incompletely conducts b
oxidation under diabetes. The fluxomic findings indicate that ATP

production in SN of db/db mice may depend on pyruvate.
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3 Omics studies of human DPN

3.1 Transcriptomics/epigenomics

In addition to diabetic model rodents, transcriptome data

obtained by human sural nerve specimen were classified into two

groups, such as progressive DPN (a loss of myelinated fiber density

> 500 fibers/mm2) and non-progressive DPN (a loss of myelinated

fiber density < 100 fibers/mm2) (69). The nerves in progressive

DPN were enriched in the up-regulated genes of defense and

inflammation responses, whereas those in progressive DPN were

enriched in the down-regulated genes of glucose and lipid

metabolism and peroxisome proliferator-activated receptor

signaling pathway, compared with those in non-progressive DPN.

By using microarray data and a bioinformatic approach, McGregor

et al. (70) reported that transcriptional pathways in SNs were

conserved between human and mice models (STZ, db/db and ob/

ob) of diabetes. That study indicates the enrichment of lipid

metabolism in these samples. Dysmetabolism and inflammation

probably serve as DPN lesions, while both microarray and RNA seq

analyses reveal enrichment of these genes in the PNS of patients and

mice with diabetes. Transcriptomic studies described above indicate

that dysregulation of glucose and lipid metabolism and

inflammation in diabetic DRGs and SNs are prominent

pathophysiological features in human and rodents, and are

conserved among these species.

Genetic modification is defined as changes of gene expression

without alteration of DNA sequence, and is classified into DNA

methylation and Histon modification. DNA methylation is

heritable, state and reversible attachment of methyl group on

cytosine residue adjacent to guanine residue (71), whereas Histon

modification is post-transcriptional attachment of acetyl group etc.

(72). The early intensive glycemic control decreased in the risk of

diabetic complications including DPN, indicating the metabolic

memory (73) that may result from the continuous hyperglycemia-

induced oxidative stress, inflammation, AGEs and epigenomic

modification (74).

By using RNA seq, Hall et al. (75) investigated the genes in

human DRGs differentially expressed between DPN patients and

non-diabetic subjects. Genes involved in inflammatory pathways

were significantly upregulated in DRGs of DPN patients, compared

with those in non-diabetics. Combination analyses with RNA seq

and DNA methylation seq in human sural nerves revealed that

genes involved in immune response were enriched depending on

HbA1c levels (76). These transcriptomic data from diabetic patients

and model animals indicate that lipid metabolism and

inflammation may be one of the therapeutic targets based on the

pathogenesis in DPN.

In contrast to the intensive studies with single RNA seq, there

are no reports in human DRGs or SNs of DPN using spatial RNA

seq. Clusters of human (77) and mice (78) DRG neurons are similar

to the profile of gene expression. However, the specific distribution

of subtypes of DRG neurons was not observed in human lumber

DRG (77). These findings indicate that the data of diabetic model

animals contributes to elucidating pathogenesis of human DPN.
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Condensation between palmitoyl-CoA and serine by serine-

palmitoyltransferase is the first and rate-limiting step in de novo

sphingolipid synthesis, whereas substitution of alanine for serine in

this step produces 1-deocyshingolipids. Plasma serine concentration

is reduced in mice (79) and human (80) with type 2 DM, and STZ-

treated rats (81). Serine supplementation to HFD-fed mice and STZ

rats restored DPN lesions and deoxydihydroceramides in paw skin

(79, 81). Serum 1-deocyshingolipids may be a candidate of clinical

biomarker/mediator in human DPN, and serine supplementation is a

therapeutic target on DPN.
4 Omics studies in cultured cells
under hyperglycemic conditions

Fluxomic study indicates that pyruvate is important for ATP

production in SN of db/db mice (40). The decreased activity of

pyruvate kinase, an enzyme catalyzing the conversion of

phosphoenolpyruvate to pyruvate in glycolysis, was correlated

with the progression of diabetic nephropathy (82). Pyruvate

administration into STZ-induced diabetic animals restored

hyperglycemia (83), retinopathy (84), and nephropathy (85) by

anti-oxidative and anti-inflammatory activity (84, 85). Serum

pyruvate concentrations in STZ-induced diabetic rats with

cognitive dysfunction were reduced compared with those in age-

matched control rats (86). Additionally, patients with DM with

chronic complications displayed diminished serum pyruvate levels

compared with healthy controls and patients with DM without

complications (87). These studies inspired us to investigate the

involvement of decreased pyruvate supplementation in

DPN pathogenesis.

Our recent study (88) revealed that the absence of exogenous

pyruvate under high-glucose (>10 mM) conditions evoked rapid

and massive cell death of primary cultured adult rat DRG neurons

and immortalized mouse Schwann cells (IMS32). Comprehensive

changes in gene expression and metabolites were assessed using a

combination of microarray and metabolomic approaches to

evaluate the effects of pyruvate starvation on glucose metabolism

in IMS32 cells under high-glucose conditions. The absence of

pyruvate under high-glucose conditions failed to alter mRNA

expression of glycolysis and TCA cycle enzymes; whereas it

increased glycolytic intermediates, such as fructose 1,6-

bisphosphate and glyceraldehyde-3-phosphate and decreased

TCA cycle intermediates, such as citrate, 2-oxoglutarate, and

fumarate, compared with the presence of pyruvate. The state of

glycolysis and mitochondrial respiration of IMS32 cells under these

conditions were evaluated using an Extracellular Flux Analyzer, in

addition to these omics approaches (88). High-glucose and

pyruvate-starved insults induced swift and irretrievable reductions

of mitochondrial respiration and ATP production and a rapid

escalation and subsequent steep glycolytic flux reduction. Reduced

glycolytic flux under these conditions can be attributable to

hexokinase activity suppression via mitochondrial damages (89),
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and glyceraldehyde 3-phosphate dehydrogenase activity

suppression via enhanced poly (ADP-ribose) polymerase activity

and its poly (ADP) ribosylation (88). These changes resulted in

enhancing flux into glycolytic collateral pathways such as polyol,

hexosamine, diacylglycerol and AGE pathways (90–92). These

results indicate that exogenous pyruvate maintains glucose

metabolism under hyperglycemia via sustaining the activity of

glycolytic and TCA cycle enzymes without altering their gene

expression (Figure 4).

Inflammation induced by proinflammatory macrophage (M1)

infiltration is one of the pathogeneses of DPN (93), and is activated

via AGEs-RAGE axis in macrophages (94). Macrophage polarization

to M1 is regulated by PDK2/4 activation (95). Consistent with these

findings, pyruvate plays a crucial role in the maintenance of glucose

metabolism (88) and anti-inflammation activity (96) under diabetic

conditions. Although further study is needed to validate the

mechanisms of diabetes-induced inflammation in macrophages of

SN, pyruvate may be one of the therapeutic candidates for DPN based

on its pathophysiological features.
5 Discussion

Omics approaches are advantageous for elucidating the

pathogenesis of DPN, indicating the different phenotypes in

diabetic animals, such as STZ-induced, db/db, and HFD-fed

rodents. Moreover, protein and metabolic changes in SN are

more sensitive to diabetic conditions than those of DRG,

corresponding to the cause of DPN, such as distal axonal damage.

Multiomics approaches are not always correlated; thus, these

discrepancies may be attributed to the regulated hierarchical
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levels, such as transcriptional regulation and post-transcriptional

modification. Metabolic changes under diabetic conditions are

controlled in the hierarchical levels of mRNA, protein and

metabolism, indicating that amelioration of metabolic alterations

in diabetes is necessary to control the level of gene expression.

Accumulated evidence obtained by omics studies will help

clarify the different pathogenesis of small and large fibers,

resulting from metabolic alteration and elevated inflammation

respectively, in SN and DRG in diabetic animal models. Lipid

dysmetabolism and inflammation are conserved between human

and rodents’ DPN; therefore, these responses may be an important

pathogenesis and potent therapeutic target in human DPN. There

are accumulating omics studies in DPN. However, there were fewer

genomic and epigenomic studies of DPN, and no findings of histone

modification. Further studies regarding epigenomics are required to

elucidate the pathogenesis of DPN.
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FIGURE 4

Schematic diagram of metabolic disturbances of IMS32 cells under high-glucose pyruvate-starved conditions. Pyruvate starvation under high-
glucose conditions induced decreases in glycolysis (light blue box)-TCA cycle (black circle) flux, and mitochondrial respiration (orange box) and ATP
production, and increases in the fluxes of glycolytic collateral pathways (polyol pathway; red, Hexosamine pathway; purple, Diacylglycerol pathway;
dark blue, AGE pathway; blue), leading to ATP depletion. G6P: glucose-6-phosphate, F6P: fructose-6-phosphate; G3P: glyceraldehyde-3-
phosphate; PEP: phosphoenol pyruvate. Red upper arrows: upregulation; blue downer allows: downregulation.
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SUPPLEMENTARY TABLE 1

Omics studies regarding the changes of mRNA, protein, metabolite, and

metabolic flux in SN and DRG of diabetic animals. ALX, alloxan; db/db,

homozygous mutation of the leptin receptor; ob/ob, Leptin-deficient BTBR
ob/ob mice; DRG, dorsal root ganglia; HFD, high-fat diet; MKR, transgenic

mice expressing a mutant dominant-negative insulin-like growth factor-1
receptor (KR-IGF-1R) specifically targeted to skeletal muscle; SD, Sprague-

Dawley; SN, sciatic nerves; STZ, streptozotocin; TCA, tricarboxylic acid; ↑,
upregulation; ↓, downregulation; NS, no significant differences. * Enrichment

of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways.
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