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Hypoparathyroidism, deafness
and renal dysplasia syndrome
caused by a GATA3 splice site
mutation leading to the
activation of a cryptic splice site

Catarina I. Gonçalves1‡, Josianne N. Carriço1‡,
Omneya M. Omar2, Ebtesam Abdalla3 and Manuel C. Lemos 1*

1CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal,
2Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt,
3Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
The HDR syndrome is a rare autosomal dominant disorder characterised by

Hypoparathyroidism, Deafness, and Renal dysplasia, and is caused by inactivating

heterozygous germline mutations in the GATA3 gene. We report an 11-year-old

girl with HDR syndrome caused by a heterozygous mutation located at the splice

acceptor site of exon 5 of the GATA3 gene (NM_001002295.2: c.925-1G>T).

Functional studies using a minigene assay showed that this splice site mutation

abolished the normal splicing of the GATA3 pre-mRNA and led to the use of a

cryptic splice acceptor site, resulting in the loss of the first seven nucleotides

(TCTGCAG) of exon 5 in the GATA3 mRNA. These findings increase the

understanding of the mechanisms by which GATA3 splicing mutations can

cause HDR syndrome.

KEYWORDS

HDR syndrome, hypoparathyroidism, deafness, renal dysplasia, GATA3, splice site
mutation, cryptic splice site
1 Introduction

The HDR syndrome (OMIM 146255), also known as Barakat syndrome, is a rare

autosomal dominant disorder characterised by Hypoparathyroidism (H), Deafness (D),

and Renal dysplasia (R), and is caused by germline mutations of the GATA3 gene (1, 2).

The primary hypoparathyroidismmanifests as low serum concentrations of parathyroid

hormone (PTH) leading to symptomatic or asymptomatic hypocalcemia (3). The deafness is

usually bilateral, sensorineural, and more evident at higher frequencies (4, 5). The renal

abnormalities can manifest as renal aplasia or hypoplasia, vesicoureteral reflux, and renal

cysts that may cause compression and deformities leading to renal failure (6).
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The clinical expression of each component of the disorder can

vary widely (2). Although the hearing loss is commonly diagnosed

during childhood, the hypocalcemia and renal abnormalities often

stay asymptomatic and undiagnosed for several years, particularly

when there is no family history to alert to this diagnosis (7). The

type of underlying mutation may influence the severity and age of

onset of each HDR feature (2).

The GATA3 gene is located on chromosome 10p14, comprises

six exons and encodes a 444 amino acid protein. The GATA3

protein is a dual zinc-finger transcription factor that is expressed in

the developing parathyroid, inner ear, and kidneys (1, 2). In the year

2000, heterozygous loss-of-function mutations of GATA3 were

found to be responsible for the HDR syndrome (8). Since then,

mutations in GATA3 have been reported in at least 124 kindreds,

consisting of 40% frameshift deletions or insertions, 23% missense

mutations, 14% nonsense mutations, 6% splice site mutations, 1%

inframe deletions or insertions, 15% whole-gene deletions, and 1%

whole-gene duplications (2).

We present the clinical and genetic characteristics of a patient

with HDR syndrome, and the functional characterization of a splice

site mutation in the GATA3 gene.
2 Materials and methods

2.1 Clinical studies

The patient is an 11-year-old girl, born to non-consanguineous

Egyptian parents with unremarkable family histories. Since early

life, she suffered several episodes of convulsions and tetany. The first

episode occurred at the age of 14 days, during which hypocalcaemia

was confirmed. This was attributed to vitamin D deficiency and

treated accordingly. Since then, she suffered multiple episodes of

convulsions with frequent hospital visits to receive intravenous

calcium. At the age of 3 years, an audiogram revealed bilateral

severe sensorineural hearing impairment. Upon current admission,

physical examination revealed spasm of hands and feet. She had

normal facial appearance, no dysmorphic features, and no skeletal

abnormalities. She was wearing hearing aids. Systemic examination

was unremarkable including cardiac examination. Laboratory

assessment revealed low total serum calcium 5.2 mg/dL (ref: 8.8-

10.8), low PTH concentration 9.1 pg/mL (ref: 9-52), and high serum

phosphorus 10 mg/dL (ref: 4-7). An abdominal ultrasound showed

a simple cyst (1.5 x 1.6 cm) with thin wall and clear content in the

mid-zone of the left kidney with normal right kidney and normal

cortical echogenicity of the kidneys. Magnetic Resonance Imaging

(MRI) revealed absent basal ganglia calcification.
2.2 Genomic deoxyribonucleic
acid sequencing

The genetic studies were approved by the Institutional Ethics

Committees of both the Faculty of Health Sciences, University of

Beira Interior (Ref: CE-FCS-2013-017) and the Medical Research

Institute, University of Alexandria (Ref: IORG0008812). Written
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informed consent was obtained from the patient’s legal guardian.

DNA was extracted from peripheral blood leucocytes of the patient

and her unaffected mother (the unaffected father was unavailable for

the study) using previously described methods (9). The patient was

screened for mutations in GATA3 by polymerase chain reaction

(PCR) amplification of the six coding exons and exon–intron

boundaries, and bidirectional sequencing using a CEQ DTCS

sequencing kit (Beckman Coulter, Fullerton, CA, USA) and an

automated capillary DNA sequencer (GenomeLab TM GeXP,

Genetic Analysis System, Beckman Coulter). Primer sequences

were designed using Primer3Plus (10) (available upon request). The

GATA3 variant was analyzed by Franklin (Genoox Ltd, https://

franklin.genoox.com/) and classified according to American College

of Medical Genetics and Genomics (ACMG) criteria (11). The

nomenclature of the variant was based on the GATA3 cDNA

reference sequence (GenBank accession number NM_001002295.2).
2.3 In silico prediction

To predict the effect of the splice site variant, we applied the

bioinformatic program NNSplice (http://fruitfly.org/seq_tools/

splice.html) that uses machine learning to predict potential splice

sites, with a score ranging from 0 (low) to 1 (high) (12).
2.4 In vitro functional studies

To assess the effect of this splice site variant on the messenger

ribonucleic acid (mRNA) of GATA3, we used a minigene technique

(13). Using the patient genomic DNA as template, the wild-type and

mutant alleles of theGATA3 exon 5, alongwith 384 base-pairs (bp) of 5’

and 423 bp of 3’ intronic flanking sequences were amplified by PCR

using iProof High-Fidelity DNA Polymerase (Bio-Rad Laboratories,

Hercules, CA, USA) with the following oligonucleotides: forward 5’-

CTGACTGACATATGCTGAAAGCCCAGTTCCAAAA-3’, and

reverse 5’-TCAGTCAGAGATCTCCCTGCCACACATTACAATTC-

3’. Both oligonucleotides carry NdeI and BglII restriction enzyme sites

at the 5’ end, respectively. These restrictions enzymeswere used to clone

the PCR product into the pcAT7-Glo1 plasmid (a kind gift from Dr.

Kristen W. Lynch, Perelman School of Medicine, University of

Pennsylvania, USA). COS-7 cells were cultured in a 6-well plate, in

Dulbecco’s modified Eagle medium, with 4.5 g/L glucose, L-glutamine,

sodium pyruvate, 1.5 g/L NaHCO3 (PAN-Biotech GmbH, Aidenbach,

Germany), and supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin at 37°C in 5% CO2. When a confluence of 60-

70% (or 0.3 X 106 cells per well) was achieved, the cultured cells were

transfected with 5 µg of the minigene plasmid DNA using Xfect

transfection reagent (Takara Bio USA, San Jose, CA, USA), according

to the manufacturer’s protocol. Total RNA was harvested from

transfected cells, after 24 h, using QIAshredder spin columns

(QIAGEN, Hilden, Germany) and RNeasy Mini kit (QIAGEN,

Hilden, Germany) following the manufacturer’s recommendations.

Reverse transcription reactions were performed with 600 ng of the

total extracted RNAs using the RevertAid First Strand cDNA Synthesis

kit (Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania). PCR
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FIGURE 1

(A) DNA sequence of the GATA3 exon 5 splice acceptor site showing a heterozygous splice site mutation (NM_001002295.2: c.925-1G>T) (asterisk)
in the patient. Underlined nucleotides (AG) represent the cryptic splice acceptor site used by the spliceosome. (B) Representation of the GATA3
gene. Boxes represent the exons, filled boxes represent the coding regions, open boxes represent non-coding regions, connecting lines represent
the introns (not drawn to scale). TA1, Transactivating domain 1; TA2, Transactivating domain 2; ZnF1, Zinc Finger 1; ZnF2, Zinc Finger 2. The ATG
(translation start) codon is in exon 2 and the TAG (stop) codon is in exon 6. (C) Minigene assay to assess splicing. The patient had a G>T substitution
in the splice acceptor site (open circle) in intron 4 of the GATA3 gene. To check its effect on the splicing of the transcript, the wild-type and the
mutant sequences of exon 5, together with the flanking introns (introns 4 and 5), were cloned into the NdelI and BglII restrictions sites of the pcAT7-
Glo1 vector, between intrinsic exons IE1 and IE2. The constructs were transfected into COS-7 cells and RNA was extracted. Reverse Transcription
(RT)-PCR using Act and ActT7R flanking primers (arrows) amplified the spliced products. Bp, base-pair. (D) DNA sequence of the spliced product
showing the loss of seven nucleotides (TCTGCAG) at the beginning of exon 5 due to the use of an alternative splice acceptor site (TCTGCAG).
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amplifications were performed with the generated cDNAs as template,

using the oligonucleotides: Act 5’-TTCGGCTTCTGGCGTG

T G A C C G G C G G C T C T A G C - 3 ’ a n d A c t T 7 R 5 ’ -

CACAGTCGAGGCTGATCAGCGG-3’. The amplified products

were then sequenced with the CEQ DTCS sequencing kit (Beckman

Coulter, Fullerton, CA, USA) and an automated capillary DNA

sequencer (GenomeLab TM GeXP, Genetic Analysis System,

Beckman Coulter).
3 Results

DNA sequencing of the GATA3 gene in the patient revealed a

heterozygous variant in the splice acceptor site of exon 5

(NM_001002295.2: c.925-1G>T) (Figure 1A). The variant was

absent in the Genome Aggregation Database (gnomAD) (14). The

variant was not found in her unaffected mother. Her unaffected

father was unavailable for the study.

The bioinformatic program NNSplice indicated that the normal

splice acceptor site of exon 5 had a score of 0.89 and that the next best

potential splice site was located seven nucleotides downstream, with a

score of 0.93.

The functional studies using the minigene technique showed that

the splice site variant abolished the normal splicing of the GATA3 pre-

mRNA and that a cryptic splice acceptor site in exon 5 was used

instead. This resulted in the loss of the first seven nucleotides

(TCTGCAG) of exon 5 in the GATA3 mRNA (Figures 1B–D).

According to the available evidence, the variant fulfilled the

ACMG criteria for “Pathogenic” (criteria PVS1, PS3, PM2).
4 Discussion

Our study of an Egyptian girl with HDR syndrome identified a

GATA3 mutation in the splice acceptor site of exon 5 (c.925-1G>T).

We demonstrated that the loss of this splice site leads to the use of a

cryptic splice acceptor site, located seven nucleotides downstream, that

presents a surrounding splice junction sequence similar to the splice

junction consensus sequence (N-Y12-14NYAG) (15). This leads to a

frameshift that is predicted to produce a missense peptide with a

termination at codon 355, resulting in the loss of the GATA3

ZnF2 domain.

The way by which the splicing machinery acts in identifying and

removing introns is a central and a conserved step of gene

expression in all eukaryotes. RNA splicing depends on the

recognition of nucleotide sequences located at the exon-intron

boundaries, which include the highly conserved AG and GT

dinucleotides at the splice acceptor and donor sites, respectively

(16). Mutations that change splicing consensus sequences are often

associated with diseases (17, 18). These mutations may result in

abnormal splicing through exon skipping, intron retention, or

activation of cryptic splice sites (19). Cryptic splice sites have

similar splicing consensus sequences, but are not normally used

in RNA splicing and are only activated when the authentic splice

site is lost as the result of a mutation (20). The consequences of
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splice site mutations can sometimes be predicted using

bioinformatic programs (12), but ultimately, functional studies

are needed to confirm what happens at the cellular level. Cell-

based analysis of minigene splicing is widely used to investigate the

effects of sequence variants on RNA splicing (13). This is usually

carried out by cloning the relevant exons of the gene into a plasmid

containing endogenously expressed exons and analyzing the

transcribed RNA (13).

About 6% of GATA3 mutations associated with HDR are splice

site mutations and it is interesting to note that these are located

exclusively in introns 4 and 5 (2). Only four splice site mutations

have been studied for their functional consequences. These consist

of c.924 + 4_924 + 19del (21) and c.924 + 5G>C (22) that result in

skipping of exon 4, and c.1051-1G>T (23) and c.1051-2A>G (24)

that result in the use of an alternative splice acceptor site in exon 6.

The mutation found in our patient (c.925-1G>T) was also

identified in an Italian patient with hearing loss (25), but no

clinical details or functional studies for this patient were

presented. Thus, our study is the first to demonstrate the

mechanisms by which this mutation disrupts the function

of GATA3.

Our patient presented the full triad of the syndrome since early

age, which is in agreement with the type of mutation. A review of

177 reported HDR patients showed that the average age of diagnosis

of hypoparathyroidism, deafness, and renal defects, was 15.3, 7.5,

and 14.0 years, respectively (2). However, GATA3 protein-

truncating mutations (frameshift, nonsense, and splice site),

which are likely to have a more severe effect than missense

mutations, were associated with an earlier expression of the

disorder (2). Our patient had no family history of HDR.

Therefore, she likely represents a sporadic case caused by a de

novomutation, as occurs in approximately half of HDR patients (2).

In conclusion, our results increase the understanding of the

mechanisms by which GATA3 splicing mutations can cause

HDR syndrome.
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