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GPCR-mediated effects of
fatty acids and bile acids
on glucose homeostasis
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Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and
Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
Fatty acids and glucose are key biomolecules that share several commonalities

including serving as energy substrates and as signaling molecules. Fatty acids can

be synthesized endogenously from intermediates of glucose catabolism via de-

novo lipogenesis. Bile acids are synthesized endogenously in the liver from the

biologically important lipid molecule, cholesterol. Evidence abounds that fatty

acids and bile acids play direct and indirect roles in systemic glucose

homeostasis. The tight control of plasma glucose levels during postprandial

and fasted states is principally mediated by two pancreatic hormones, insulin and

glucagon. Here, we summarize experimental studies on the endocrine effects of

fatty acids and bile acids, with emphasis on their ability to regulate the release of

key hormones that regulate glucose metabolism. We categorize the

heterogenous family of fatty acids into short chain fatty acids (SCFAs),

unsaturated, and saturated fatty acids, and highlight that along with bile acids,

these biomolecules regulate glucose homeostasis by serving as endogenous

ligands for specific G-protein coupled receptors (GPCRs). Activation of these

GPCRs affects the release of incretin hormones by enteroendocrine cells and/or

the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of

which regulate systemic glucose homeostasis. We deduce that signaling induced

by fatty acids and bile acids is necessary to maintain euglycemia to prevent

metabolic diseases such as type-2 diabetes and related metabolic disorders.
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1 Introduction

Dysregulation of glucose metabolism leads to an array of metabolic disorders, including

obesity and type-2 diabetes. These two chronic disorders rank amongst the top causes of

morbidity and mortality worldwide (1–3). Several biological processes influence glucose

metabolism, not least amongst them is lipid metabolism. Glucose homeostasis is intricately

linked with lipid metabolism because glucose can serve as substrate for endogenous

synthesis of fatty acids by de-novo lipogenesis. Moreover, fatty acids can compensate for
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glucose deficiency by replacing glucose as the source of oxidative

fuel in several metabolic tissues.

This review focusses on mechanisms by which exocrine and

endocrine molecules that are secreted in response to lipid ingestion

activate cell surface receptors that regulate systemic glucose

homeostasis. One such exocrine factor is bile which is released

into the intestine to aid emulsification, hydrolysis and uptake of

ingested lipids. Bile originates from hepatocytes and is composed of

bile acids/salts, bilirubin phospholipid, cholesterol, amino acids,

steroids, enzymes, porphyrins, vitamins, and heavy metals (4). The

bile acid component of bile, and the fatty acids from intestinal fat

hydrolysis possess endocrine properties, and thus serve as ligand

activators of specific GPCRs on enteroendocrine cells. This leads to

release of gut-specific hormones such as glucagon-like peptide 1

(GLP-1) and glucose-dependent insulinotropic polypeptide (GIP),

that are crucial to systemic glucose homeostasis by activating their

respective receptors on pancreatic beta cells to promote insulin

secretion. Accordingly, several pharmacological agents that mimic

the beneficial effects of bile and fatty acids against metabolic

diseases via GPCRs are under clinical investigation to treat

obesity-associated diseases such as type-2 diabetes (5–7).

It is worth mentioning that, under pathophysiological

conditions such as obesity and type-2 diabetes, the circulating

levels of fatty acids and bile acids are altered. Whereas fatty acid

levels are elevated in obesity and type-2 diabetes (8–10), higher

levels of circulating bile acids have been reported in persons who

have undergone bariatric surgery to correct obesity (11, 12).

However, and as discussed below, the individual fatty and bile

acids differ in their physiological functions. Therefore, their

physiological benefits or detrimental impact on metabolic diseases

depend on the extent of altered levels of specific bile or fatty acids

under different pathophysiological conditions. There are different

sub-classifications of bile acids based on structural modifications

that occur as bile acids travel along the enterohepatic path.

Similarly, there is heterogeneity among dietary and endogenously

synthesized fatty acids based on length of carbon chain, degree of

saturation, or cis-trans bond configuration. These structural

differences influence the potency of specific bile and fatty acids to

serve as ligands for specific GPCRs that affect glucose homeostasis.

This review highlights the heterogeneity amongst bile and fatty

acids, and addresses how GPCR-mediated signaling by these

biomolecules regulate systemic glucose homeostasis. Clearly, a

deeper understanding of the regulation of systemic glucose

metabolism via lipid-derived signaling molecules can unravel

novel therapeutic targets, and enhance approaches to treat

diseases characterized by aberrant glucose and lipid metabolism.
1.1 Fatty acids

Fatty acids are a class of lipids characterized by a hydrophobic

hydrocarbon chain and a terminal carboxylic acid functional group.

Fatty acids can be categorized based on hydrocarbon chain length,

number and position of double bonds (unsaturation), and the
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presence of cis or trans double bonds. The length of the

hydrocarbon chain defines fatty acids as either short, medium, or

long chain. Typically, short chain fatty acids (SCFAs) have up to 4

carbon atoms in the hydrocarbon backbone, 6 to 12 carbon fatty

acids are medium chain, whereas 13 to 21 carbon fatty acids are

considered long chain fatty acids (LCFAs). The degree of saturation

defines fatty acids as either saturated with no double bonds, or

unsaturated with at least one double bond. Unsaturated fatty acids

with a single double bond are mono-unsaturated whereas those

with two or more double bonds are polyunsaturated fatty acids

(PUFAs). In a cis-unsaturated fatty acid, all double bonds are in cis-

configuration, whereas the presence of at least one trans double

bond defines a trans-unsaturated fatty acid (13). Additionally,

PUFAs occur naturally as omega-3 or omega-6 depending on the

position of the last double bond from the terminal carbon.

Each day, the human body encounters and processes dietary fat

of varying composition and quantities, due to the heterogeneity of

our diet. Following ingestion and digestion of fat-rich foods, fatty

acids are absorbed via the epithelial enterocytes that line the small

intestine, re-esterified into triglycerides, and packaged as

chylomicrons for onward secretion into circulation via the lymph.

Inside the lumen of blood vessels, the triglyceride component of

chylomicrons is hydrolyzed by lipoprotein lipase, to release free

fatty acids, which are then taken up by various tissues as energy-

providing substrates, or for storage as fat. Moreover, lipolysis

occurring in adipose tissue, especially after prolonged fast,

contributes to circulating levels of fatty acids. These fatty acids

bind to albumin to enhance their hydrophilicity and circulation to

specific tissues. The third source of circulating fatty acids are very-

low density lipoprotein (VLDL) secreted from the liver. Gut

epithelial cells and tissues that utilize fatty acids as a fuel source

or for storage encounter and respond to different fatty acids via

specific receptors, leading to signaling outcomes that affect glucose

homeostasis (14, 15).
1.2 Bile acids

Bile acids are biological detergents which are synthesized in the

liver from cholesterol, and stored in the gall bladder until released into

the gut upon food intake to aid the emulsification, digestion and

absorption of dietary cholesterol, fat, and other lipophilic nutrients (16,

17). Upon synthesis in the liver, primary bile acids such as cholic acid,

chenodeoxycholic acid, hyocholic acid, and murine-specific muricholic

acid can be conjugated to either taurine or glycine. In the small and

large intestine, gut microbial enzymes deconjugate and metabolize the

primary bile acids into secondary bile acids such as deoxycholic acid,

lithocholic acid, and ursodeoxycholic acid (17). Due to their important

role in lipid metabolism, bile acids have an indirect effect on glucose

homeostasis (16, 18). Additionally, several studies have reported amore

direct effect of specific bile acids on glucose metabolism due to their

ability to activate specific GPCRs, such as G-protein bile acid receptor 1

(GPBAR1) (alternative name: Takeda G-protein receptor 5, TGR5)

(19, 20).
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1.3 GPCRs responsive to fatty acids and
bile acids

GPCRs are transmembrane receptors which, upon binding of

extracellular ligands, couple to heterotrimeric guanine-nucleotide

binding proteins (G-proteins) (21). The heterotrimeric G-protein

contains beta and gamma subunits, but it is the alpha subunit that

primarily defines signaling outcomes and determines the

subclassification of G-proteins. GPCRs are very important drug

targets for numerous diseases including cancer, and metabolic and

neurological disorders, evidenced by the fact that over 30% of all

FDA-approved drugs target GPCRs (22). In the context of obesity

and diabetes, a recently approved drug, tirzepatide, is highly

efficacious in reducing body weight and decreasing HbA1c levels

(23, 24). Tirzepatide is a dual agonist for two GPCRs, the GLP-1 and

GIP receptors which shows superior ability to lower blood glucose

and body weight compared to GLP-1R mono-agonists such as

semaglutide and liraglutide (24, 25). Besides these two receptors,

other GPCRs have been identified as promising targets for

metabolic diseases, including the SCFA receptors, free fatty acid

receptor 2 (FFAR2; alternate name GPR43) and free fatty acid

receptor 3 (FFAR3; alternate name GPR41), the LCFA receptors,

free fatty acid receptor 1 (FFAR1; alternate name GPR40) and free

fatty acid receptor 4 (FFAR4; alternate name GPR120) and the bile

acid receptor, GPBAR1 (26).

FFAR2 and FFAR3 share ~43% amino acid sequence identity

and poor ligand selectivity (27). Both receptors are highly expressed

in pancreas and immune cells, in both mice and humans (28),

whereas FFAR2 shows preferential expression in adipose tissue,

intestine, especially in the ileum and colon (28, 29). FFAR2 shows

higher potency for the shorter carbon chain fatty acids, acetate and

propionate, while FFAR3 preferentially binds butyrate and

propionate. Upon ligand binding, FFAR2 couples to both

inhibitory Gai/o and stimulatory Gaq/11 G proteins, while

activation of FFAR3 exclusively induces Gai/o signaling

(Figure 1). At the plasma membrane, activated Gaq/11 stimulates

phospholipase C (PLC) resulting in the production of diacylglycerol

(DAG) and inositol 1,4,5-trisphosphate (IP3), leading to the

activation of protein kinase C (PKC) and elevated intracellular

calcium (Ca2+) levels, respectively. In contrast, activated Gai/o
inhibits adenylyl cyclase, causing a decrease in cyclic AMP

(cAMP) production and reduced protein kinase A (PKA)

activity (34).

FFAR4 and FFAR1 are activated by medium- and long-chain

fatty acids. FFAR4 is well expressed by cells of the gastrointestinal

tract, pancreatic islets, and adipose tissue of mice and humans (35)

whereas FFAR1 is predominantly expressed in pancreatic islets and

brain neuronal cells of mice and humans (36–38) and also

reportedly expressed in mouse enteroendocrine cells (39). Ligand-

activated FFAR1 and FFAR4 couple to Gaq/11, leading to the

activation of the PLC-DAG-IP3- Ca2+ signaling network, that can

promote the release of hormones from intracellular vesicles of

endocrine cells (Figure 1).

The bile acid-responsive GPBAR1 is expressed in cells of the

intestine (predominantly ileum and colon), liver, brown adipose
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tissue, skeletal muscle, certain brain areas, pancreatic islets, and in

immune cells such as macrophages (40–43). Following the binding

of bile acids, GPBAR1 couples to Gas, which activates adenylyl

cyclase leading to increased intracellular cAMP levels, and the

activation of cAMP-dependent effector proteins/kinases (41,

42, 44).
2 Effects of SCFA signaling on
glucose homeostasis

SCFAs, including acetate, propionate, and butyrate, are small-

molecule metabolites generated by gut microbiota through

anaerobic fermentation of non-digestible carbohydrates. SCFAs

are known to contribute to many metabolic disorders including

obesity (45) and diabetes (46), suggesting that SCFAs affect multiple

pathways involved in glucose/lipid metabolism and inflammation.

As already mentioned above, SCFAs act on two major GPCRs,

FFAR2 and FFAR3. Based on the expression profiles of FFAR2 and

FFAR3, we focus on the signaling effects of SCFAs on glucose

metabolism in different metabolically important tissues, including

gut, pancreas, and adipose tissue.
2.1 SCFA effects in the gut

In the gut, where SCFA concentrations can reach 100 mM (47),

SCFAs stimulate the release of anorectic hormones such as GLP-1

and peptide YY (PYY), in both mouse and human (48–50). GLP-1

is a well-known incretin hormone, released by enteroendocrine L-

cells of the gut, and functions to lower blood glucose by directly

stimulating insulin secretion from beta cells and inhibiting glucagon

secretion from alpha cells of the pancreas. Accordingly, FFAR2 and

FFAR3 are highly expressed in L-cells localized in the terminal

ileum and colon (51). However, the co-expression of both GPCRs

and their overlapping potency in sensing SCFAs has made it

difficult to distinguish which of the two receptors is primarily

responsible for regulating the secretion of gut hormones.

However, the generation of animal knock-out (KO) models as

well as the development of selective FFAR2 and FFAR3 agonists

and antagonists has led to novel insights in this field.

In primary colonic cultures from FFAR2-KO mice, induction of

GLP-1 release by SCFAs was severely impaired while the reduction

was less pronounced in the absence of FFAR3 (52). Orthosteric

FFAR2 agonists induced GLP-1 secretion in murine STC-1

enteroendocrine cells (53), whilst an allosteric FFAR3 agonist

produced a modest stimulation of GLP-1 release from murine

colonic crypt cultures (51). Given the signaling bias and low

selectivity of these compounds, Bolognini et al. (54) constructed a

hFFAR2-DREADD knock-in mouse by replacing mouse FFAR2

with a Designer Receptor Exclusively Activated by Designer Drugs

(DREADD) derived from human FFAR2. The hFFAR2-DREADD

is unresponsive to endogenous SCFAs but displays near equivalent

signaling to wildtype (WT) hFFAR2 after activation by inert

synthetic ligands, such as sorbic acid and 4-methoxy-3-methyl-
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benzoic acid (MOMBA) (55, 56). In agreement with related studies,

activation of the FFAR2-DREADD induced GLP-1 release in vitro

in primary colonic crypts from intact colon, and in vivo via intra-

colonic administration of sorbic acid (54). Moreover, hFFAR2-

DREADD was responsive to selective FFAR2 antagonists, and these

antagonists efficiently blocked incretin production by sorbic acid

and MOMBA (54). Taken together, these data suggest that FFAR2

but not FFAR3, mediates the stimulatory effects of SCFAs on GLP-1

release (54).

Moreover, mice with global knockout of FFAR2 showed

reductions in colonic GLP-1 content and oral glucose stimulated

insulin secretion, with no such metabolic defects observed in

FFAR3-KO mice (52). This suggests that the observed

impairment in glucose tolerance in FFAR2-KO mice may be

partly due to decreased GLP-1 levels and impaired GLP-1-

stimulated insulin secretion (52). Interestingly, in high fat diet

(HFD)-fed mice treated with antibiotics to deplete gut microbiota,
Frontiers in Endocrinology 04
acetate-induced improvement in metabolic phenotypes were

reversed upon FFAR2-deletion (57). This underscores the critical

role of the gut microbiota, and their SCFAs in driving FFAR2’s

effect on glucose and insulin tolerance. It is important to note that

FFAR2 is not only expressed in colonic cells but also in other cell

types such as pancreatic islet cells and adipocytes, as discussed

below. Mechanistically, binding of SCFAs to FFAR2 leads to Gaq/
11-dependent increases in intracellular calcium, thus triggering

GLP-1 release in enteroendocrine cells (52). Additionally, FFAR2

internalization in endosomes activates the Gai/p38 signaling

pathway, which is also essential for propionate-induced GLP-1

release in colonic crypts and enteroendocrine cells (34).

Regarding the metabolic role of intestinal FFAR3, Kristen and

colleagues found no changes in circulating GLP-1 in mice with

intestine-specific deletion of FFAR3 although these mice trended

towards lower fasting glucose and insulin levels when maintained

on a calorie-rich diet (58). The observed improvement in glucose
FIGURE 1

Schematic overview of the interaction between fatty acids or bile acids and their respective GPCRs in the gut, pancreas, adipose tissue, skeletal
muscle, liver, and brain. Top panel: Bile acids (purple dot), and nutrient-derived SCFAs (yellow dot) and LCFAs (red dot) interact with their respective
GPCRs expressed by enteroendocrine cells, including GLP-1-secreting L cells and GIP-secreting K cells. Fatty acids and bile acids promote release of
GLP-1 (deep green dot) and GIP (light green dot) into systemic circulation. Bottom center: GPCR-specific signaling effects of the incretins,
circulating fatty acids and bile acids, on insulin and glucagon secretion from pancreatic islets. GLP-1 and GIP stimulate insulin secretion via Gs-
signaling after activation of GLP-1R and GIPR in beta cells. Circulating LCFAs and bile acids enhance insulin and/or glucagon secretion via Gq and Gs
signaling, respectively. Activation of FFAR2 or FFAR3 by SCFAs regulates insulin secretion via Gq/Gi-coupling. Insulin and glucagon modulate
systemic glucose homeostasis through their effects on insulin-responsive tissues (bottom left: adipose tissue and skeletal muscle; bottom right: brain
and liver) and glucagon response tissues (bottom right: brain and liver). Bottom left: adipose tissue also expresses FFAR2 (inhibits lipolysis and
stimulates adipokine production) and FFAR4 (anti-inflammatory). SCFAs also modulate energy metabolism in skeletal muscle through FFAR2/FFAR3
(see review (30)). Bottom right: GLP-1/GIP and fatty acids/bile acids mediate gut-brain communication through corresponding GPCRs to regulate
satiety and appetite, and the sympathetic nervous system (see reviews (31, 32)). FFAR4 is highly expressed in Kupffer cells of the liver, and may affect
systemic glucose homeostasis via its potent anti-inflammatory effects (33).
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homeostasis in the mice with intestine-specific deletion of FFAR3

may be indirectly mediated by reduced fat mass (58). Given the

accumulating evidence that prebiotic diets enriched with

fermentable dietary fibers can improve glucose homeostasis (59,

60) and the proven efficacy of GLP-1 receptor agonists in treating

glucose impairment and obesity, targeting intestinal FFAR2 with

specific drugs holds therapeutic potential for improving systemic

glucose homeostasis.
2.2 SCFAs effects on pancreatic islets

Both FFAR2 and FFAR3 are expressed in islet beta cells in both

rodents and humans (61), suggesting a role of SCFAs in regulating

insulin secretion. Deletion of FFAR2 and/or FFAR3 do not affect

glucose homeostasis in mice fed normal chow (57, 61–63). Studies

regarding the role of FFAR2 in HFD-induced impairments in

glucose homeostasis have yielded conflicting results, probably due

to FFAR2 effects on various metabolic tissues.

Mice with global deletion of FFAR2 exhibited fasting

hyperglycemia and glucose intolerance after HFD feeding,

resulting from a defect in beta cell function and mass (63). The

role of FFAR2 in glucose-stimulated insulin secretion (GSIS) was

also corroborated by ex vivo and in vitro studies where the ability of

a FFAR2 agonist to induce GSIS was abrogated in FFAR2-KO islets

and in MIN6 cells treated with siRNA for FFAR2 or Gaq/11 (63).

Using dynamic perifusion of mouse and human islets, acetate (1

mM) and propionate (1 mM) potentiated GSIS in a FFAR2-

dependent manner, and this stimulatory effect was dependent on

Gaq/11-induced calcium elevations and activation of PLC (64).

Moreover, Gaq-biased FFAR2 agonists (SCA14 and SCA15)

potentiated GSIS in islets from WT mice, but not in FFAR2-KO

islets (65). These studies indicate that SCFAs stimulate GSIS

through FFAR2-Gaq activation. On the other hand, other studies

reported that activation of FFAR2 and/or FFAR3 inhibits insulin

secretion through Gai signaling. In beta cell lines and mouse islets,

addition of acetate (0.1 to 1 mM) caused a dose-dependent decrease

in GLP-1-stimulated insulin release or GSIS, which was blocked by

either a Gai inhibitor, pertussis toxin (PTX), or by reduced

expression of FFAR2 and FFAR3 (61). Also, an FFAR3 agonist, 1-

methylcyclopropane (MCPC) inhibited GSIS in WT islets, while

FFAR3-KO islets showed increased GSIS compared to WT islets

(66). Additionally, Gai-biased FFAR2 agonists (4-CMTB and

TUG-1375) inhibited GSIS in both mouse islets (65) and human

pseudoislets (67). In agreement with the inhibitory role of FFAR2

and FFAR3 on insulin secretion, double-KO of FFAR2 and FFAR3

either globally or selectively in pancreatic beta cells strongly

potentiated GSIS, resulting in improved glucose tolerance in

HFD-fed mice (61). Similarly, compared to islets from WT mice,

islets from FFAR3-KO mice secreted higher levels of insulin which

correlated with improved glucose tolerance in the FFAR3-KO mice,

whereas the opposite phenotypes were observed in FFAR3-

overexpressing mice (68). The dual coupling of FFAR2 to Gaq
and Gai may explain the variable outcomes of studies of the effects

of SCFAs on insulin secretion in vitro and in vivo. It is likely that

Gaq-biased FFAR2 agonists, in combination with FFAR3
Frontiers in Endocrinology 05
antagonists, could prove beneficial to enhance insulin secretion

and improve glucose homeostasis. However, in this context, the

paracrine effects of other islet cells including glucagon-secreting

alpha cells and somatostatin-secreting delta cells on beta cell activity

also need to be considered. Single-cell RNA sequencing data from

human and mouse islets (69, 70) indicate that FFAR3 is highly

expressed in alpha cells whereas FFAR2 is highly expressed in both

alpha and delta cells. It has been shown that glucagon serves as a

stimulator of insulin secretion through beta cell Gas-coupled GLP-

1 and glucagon receptors when glucose levels are high (71–73),

while somatostatin inhibits insulin secretion through Gai-coupled
somatostatin receptor in beta cells (74, 75). Thus, the contribution

of SCFAs on insulin release and glucose homeostasis in general

from these non-beta cells deserves further study.
2.3 SCFA effects on adipose tissue function

Adipocytes play a crucial role in regulating glucose homeostasis

through both endocrine mechanisms (via the release of adipokines,

such as leptin and adiponectin, and non-esterified fatty acids) and

non-endocrine mechanisms (fat mass changes through adipocyte

metabolism) (76). In mice, white adipose tissues (WATs) mainly

express FFAR2 (27, 57, 77). In vitro studies have shown that

exogenous SCFAs inhibit lipolysis via activation of FFAR2 (78) in

a PTX-sensitive fashion (54), indicating that FFAR2-mediated

regulation of lipolysis is transduced by Gi signaling. However, the

effects of FFAR2 on adipogenesis and glucose metabolism observed

in FFAR2 global KOmice have produced conflicting results. On one

hand, Bjursell et al. reported that FFAR2-KO mice (genetic

background: C57BL/6JOlaHsd) fed a HFD showed reduced

adiposity and increased lean mass, resulting in improved glucose

control (62). On the other hand, Kimura et al. reported that HFD-

fed FFAR2-KO mice (genetic background: 129/SvEv) displayed

increased adiposity and impaired glucose homeostasis

characterized by insulin resistance and glucose intolerance (57).

Interestingly, transgenic mouse model with FFAR2 overexpression

in adipocytes was resistant to HFD-induced body weight gain and

exhibited attenuated insulin resistance (57). The discrepancies

between the studies by Bjursell et al. and that of Kimura et al.

may be due to variations in genetic background and the differing

culture environments (57). Additionally, whole body FFAR2-KO

may impact the compensatory expression of FFAR3 (62), which

could contribute to the observed discrepancies. In terms of the

underlying mechanism, Kimura et al. demonstrated that FFAR2

signaling is mediated by Gai, and the inhibition of Akt

phosphorylation by G(i/o)bg suppressed insulin-mediated fat

accumulation, leading to improved insulin sensitivity and energy

utilization in other tissues such as liver and muscle, which

ultimately led to improvement in systemic glucose homeostasis

(57). Regarding FFAR3, studies with cultured adipocytes showed

that SCFAs induce the expression of leptin following

overexpression of FFAR3; this effect was suppressed after

knockdown of FFAR3 expression (79). However, it still remains

unclear whether FFAR3 is actually expressed in WAT at significant

levels (27, 57, 77). So far, the adipocyte-specific effect of FFAR2 on
frontiersin.org

https://doi.org/10.3389/fendo.2023.1206063
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Oteng and Liu 10.3389/fendo.2023.1206063
glucose homeostasis and metabolic disorders is inconsistent and

inconclusive. Considering the importance of FFAR2 and FFAR3 as

crucial links between gut microbiota and systemic glucose

homeostasis, it is important for future studies to clarify these

reported discrepancies by examining conditional KO models of

FFAR2 and FFAR3, such as adipocyte-specific KO.
3 Effect of dietary unsaturated fatty
acids on glucose homeostasis

The following section on unsaturated fatty acids will focus on

cis-configurated long-chain mono- and poly-unsaturated fatty acids

that contain at least 12 carbons and are mostly found in plant-based

vegetable oils, nuts, and seeds.

In mouse MIN6 beta cells, an array of unsaturated fatty acids

including ole ic , l inole ic , e icosapentaenoic acid , and

docosahexaenoic acid induced insulin secretion in a dose-

dependent manner under hyperglycemic conditions (80). This

effect was FFAR1-dependent, since siRNA knockdown of FFAR1

expression significantly reduced insulin secretion by linoleic acid,

the most potent fatty acid agonist of FFAR1 in mice (80). In

agreement with this observation, Schnell and colleagues found

that long-chain mono- and polyunsaturated fatty acids increased

intracellular Ca2+ levels and insulin release in primary mouse beta-

cells and INS-1 cells; this effect was abrogated in INS-1 cells upon

siRNA-mediated downregulation of FFAR1 (81). In a related study

conducted with rat pancreatic beta-cells, oleic acid (1-10 mM) dose-

dependently increased intracellular Ca2+ levels at increasing

concentrations of glucose (82). Moreover, when rat beta-cells

where transfected with FFAR1 siRNA, the oleic acid-induced

increase in intracellular Ca2+ was impeded due to decreased PLC

activity, resulting in impaired insulin release (82). Another study

also reported that in isolated rat islets, linoleic acid dose-

dependently stimulated glucagon release at both low (3 mM) and

high (15 mM) glucose levels, although higher glucose

concentrations expectedly decreased basal glucagon levels (83).

However, inhibition of FFAR1 abrogated the effect of linoleic acid

on glucagon release, along with decreased intracellular Ca2+ levels

stemming from impaired PLC activity (83). Similarly, Flodgren and

colleagues showed that linoleic acid dose-dependently increase

glucagon secretion in isolated mouse islets, an effect which was

annulled by antisense treatment against FFAR1 (84). The tendency

of activated FFAR1 signaling to increase the release of both insulin

and glucagon under hyperglycemic conditions appears surprising,

given the fact that these two hormones are considered functional

antagonists. However, recent studies using different experimental

models have shown that glucagon release from alpha cells can

promote insulin release via paracrine signaling under

hyperglycemic conditions (85–88). FFAR1 is also expressed by

incretin-releasing enteroendocrine cells (39). Following a HFD

challenge, mice with global deletion of FFAR1 showed decreased

plasma levels of GLP-1 and GIP, which led to a moderate decrease
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in plasma insulin and a concomitant increase in plasma glucose

levels (39). These data suggest that insulin release following fatty

acid activation of FFAR1 can occur directly or indirectly through

action of incretins.

As already mentioned, FFAR4 is another GPCR activated by

long chain fatty acids that contributes to the regulation of glucose

homeostasis (35). Interestingly, morbidly obese subjects have

reduced FFAR4 expression levels in visceral adipose tissue and in

peripheral blood mononuclear cells (89). Another study reported

that the anti-inflammatory effects of oleic acid and docosahexaenoic

acid in human visceral adipocytes were mediated by FFAR4 (90),

which has an indirect effect on insulin signaling and glucose

homeostasis. In humans, a non-synonymous mutation of FFAR4

associated with obesity whereas global knockout of FFAR4 in HFD

mice led to weight gain, glucose intolerance, fatty liver, and insulin

resistance, suggesting that intact FFAR4 signaling is critical for

maintaining systemic glucose homeostasis (91). In murine

RAW264.7 and mouse primary intraperitoneal macrophages,

docosahexaenoic acid and eicosapentaenoic acid repressed

inflammation, and also reduced immune infiltration in adipose

tissue of mice, along with improved insulin sensitivity, in a FFAR4-

dependent manner (92). In line with this, when FFAR4-KO mice

and WT controls were maintained on HFD supplemented with the

selective FFAR4 agonist, Compound A, there was significant

improvement in glucose tolerance and insulin sensitivity in the

WT mice, but not in the FFAR4-KO mice (93). In mice, delivery of

a-linoleic acid directly into the stomach increased plasma levels of

GLP-1 and insulin in a FFAR4-dependent manner (94).

Complementary experiments in STC-1 cells revealed that

knockdown of FFAR4 but not FFAR1 reduced a-linoleic acid-

mediated GLP-1 secretion (94). In isolated mouse pancreatic islets

and clonal pancreatic BRIN-BD11 cells, a-linoleic acid,

eicosapentaenoic acid, and docosahexaenoic acid mimicked the

actions of a FFAR4-specific agonist, GW-9508, in stimulating

insulin release, an effect that was accompanied by significant

elevations in intracellular Ca2+ and cAMP (95). Accordingly,

treatment (i.p.) of mice with a-linoleic acid augmented insulin

secretion, leading to improved glucose tolerance (95).

The effect of FFAR4 activation by unsaturated fatty acids on

glucagon release has also been explored in a limited number of

studies. In islets isolated from whole-body FFAR4-KO mice,

docosahexaenoic acid-induced glucagon secretion was significantly

reduced, when compared to control mice (96). FFAR4 is also well

expressed in somatostatin-producing delta cells in pancreatic islets (69,

97). In agreement with this observation, glucose-stimulated

somatostatin secretion was significantly decreased by omega-3 long-

chain PUFAs in pancreatic islets from WT mice (98) but not in islets

from FFAR4-KO mice (97). However, the physiological relevance of

this effect remains to be established.

Taken together, available evidence shows that unsaturated fatty

acids, and especially omega-3 PUFAs influence glucose homeostasis

by serving as potent ligands for FFAR1 and FFAR4 expressed by

pancreatic islets and enteroendocrine cells.
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4 Effects of dietary saturated fatty
acids on glucose homeostasis

Saturated fatty acids (SFAs) lack double bonds in their

hydrocarbon chain. Studies of the effect of SFAs on glucose

homeostasis have focused on specific fatty acids such as palmitate.

Palmitate is a highly abundant dietary SFA and known as very potent

FFAR1 agonist (80). In humans, the intake of dietary fat rich in the

palmitic acid leads to adverse effects on postprandial glycemic control,

due to reduced b-cell function and decreased insulin sensitivity (99). A

related study showed that 7-day exposure of human islets to 0.5 mM of

palmitate impaired GSIS, most likely due to GLP-1 receptor-dependent

upregulation of inflammatory markers such as SOCS2, IL-1B, and

TNFa (100). This effect of palmitate on human islets was recapitulated

in mouse MIN6 pseudoislets, but was abrogated following siRNA-

mediated knockdown of Socs2 (100). This observation agrees with the

well-described pro-inflammatory effects of palmitate and other SFAs in

human and murine cell types (101, 102) as well as the anti-

inflammatory effects of GLP-1 receptor signaling (103, 104). In

isolated mouse islets, palmitate induced glucagon secretion in a

FFAR4-dependent manner, although the absence of FFAR4 had no

effect on GSIS (96). Similarly, palmitate has been shown to stimulate

glucagon secretion in WT mouse islets through enhanced Ca2+ entry

into alpha cells to promote alpha-cell exocytosis (105). Clearly,

additional studies are needed to explore the mechanisms underlying

the effects of different SFAs on systemic glucose metabolism.
5 Effects of bile acids on
glucose homeostasis

In humans that have undergone bariatric surgery to correct

obesity, there exists a positive correlation between improved

glucose metabolism and increased levels of circulating bile acids

(106–108). It is now established that modulation of bile acid

composition affects systemic glucose metabolism through

alterations in intestinal lipid absorption or via activation of

receptor-mediated signaling through farnesoid X-receptor (FXR)

and GPBAR1 (109, 110). As a GPCR, GPBAR1, following the

binding of bile acids, couples to Gas (111). GPBAR1 shows highest

affinity for lithocholic acid (EC50 ~0.53 mM), followed by conjugated

and unconjugated forms of deoxycholic acid, chenodeoxycholic acid,

and cholic acid (EC50 ~1.0, 4.4 7.7 mM, respectively) (109, 110, 112).

Interestingly, mice with elevated levels of lithocholic and

chenodeoxycholic acids show improved systemic glucose tolerance

(113, 114), possibly through increased secretion of GLP-1 (115). This

finding agrees with reports of relatively high expression of GPBAR1

in small intestine, colon, and enteroendocrine L-cells (116–118)

(Figure 1), and the observation that treatment of STC-1 cells with

GPBAR1 agonists enhances GLP-1 secretion (44). Additionally,

GPBAR1 agonists improves whole-body glucose tolerance in mice,

via increased secretion of GLP-1 and insulin (119). Hyocholic acid is
Frontiers in Endocrinology
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a major primary bile acid in pigs, a specie noted for great resistance

against type-2 diabetes (120). Based on this rationale, Zheng and

colleagues investigated the anti-diabetic effect of hyocholic acid by

demonstrating that the levels of hyocholic acid and blood glucose

levels in humans with type-2 diabetes show an inverse correlation

(120, 121). Mechanistically, hyocholic acid enhanced GLP-1 secretion

by enteroendocrine cells through simultaneous activation of GPBAR1

and inhibition of FXR, leading to improved glucose tolerance.

Moreover, hyocholic acid showed a stronger potency at stimulating

cAMP production in comparison to the endogenous GPBAR1

agonist, lithocholic acid (121). In isolated mouse pancreatic islets,

taurine-conjugated ursodeoxycholic acid (TUDCA) enhanced GSIS

through the cAMP/PKA pathway (122). Similarly, in both human

and mouse islets, as well as in MIN6 beta cells, the activation of

GPBAR1 by lithocholic acid increased intracellular cAMP and Ca2+

levels and increased insulin secretion (123). In agreement with this

finding, lithocholic acid and synthetic GPBAR1 agonists improved

glucose tolerance in mice through increases in GLP-1 and insulin

release (124), as well as increased L-cell differentiation and abundance

(125). Moreover, the metabolic outcome of GPBAR1 expression/

activation has been investigated in other important metabolically

relevant tissues such as the skeletal muscle and brain. In the

postprandial state, most circulating glucose is disposed by skeletal

muscle, indicative of the key role of skeletal muscle in maintaining

euglycemia (126–128). In mice, GPBAR1 activation enhanced

insulin-stimulated glucose uptake by skeletal muscle (124), and

skeletal muscle-specific overexpression of GPBAR1 improved

glucose tolerance (129). Based on reports that bile acids reach the

brain (130) and GPBAR1 is expressed in the central nervous system

(40, 131), Perion and colleagues investigated the central effects of bile

acids. They found that bile acids exert an anorexigenic effect by

activating hypothalamic GPBAR1; however, this study did

not measure the effects on systemic glucose homeostasis (132).

Another study showed that reduced hypothalamic bile acid content

in diet-induced obese mice can be counteracted by bile acid

supplementation or by central administration of the selective TGR5

agonist, (2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethyl-4-

isoxazolecarboxamide, leading to decreased body weight and fat

mass, via GPBAR1-mediated activation of the sympathetic nervous

system (133). Although reduced adiposity is known to correlate with

improved glucose tolerance, the authors did not assess effects on

glucose metabolism. However, oral treatment of ob/ob mice with

taurocholic acid resulted in improved glucose tolerance via activation

of a gut-brain pathway, since the improved glucose tolerance

depended on gut-derived FGF15 and intact melanocortin

signaling (45).

Taken together, in vivo studies in humans and mice, as well as in

vitro experiments with isolated islets and cultured cells demonstrate

that specific bile acids show strong effects on glucose homeostasis

through activation of GPBAR1, resulting in multiple beneficial

metabolic effects including increased insulin secretion. These

findings strongly suggest that targeting the bile acid-GPBAR1 axis

may prove useful for the development of novel antidiabetic drugs.
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6 Conclusion

Maintaining systemic glucose levels within a physiological

range during fasting and feeding relies on the coordinated

regulation of endogenously secreted insulin and glucagon. GPCRs

that are responsive to specific bio-metabolites play a central role in

regulating the release of these two important hormones. For

example, SCFAs act on FFAR2 and FFAR3, bile acids on

GPBAR1, and saturated and unsaturated fatty acids on FFAR1

and FFAR4, respectively (Figure 1). Most studies reported that

SCFAs, bile acids, and unsaturated fatty acids have positive effects

on glucose homeostasis, due in part by promoting incretin and

insulin release, resulting in reduced glucose excursions in the post-

prandial state. However, long chain SFAs seem to have adverse

effects on systemic glucose homeostasis due to their pro-

inflammatory effects and limited efficacy in inducing GPCR-

mediated release of incretins and insulin. Among saturated fatty

acids, the metabolic effect of palmitic acid has been studied in

considerable detail, in contrast to other SFAs such as capric, lauric,

myristic, and stearic acids. It would thus be of interest to interrogate

the potential metabolic roles and signaling properties of these latter

SFAs. The data discussed in this brief review indicate that GPBAR1

and FFARs 1, 2, 3 and 4 all represent potential pharmacological

targets for improving impaired glucose homeostasis in type-2

diabetes and related metabolic disorders. More studies are needed

to explore whether simultaneous targeting of several of these

receptors might provide even greater therapeutic benefits.

Additionally, because these GPCRs are expressed in multiple cells

and tissues, the tissue- and cell-type specific effects of targeting these

receptors need to be explored in more detail by using conditional

and inducible mouse knockout models. This is especially true for

FFAR2, due to the discordant reports obtained from studies in

global KO mice. Such studies will provide important new insights

into the mechanisms through which the different receptors affect

glucose and lipid metabolism, providing a rational basis for the

design of novel drugs aimed at treating various important

metabolic diseases.
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