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Obesity adversely impacts millions of American adults by predisposing them to

significant health risks and further complications. Obesity is differentiated into

two groups: metabolically healthy and metabolically unhealthy. In contrast to

metabolically healthy counterparts, obese individuals who are metabolically

unhealthy display hallmark symptoms of metabolic syndrome (e.g.,

hypertens ion, dys l ip idemia , hyperglycemia , abdominal obesi ty ) .

Gastroesophageal reflux disease (GERD) commonly occurs in all obese

populations, as do poor dietary habits. Proton-pump inhibitors (PPIs), due to

their wide availability, are most often used to treat GERD-related heartburn and

other symptoms. Here, we review the evidence on how poor diet as well as

short- and long-term use of PPIs adversely affect the gastrointestinal microbiota

to cause dysbiosis. Key components of dysbiosis-induced metabolically

unhealthy obesity (MUO) associated with PPI use include “leaky gut,” systemic

low-grade inflammation, and reduced amounts of short-chain fatty acids

(SCFAs) such as butyrate that promote metabolic health. The benefit of using

probiotics to mitigate PPI-induced dysbiosis and MUO is also discussed.

KEYWORDS

proton-pump inhibitor (PPI), metabolically unhealthy obesity (MUO), dysbiosis,
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Introduction

Obesity is a chronic, progressive disease with significant adverse health effects and is

clinically defined by a body mass index (BMI) >30 kg/m2 (1). According to the 2022

National Health and Nutrition Examination Survey, the obesity rate in American adults is

42% (2). Obesity is a significant risk factor for a myriad of comorbidities including type 2

diabetes mellitus (T2DM), cardiovascular disease, metabolic syndrome, gastrointestinal

(GI) tract diseases, kidney damage, liver dysfunction, mental illness, and several cancers.

Obesity imparts a significant healthcare burden. Healthcare costs are estimated at $172
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billion, with heightened costs in severely obese individuals (BMI

>35) that increase with age (3).

While most obese individuals exhibit one or more additional

metabolic complications, some lack any overt sign of coinciding

disease. To differentiate between these two conditions, the medical

community coined the terms metabolically unhealthy obesity (MUO)

and metabolically healthy obesity (MHO) (4, 5). Obesity is oftentimes

accompanied by gastroesophageal reflux disease (GERD), prompting the

use of proton-pump inhibitors (PPIs), among other medications, to

manage acid reflux and related symptoms (6–8). Mounting evidence

indicate that several oral medications including antibiotics and PPIs

unfavorably alter the gut microbiota; the resultant dysbiosis is implicated

in the etiology and pathogenesis of obesity. Many findings about diet

composition, obesity, and PPI use come from preclinical research in

animals. Here, we explore the relationships between poor diet, GERD,

PPI use, metabolic disease, immune dysfunction, and dysbiosis as well as

their associative and potentially causal roles in MUO.
Metabolically healthy obesity (MHO) vs.
metabolically unhealthy obesity (MUO)

MHO is clinical obesity without any comorbidities associated with

metabolic syndrome. MHO is characterized by preserved insulin

sensitivity, reduced systemic inflammation, less visceral fat, and more

favorable hepatic function than MUO counterparts (5, 9). The

following MHO criteria are proposed: fasting triglycerides ≤150 mg/

dL; high density lipoprotein serum concentration >40mg/dL inmen or

>50 mg/dL in women; systolic blood pressure <130 mmHg; diastolic

blood pressure <85 mmHg; and fasting blood glucose <100 mg/dL (4,

10). Since MHO individuals have no cardiometabolic disorder,

medications for dyslipidemia, hypertension, or diabetes are not

required (4, 10). Lack of concrete MHO criteria has led to a large

degree of heterogeneity amongst research participants, generating

debate about whether to classify MHO as a distinct phenotype or

place it on a spectrum that incorporates a devolution to MUO (4, 5).

Factors promoting MHO status include healthy diet; regular physical

activity; genetic predisposition towards more subcutaneous (vs.

visceral) fat; and gut microbiome diversity (5, 10). Metabolic

heterogeneity amongst obese individuals is partly governed by

differences in adipose tissue physiology, whereby genetic

determinants of body fat distribution, depot-specific fat metabolism,

adipose tissue plasticity, and adipogenesis predispose some individuals

to adiposopathy and MUO (5). Adverse changes in body weight, body

composition (i.e., lean vs. fat mass), metabolism (i.e., food intake,

energy expenditure (EE), glucose clearance, glucose-stimulated insulin

secretion), and fecal microbiota richness are observed in mice fed a

high calorie diet and treated with the PPI omeprazole; results varied

depending on sex and genetic background (11).
Gastroesophageal reflux disease (GERD)
and proton-pump inhibitors (PPIs)

Individuals with MHO or MUO are equally susceptible to

developing GERD (12). Obese individuals who experience GERD
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commonly use PPIs to relieve heartburn and other discomfort (e.g.,

chest or upper abdominal pain, dysphagia, globus sensation, food

regurgitation) caused by acid reflux. PPIs reduce stomach acid

production by inhibiting the H+,K+-ATPase, an ion pump located on

the luminal surface of gastric parietal cells, and blocking hydrochloric

acid secretion (13). Through irreversible inhibition of the proton pump,

PPIs yield greater acid suppression and have a longer duration of action

than other acid-controlling medications such as histamine-2 receptor

antagonists or antacids (13). Thus, PPIs are more favorable for

reducing gastric acid secretion and relieving pain. PPIs are the

medication of choice not only for GERD but also peptic ulcer disease

and associated bleeding, Helicobacter pylori infection (in combination

with antibiotics), NSAID-induced ulcers, erosive esophagitis, Zollinger-

Ellison syndrome, and functional dyspepsia (14).

Fueled by over-the-counter availability, PPI usage has steadily

increased since 2003, when omeprazole (Prilosec) was FDA-

approved for purchase without a prescription (15). Approximately 15

million Americans use PPIs annually (16). The number of documented

indications for PPI use has also increased (17). PPIs are commonly

administered in the outpatient, ambulatory care setting for GERD-

related symptoms and in the inpatient, critical care setting for stress

ulcer prophylaxis. Shortly following OTC availability, many PPI users

continued to take these medications, even without documented GI

complaints and/or diagnoses or other indications for use (17).

Individuals still frequently remain on PPIs long-term (clinically

defined as >8 weeks) after either being initiated on therapy in non-

outpatient settings or self-prescribing (17, 18). The long-term use of

PPIs is especially concerning due to numerous possible adverse side

effects, including T2DM, dysbiosis,Clostridium difficile infection (CDI)-

associated diarrhea, enteric infections, increased risk of community-

acquired pneumonia, magnesium and vitamin B12 deficiency,

osteoporosis, bone fractures, and dementia (14, 19–22).
Dysbiosis and metabolic disease

Gut microbiota are a core participant in host metabolic health

by modulating digestion and absorption, whereby foodstuffs are

converted into essential nutrients and minerals. A diet enriched in

prebiotic and probiotic foods including plant-derived protein while

limited in processed foods and animal-derived protein, healthy

lifestyle, and environmental and genetic factors all support a diverse

and optimal gut microbiota (23–25). The healthy human

microbiota exhibits a balance of the phyla Firmicutes and

Bacteroidetes, which represent 90% of gut microbiota (26, 27).

The remaining dominant phyla include Actinobacteria,

Proteobacteria, Fusobacteria, and Verrucomicrobia. A rich

microbiota contributes to health by facilitating drug metabolism,

synthesis of essential vitamins B and K, and physical and chemical

protection against colonization by pathogens (7, 23, 26). These

microbiota also ferment fiber and other indigest ible

polysaccharides, yielding short-chain fatty acids (SCFAs) that

beneficially impact body weight, inflammatory status, insulin

sensitivity, and glucose and lipid homeostasis (28).

Reduced biodiversity of gut microbiota, coupled with

subsequent expansion of disease-promoting pathogens, is referred
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to as dysbiosis (23). Dysbiosis is a hallmark of inflammatory bowel

disease (IBD) and is also associated with several autoimmune,

neurological, and metabolic disorders, with causal evidence

emerging (23, 29–35). Variations in the composition and

abundance of oral and/or gut microbiota, especially at the

phylum level, are implicated in metabolic disease (7, 9, 36, 37).

Namely, an increase in the Firmicutes to Bacteroidetes (F/B) ratio

occurs in overweight and obese individuals (38). High fat diet

(HFD)-fed mice show an increase in Firmicutes and decrease in

Bacteroidetes proportions, leading to a higher F/B ratio vs. lean

mice (36). In obese, human, metabolic syndrome recipients,

allogenic fecal microbiota transfer (FMT) using metabolic

syndrome donors (vs. post-gastric bypass donors) decreases

insulin sensitivity, suggesting that dysbiosis can trigger MUO

(39). Conversely, FMT using normal diet-fed and exercised donor

mice improves metabolism and inflammatory status in HFD-fed

recipients (40). However, FMT using healthy lean donors fails to

potentiate the improved insulin sensitivity imparted by

consumption of a healthy diet in MUO individuals (41, 42).

The F/B ratio’s validity as a reliable biomarker has been

challenged by various confounding factors in study populations

and lack of clear correlation between its numerical value and BMI.

This discrepancy suggests that dysbiotic gut events impacting

metabolic health are more nuanced (9, 27, 43, 44). Compared to

MHO individuals, intestinal levels of inflammatory-associated

microbiota are elevated in MUO, accompanied by lower bacterial

diversity and reduced potential for butyrate production (45–47).

Alpha diversity, an index of taxa richness and abundance, is lower

in MUO vs. MHO adults and children (9, 47). The genera

Oscillospira and Clostridum, microbial sources of beneficial

SCFAs, are more abundant in MHO individuals (9). Butyrate, a

key SCFA, exhibits anti-inflammatory properties by reducing pro-

inflammatory cytokines and GI mucosal permeability, thereby

preventing inflammation mediated by the bacterial endotoxin

lipopolysaccharide (LPS) (9, 28). Butyrate-producing bacteria are

significantly decreased in T2DM, suggesting that this SCFA confers

protection against the development of insulin resistance (9). Family

members of Firmicutes and Actinobacteria associated with

beneficial metabolic effects are also more abundant in MHO vs.

MUO individuals (48).

In contrast, Fusobacteria is more abundant in MUO individuals

(9). Despite increased abundance in T2DM individuals, elevated

Fusobacteria levels do not significantly correlate with increased

BMI (49). Differing from most other microorganisms, Fusobacteria

is abundant with intestinal inflammation (9). Fusobacteria are

established oral pathogens well-implicated in colorectal cancer,

where they upregulate the pro-inflammatory cytokines tumor

necrosis factor alpha, interleukin-6, and interleukin-8 as well as

cyclooxygenase-2 enzyme (50). As gram-negative microorganisms,

Fusobacteria also contribute to inflammation via the LPS component

of their cell wall (51). In addition to increased LPS release, elevated

cytotoxic reactive oxygen species (ROS) levels, reduced bioavailability

of nitric oxide (a central regulator of energy metabolism and body

composition), and decreased SCFA production occur with obesity

(26, 27, 43). These events create conditions that promote

inflammation, induce endothelial dysfunction, and reduce insulin
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sensitivity, which leads to further inflammation, dyslipidemia,

hyperglycemia, and other cardiometabolic dysfunction.
Diet- and oral PPI-induced dysbiosis

Diet composition and oral ingestion of medications

substantially influence microbiota diversity (23, 26, 27, 52). Diets

enriched in saturated fat, protein, and complex carbohydrates

decrease gut microbiota biodiversity through the production of

toxic metabolites or by overfeeding certain families of potentially

pathogenic organisms (23). These diets increase gram-negative

bacteria like Escherichia coli that harbor LPS and decrease the

prevalence of favorable gram-positive bacteria that help maintain

the gut mucosal barrier to protect against endotoxins (53, 54).

Metabolic endotoxemia, approximately a two-fold increase in

circulating LPS levels from baseline, is one mechanism by which

dysbiosis and leaky gut elicit the systemic inflammation and insulin

resistance that characterize MUO (55, 56). Systemic administration

of LPS to lean mice increases fat deposition, systemic and tissue-

specific inflammation, and insulin resistance to a similar extent as

that caused by diet-induced obesity (DIO) (55). Furthermore,

serum LPS levels are 1.5-fold greater in obese mice fed a normal

chow diet than in lean mice fed a HFD (55). LPS binds with LPS-

binding protein (LBP) to trigger the toll-like receptor 4 signaling

cascade, which activates the inflammatory immune response (56).

Both LPS and LBP are elevated in individuals with obesity or T2DM

compared to healthy controls (56). Poor diet is a major culprit in the

etiology and pathogenesis of obesity partly through an LPS-

mediated mechanism and is linked to GERD, driving PPI use.

Obesogenic diets, particularly those high in fat, increase GERD risk

by lowering esophageal sphincter (LES) tone, increasing transient

LES relaxation, and delaying gastric emptying (57, 58). These diets

also elevate intestinal amounts of LPS-releasing, gram-negative

bacteria that promote the pro-inflammatory state implicated in

abnormal LES relaxation (59, 60). Esophageal microbiome analyses

reveal a skewing towards gram-negative populations in esophagitis

and Barrett’s esophagus. This profile is strongly linked to GERD-

related pathology through LPS-mediated induction of NO,

promoting LES relaxtion (61, 62). Several oral medication classes

alter the microbiome. With only short-term use, repeated exposure

to antibiotics negatively alters microbiome composition, possibly

long-term (23). A positive association between antibiotic exposure

and weight gain in children has been reported (63). Compared to

other commonly used medications such as statins, antibiotics,

antidepressants, and metformin, PPIs impart the greatest and

most consistent inter-individual variability in gut microbiota (64–

68). PPI use is linked to increased risk of CDI by altering CDI-

associated taxa, increasing gastric pH, and delaying gastric

emptying (69–72). Comprehensive meta-analyses determined that

PPI use increases the risk of developing initial and recurrent CDI by

two- and 1.5-fold, respectively (73, 74). Strong evidence for PPI-

induced risk prompted an FDA-issued drug safety warning (75).

Daily PPI use is recognized as a sole, avoidable, independent risk

factor for CDI-associated mortality in a dose-dependent

fashion (76).
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Although PPIs are not pro-inflammatory per se, they induce

changes in the gut microbiota that cause inflammation. Intestinal

amounts of Enterococcus, Clostridium, and Lactobacillus increase

with PPI use, whereas those of Bacteroides and Bifidobacteria

decrease, elevating the F/B ratio (77–80). Compared to pre-

treatment values, human participants undergoing 8-week

treatment with the PPIs esomeprazole, rabeprazole, or

lansoprazole had increased fecal amounts of Firmicutes due to

bacterial translocation from the oral, nasal, and throat cavities to the

intestine (81). Confoundingly, this study did not control for any

change in diet post-GERD relief (81). Once daily administration of

esomeprazole for 4 weeks increases the fecal abundance of

Streptococcus (normally found in the upper GI tract), with trends

for increased amounts in the saliva and periodontal pocket also

observed (81). Streptococcus increases oxidative stress in the GI tract

via ROS production (80). Increased Streptococcus is also associated

with duodenal eosinophil infiltration both after short- and long-

term PPI therapy (79). The resultant intestinal inflammation is a

key factor in the development of systemic, low-grade inflammation.

Omeprazole use also increases the abundance of Fusobacteria and

Firmicutes in the gastric mucosa of healthy dogs (82). In rats, long-

term administration of lansoprazole reduces microbiota diversity

and richness, with reduced abundance of Clostridium and members

of Actinobacteria and Bacteroidetes (28).

Obesity likely increases the risk of stress, anxiety, and

depression, especially when metabolic disturbances are present

(83). In line with these findings, increased intestinal permeability

stemming from PPI use and dysbiosis of gut microbiota is enhanced

during psychological stress (78). In mice subjected to water

avoidance stress (WAS), once daily administration of the PPIs

rabeprazole, omeprazole, or lansoprazole post-stress session

exacerbated WAS-induced increases in intestinal permeability and

duodenal mast cell infiltration both in vivo and ex vivo; these

phenomena are transferrable via gut microbiome transplantation

(78). Expression of multiple duodenal tight junction adhesion

molecules (at both the gene and protein levels) is also decreased

with PPI treatment (78). Strengthening the notion that stress plays a

causal role in the pathogenesis of obesity, PPIs do not increase

intestinal permeability in the absence of stress (78).
Obesity-related and PPI-induced
aberrations in short-chain fatty acid
(SCFA) production

The microbiome-gut-brain axis is a bidirect ional

communication network amongst the central nervous system

(CNS), autonomic nervous system (ANS), enteric nervous system

(ENS), and hypothalamic pituitary adrenal (HPA) axis that

maintains GI and neuronal homeostasis (84). Hypothalamic

neurons sense microbiota cell wall components to regulate food

intake and EE (85). SCFAs are involved in microbiota-gut-brain

interactions as substrates of G protein-coupled receptors (GPCRs)

to positively influence host functions such as appetite, glucose

homeostasis, EE, immunomodulation, and functional integrity of

the GI tract (28, 52, 86, 87).
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The most common SCFAs produced by the microbiome are

butyrate, propionate, and acetate. Butyrate’s protective effects

against obesity are pleiotropic (88). Butyrate regulates body

weight by promoting EE and reducing energy intake. It induces

mitochondrial function in association with up-regulated expression

of genes involved in lipolysis and fatty acid b-oxidation. In brown

adipose tissue, it promotes thermogenesis via activation of lysine-

specific demethylase and b3-adrenergic receptors. Along the gut-

brain axis, it inhibits weight gain by promoting satiety and reducing

food intake by suppressing the activity of hypothalamic orexigenic

neurons. Butyrate’s hypophagic and anorectic effects are mediated

by increased levels of glucagon-like peptide 1, glucose-dependent

insulinotropic polypeptide, and gut hormone peptide YY, as well as

up-regulation of the mu-opioid receptor. In the liver, butyrate

upregulates antioxidant systems by promoting b-oxidation and

stimulating fibroblast growth factor 21 through activation of

peroxisome proliferator-activated receptor a. These hepatic events
are accompanied by reduced inflammation, lipid deposition, and

cholesterol synthesis. In adipose tissue, it induces leptin production

and secretion, promotes b-oxidation, and inhibits inflammation. In

the pancreas, it promotes insulin secretion and inhibits glucagon

secretion. In the gut, it influences the expression of colonic tight

junction proteins to control gut permeability (88).

Decreased SCFA production, particularly butyrate-producing

microbes, as a consequence of consuming a Western-style diet is

implicated in obesity and other metabolic diseases (88, 89).

Conversely, dietary supplementation with acetate, propionate,

butyrate, or their admixture inhibits HFD-induced weight gain in

mice (36). GPR41 and GPR43 are mammalian GPCRs located in

adipose tissue, GI epithelium, and lymphatic tissue that are

upregulated by circulating LPS and systemic inflammation (90).

HFD intake lowers gene transcript levels of GPR41 and GPR43 in

adipose tissue and elevates levels in colon vs. lean mice; SCFA

supplementation reverses these effects (36). Long-term

administration of lansoprazole to rats reduces intestinal and

colonic butyrate concentrations, especially in old age (91).

Moreover, the abundance of Lactobacillus in the ileum is

significantly and positively correlated with butyrate concentration

in the duodenum and ascending colon and positively correlated

with butyrate levels in the jejunum (91). Of note, SCFAs do not

always impart beneficial effects on metabolic health. Some

preclinical data indicate that signaling at GPR41 and GPR43 is

associated with DIO and inflammatory disease (90). These

observations reflect the complex manner through which the

microbiome regulates inflammation and metabolism.
Discussion

Obesity is a multifactorial condition associated with multiple

concomitant diseases through a myriad of complex mechanisms.

Obesity resides on a spectrum ranging from healthy to unhealthy,

whereby adipogenesis and inflammation mediate its comorbidities

including dyslipidemia, cardiovascular dysfunction, and insulin

resistance. FMT data indicate that MUO may stem from

unfavorable alterations in gut microbiota (39–42). This dysbiosis
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simultaneously inhibits the production of beneficial, health-

promoting metabolites (i.e., SCFAs) and promotes the production

of pro-inflammatory, harmful ones (i.e., LPS).

Genetic and environmental factors influence the microbiome. Diet

composition is one key environmental factor. Oral medications such as

antibiotics also negatively alter the microbiome, potentially

compromising its natural diversity years after initial exposure.

Emerging evidence identifies PPIs as another culprit medication class

associated with dysbiosis. In most cases, the intended duration of PPI use

is only up to 8 weeks. Alarmingly, long-term PPI use is increasingly

common in obese and pediatric populations (92, 93). This could

permanently alter microbiome composition, and many associative

findings and emerging causal evidence indicate that it deleteriously

affects metabolic health long-term. Yet the full impact of short- and

long-term PPI use on altering gut microbiome composition and the

extent to which dysbiosis contributes toMUO in humans remains largely

unknown, as no clinical trials have examined these questions to date.

Attempts to prevent/attenuate negative impacts on metabolic

health related to PPI-associated dysbiosis might involve curtailing

the following: physician overprescribing, direct-to-consumer

advertising, misdiagnosis, self-diagnosis, and treating symptoms

rather than the cause(s) of acid reflux. Although data are limited,

taking probiotics and eating prebiotic foods rich in antioxidants and

dietary fiber appear to be beneficial (92, 94, 95). High fiber diet

improves metabolic health and mood in T2DM patients (96). In

children, once daily co-administration of probiotics substantially

reduced dysbiosis occurrence in response to 12-week, once daily

esomeprazole vs. esomeprazole treatment alone from 56.2% to

6.2%, respectively (92). Other studies report mixed findings

regarding the beneficial effects of supplementation with

Streptococcus, Lactobacillus and/or Bifidobacterium on body

weight, BMI, waist circumference, and fat mass (97). A clinical
Frontiers in Endocrinology 05
trial analyzing the effects of probiotics to reduce dysbiosis and GI

discomfort in adult GERD patients using PPIs long-term is

currently underway (98). The benefits of probiotic use outweigh

any potential risks. Namely, probiotics prevent and treat antibiotic-

associated dysbiosis and diarrhea (99). Probiotic use would likely be

equally beneficial for PPI-induced dysbiosis and associated

metabolic dysfunction.
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