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Research during the past decades has yielded numerous insights into the

presence and function of lactate in the body. Lactate is primarily produced via

glycolysis and plays special roles in the regulation of tissues and organs,

particularly in the cardiovascular system. In addition to being a net consumer

of lactate, the heart is also the organ in the body with the greatest lactate

consumption. Furthermore, lactate maintains cardiovascular homeostasis

through energy supply and signal regulation under physiological conditions.

Lactate also affects the occurrence, development, and prognosis of various

cardiovascular diseases. We will highlight how lactate regulates the

cardiovascular system under physiological and pathological conditions based

on evidence from recent studies. We aim to provide a better understanding of the

relationship between lactate and cardiovascular health and provide new ideas for

preventing and treating cardiovascular diseases. Additionally, we will summarize

current developments in treatments targeting lactate metabolism, transport, and

signaling, including their role in cardiovascular diseases.
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Introduction

Lactate is an important metabolite mainly generated through glycolysis (1–3).

Conventional wisdom holds the opinion that lactate is a metabolic waste produced in

normal cells only under hypoxic conditions, including intense exercise and ischemia (1–3).

However, burgeoning evidence points out that lactate is not an innocuous bystander

metabolite as traditionally viewed, but instead serves as a fuel source for the myocardium

(4). In addition, lactate plays special roles in regulating vascular smooth muscle cells

(VSMCs) (5), promoting angiogenesis (6, 7), regulating hemodynamics (8), and cardiac

electrophysiological activity (9, 10), all of which are essential for the maintenance of

cardiovascular homeostasis. In addition, the finding of histone lactoylation (11) and non-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1205442/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1205442/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1205442/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1205442/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1205442&domain=pdf&date_stamp=2023-06-15
mailto:luofei0058@csu.edu.cn
https://doi.org/10.3389/fendo.2023.1205442
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1205442
https://www.frontiersin.org/journals/endocrinology


Wu et al. 10.3389/fendo.2023.1205442
histone lactoylation (12) is attractive. In light of the recent finding

that lactoyl-CoA may be found in the cardiac tissue of mice (13), it

would be prudent to investigate its influence on heart biology.

For over 90 years, it has been observed that lactate can be

produced in functioning mitochondria that have sufficient oxygen.

This observation is referred to as the Warburg effect (1–3). Studies

have recently reported that the Warburg effect occurs in various

pathophysiological states of the cardiovascular system, including

atrial fibrillation, pulmonary hypertension (PAH), and heart failure

(HF), suggesting it has critical roles in cardiovascular disease (14–

18). Furthermore, numerous clinical and preclinical studies have

shown that lactate directly affects various cardiovascular diseases.

Targeting lactate metabolism has led to a breakthrough in

treating some diseases, especially in the field of cancer (19). Some

recent studies have indicated that targeting the metabolism,

transport, and signaling of lactate may be a promising method for

preventing and treating cardiovascular diseases (20). In this review,

we summarize how lactate regulates the cardiovascular system,

highlighting how it affects cardiovascular diseases. Furthermore,

we attempt to provide readers with a systematic and objective

understanding of the effect of lactate on cardiovascular health,

proposing new ideas about the pathogenesis of cardiovascular

diseases and their treatment by targeting lactate.
Lactate metabolism, transportation,
and signal transduction

Lactate production

Lactate is mainly generated through glycolysis in most tissues of

the human body, with the highest level of production detected in

muscles (1–3). Under anaerobic conditions, pyruvate is reduced to

lactate with nicotinamide adenine dinucleotide (NADH) and is
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subsequently fed into the Cori cycle as a substrate for

gluconeogenesis. Glycolysis yields only two adenosine

triphosphate (ATP) molecules and two lactate molecules per

glucose without consuming any oxygen. Under aerobic

conditions, pyruvate enters the Krebs cycle, producing abundant

usable energy (approximately 25 ATP molecules per glucose)

without lactate production (Figure 1).
Lactate dehydrogenase

LDH mediates the bidirectional conversion of pyruvate and

lactate and plays a crucial role in lactate metabolism (Figure 1) (1, 3,

19). LDH has two major isoforms—namely, LDHA and LDHB.

LDHA predominantly catalyzes pyruvate reduction to lactate and

couples NAD+ regeneration (21), whereas LDHB mostly converts

lactate into pyruvate and couples NADH formation (21). Different

combinations of LDHA and LDHB can entirely assemble into five

tetrameric isozymes (LDH1, LDH2, LDH3, LDH4, and LDH5),

which differ in their Km values for lactate and pyruvate,

electrophoretic mobility, and sensitivity to pyruvate accumulation

(22). Additionally, they differ in tissue expression; for instance,

LDHA is the predominant isoform in skeletal muscles and other

highly glycolytic tissues, whereas LDHB is the predominant isoform

in the myocardium (21).
Lactate transportation

Monocarboxylate transporters (MCTs) can bidirectionally

transport protons and monocarboxylate ions (lactate, pyruvate,

and ketone body molecules), depending on the concentration of

both, protons and monocarboxylate ions, in the environment and/

or cellular context (23, 24).The MCTs belong to the SLC16 gene
FIGURE 1

Metabolism and transport of lactate under conditions of varying oxygen availability. DHAP dihydroxyacetone phosphate, F-6-P fructose-6-
phosphate, F-1,6-2P fructose-1,6-bisphosphate, GAPDH glyceraldehyde-3-phosphate dehydrogenase, G-6-P glucose-6-phosphate, MCT
monocarboxylate transporters, PFK-1 phosphofructokinase-1, TCA tricarboxylic acid cycle.
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family, and different MCT subtypes synergistically maintain the

lactate balance. In normal tissues, MCT1 is mainly responsible for

lactate transmembrane transport and plays a role both in the import

and export of lactate, which depends on the transmembrane

gradient for lactic acid (24, 25). In cells that generate high lactic

acid concentrations, MCT4 is primarily responsible for facilitating

lactic acid and H+ export across cell membranes (24). MCT2 is very

similar to MCT1, whereas MCT3 is functionally similar to MCT4

(3). MCT-mediated transmembrane transport is the foundation of

the “lactate shuttle” (19, 26) which describes lactate’s function in the

transmission of oxidative and gluconeogenic substrates and in cell

signaling (19, 26).
Lactate signal transduction

Lactate can act as an extracellular ligand to conduct signals via

G protein-coupled receptor 81 (GPR81). GPR81 is expressed in

meningeal fibroblasts and adipocytes, where it inhibits lipolysis by

decreasing the concentration of cyclic adenosine monophosphate e

(27) and induces brain vascularization through ERK1/2 and Akt

signaling (28). GPR81 also expresses in some tumor cells and

sustains tumor growth and metastasis via triggering lactate-

sensitive machinery (29). In recent years, researchers have

determined that Gpr132, a member of the pH-sensing G protein-

coupled receptor family, is a supplemental sensor/receptor for

lactate and is highly expressed in macrophages (29). The lactate–

Gpr132 axis stimulates the tumor–macrophage interplay to sustain

breast cancer metastasis; nevertheless, its molecular mechanism

requires further studies (29).
Effects of lactate on the
cardiovascular system

As the principal metabolite of glycolysis, lactate is a substrate for

gluconeogenesis and energy metabolism and a signal molecule that

regulates gene expression (11, 13, 30) and immune inflammation

(11, 31–33) and promotes tumor growth (33–35). With an in-depth

understanding of lactate’s regulatory function in tissues and organs,

its effects on the cardiovascular system have gradually been

revealed. Lactate can serve as energy source for the myocardium,

regulate cardiac electrophysiological activity, modulate the function

of VSMCs, and promote angiogenesis.
Energy source for the myocardium

Under normal conditions, fatty acids are the main energy

source for the heart (4, 36). However, when the heart is stressed

by b-adrenergic stimulation (37–39), chronotropic challenge (40),

increasing afterload (38, 41), or shock (42), lactate becomes the

preferred fuel. The myocardium obtains 60–90% of its oxidizable

carbon source from lactate (43–45). It is now generally accepted

that dietary glucose is metabolized into lactate, which is then
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transported throughout the body and used to fuel the TCA cycle

in tissues like the heart (46). It has been shown that the heart is the

largest lactate-consuming organ in the body (47, 48). Almost all of

the lactate absorbed by the myocardium is oxidized as fuel (39).

Selective utilization of the fuel substrate is protective for the

myocardium while meeting the energy demand (4). Interestingly,

both embryonic and induced pluripotent stem cells can be

differentiated into purified cardiomyocytes simply by growing

them in glucose-free media containing lactate (49). Nevertheless,

the diabetic myocardium constitutes an exception; in particular,

compared to the control rat heart, the diabetic rat heart exhibits

remarkably reduced lactate oxidation, which may cause an increase

in the cytosolic NADH/NAD ratio (50). This observation indicates

that diabetes causes specific inhibition of myocardial lactate

oxidation, which may explain why patients with heart disease

complicated by diabetes have a worse prognosis (50).
Lactate regulates VSMCs

VSMCs, the main cellular components of the vasculature, are

very important for the maintenance of vascular tension and the

regulation of blood pressure (51–54). Recent studies have revealed

that lactate promotes the proliferation (55), migration (56), and

phenotype conversion of VSMCs (5). In an in vitro study, Kovacs

et al. (57) observed that the promotion of lactate production

resulted in a considerable increase in calpain activation in the

pulmonary arterial smooth muscle cells (PASMCs) of patients

with pulmonary arterial hypertension (PAH). Calpain inhibition

prevents lactate-induced cell proliferation and reduces apoptosis.

Furthermore, previous studies confirmed that the prevention of

extracellular and intracellular lactate generation via downregulation

of siRNA-PKM2 or LDHA inhibits the proliferation of human

aortic VSMCs (16, 58).

The mobility of activated VSMCs is closely related to enhanced

aerobic glycolysis (56, 58). Previous studies have shown for VSMC

that the inhibition of glycolytic activity inhibits lactate production

and migratory behavior via a compromised STAT3/HK2 signaling

axis (56, 58). In vitro experiments conducted by Yang et al. revealed

for the first time that lactate promotes the expression of synthetic

VSMC markers instead of contractile markers when compared to

lactate-free circumstances (5). Recent studies have also reported

that lactate can inhibit arterial SMC contraction via Ca2+-activated

K+ channels (KCa channels) (59, 60). Lactate regulates VSMCs

through these pathways, suggesting a potential regulatory

mechanism for vascular physiological function and pathological

changes in the body.
Lactate promotes angiogenesis

The promotion of angiogenesis to ameliorate ischemia and

hypoxia is beneficial for maintaining cardiovascular function in

myocardial infarction (MI), ischemic cardiomyopathy (61), a

compensatory period of myocardial hypertrophy (62), and

chronic thromboembolic PAH (63, 64). Recent studies have
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confirmed that lactate promotes angiogenesis (6, 7, 65–69)

(Figure 2). In preclinical experiments, exogenous supplementation

or endogenous production of lactate promoted angiogenesis in

brain tumors. In contrast, angiogenesis was impeded by inhibiting

lactate production, by knocking down LDHA (70) or lactate

transportation by targeting MCT1 (71–75).

The mechanism by which lactate promotes angiogenesis can be

partly explained by its effects on signal regulation. Vegran et al.

performed both in vitro and in vivo experiments and reported that

when lactate is transported into endothelial cells, it activates pro-

angiogenic NF-kB/IL-8 signaling to promote angiogenesis (74).

Previous studies showed that lactate inactivates prolyl-4-

hydroxylase (PHD) and stabilizes the activation of hypoxia-

inducible factor-1a, subsequently promoting angiogenesis by

inducing the expression of vascular endothelial growth factor

(VEGF)/VEGF receptor 2 and basic fibroblast growth factor (6,

66, 73, 76–78). Of note, lactate can indirectly promote angiogenesis

by inducing macrophage secretion of VEGF-a (79, 80).

Furthermore, recent studies have determined that lactate

promotes angiogenesis via direct binding of N-Myc downstream-

regulated gene 3 (NDRG3), an oxygen-regulated protein (5, 81).

Lactate prevents NDRG3 from degrading and facilitates hypoxia-

induced activation of the c-Raf/ERK pathway, which promotes

angiogenesis. Inhibition of lactate production abolishes NDRG3-

mediated angiogenesis (5, 81). Therefore, lactate may play a

cardioprotective role via the promotion of angiogenesis, providing

a new direction for the prevention and treatment of cardiovascular

diseases presenting with ischemia and hypoxia.
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Effects of lactate on hemodynamics

Tissue metabolites regulating hemodynamics are well-

documented (82). Under ischemic or hypoxic conditions, a

considerably increased lactate production results in vasodilation

with a marked reduction in vascular resistance (8, 60). Lactate also

has pH-independent vasodilatory effects in animal coronary arteries

(83–85). Nonetheless, Brazitikos et al. confirmed that neutralized

lactate mediates acute hypoxia-induced vasodilation in the retina

(86), suggesting that the vasodilatory effect may be due to lactate

independent of pH change (87). Montoya et al.’s in vitro experiment

revealed that lactate leads to coronary dilatation via the release of

endothelial nitric oxide in the isolated perfused rat heart (8).

Another in vivo experiment, conducted by Omar et al, showed

that lactate might cause cGMP-mediated vasodilation in calf

pulmonary arteries (88). Additionally, further studies have

indicated that lactate promotes vasodilation, which is partly

mediated by the activation of KCa channels in porcine coronary

arteries (60).

The effects of lactate on vascular resistance and vasodilation are

heterogeneous in different organs. Recent studies have shown that

GPR81 agonists induce hypertension in rodents, which can be

rescued by GPR81 inactivation (20, 89). The pressor effect has

been associated with different effects on vascular resistance, which

increases in the kidney but remains unchanged in the heart and

hind limb (20, 89). This suggests that lactate may bridge metabolism

and hemodynamics to maintain body homeostasis under ischemic

or hypoxic conditions.
FIGURE 2

Cellular pathways by which lactate regulates angiogenesis. ASCT2 alanine serine cysteine transporter 2, bFGF basic fibroblast growth factor, GLUT1
glucose transporter 1, HIF-1a hypoxia-inducible factor-1a, IL-8 interleukin-8, IkBa nuclear factor kB inhibitor-alpha, LDHA lactate dehydrogenase A,
MCT1 monocarboxylate transporter 1, ME malic enzyme, NDRG3 N-Myc downstream-regulated gene 3, NF-kB nuclear factor kB, PHD prolyl-4-
hydroxylase, VEGF vascular endothelial growth factor, VEGFR2 vascular endothelial growth factor receptor 2.
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Regulation of cardiac electrophysiological
activity

Lactate regulates the electrophysiological activity of the

myocardium and is associated with arrhythmia (9, 10, 90). A

possible explanation for this effect is how the lactate affects ion

channel regulation (91). ATP-sensitive potassium (KATP) channels

are inward-rectifying potassium channels that are widely

distributed in cardiomyocytes, VSMCs, non-vascular smooth

muscle cells, and nerve cells (92–94). Under physiological

conditions, activation of the KATP channels plays a myocardial

protective role; however, its continuous activation can lead to

serious ventricular arrhythmias or even ventricular fibrillation

(92–94). Keung et al. reported that intracellular application of

lactate activates the KATP channels in guinea pig myocytes (95).

Furthermore, Jin et al. confirmed that intracellular lactate induces

the opening of the KATP channels in a dose-dependent manner in

rabbit ventricular myocytes (91).

The fast sodium current (INa) is an essential ion channel on the

membrane of the fast reactive myocardium and is an important cause

of arrhythmia under pathological conditions (96). Lactate can modify

INa by hyperpolarizing guinea pig ventricular myocytes, which may

contribute to the development of ischemic arrhythmia (96, 97).

Revealing the effects of lactate on cardiac electrophysiological

properties will provide new insights into ischemic arrhythmia.
Implication of lactate in
cardiovascular diseases

Various cardiovascular diseases are associated with elevated

lactate concentrations, which often indicate a poor prognosis.

Revealing the potential mechanism of lactate may provide a new
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understanding and lead to a breakthrough in preventing and

treating cardiovascular diseases (Figure 3).
Lactate and atherosclerosis

Wall thickness is a marker of atherosclerotic plaque burden and

is strongly associated with clinical events (98–100). The

Atherosclerosis Risk in Communities (ARIC) carotid MRI study

revealed a strong gradient correlation between lactate and wall

thickness (101). In addition, recent studies have shown that lactate

may reduce the risk of atherosclerosis by acting via a variety of

different pathways.

First, plasma free fatty acid (FFA), an important risk factor for

atherosclerosis, is mainly derived from triglyceride lipolysis in

adipose tissues. Lactate activates GPR81 and suppresses lipolysis

through insulin-induced antilipolytic effects in mouse, rat, and

human adipocytes, and differentiated 3T3-L1 cells (27, 102, 103).

GPR81-selective agonists can suppress lipolysis and FFA

production in vitro and in mice without side effects (20, 104).

Second, areas of the vasculature affected by oscillatory shear

stress (OSS) are more likely to develop into atherosclerotic lesions

(105, 106). Physiologically relevant lactate doses can rescue OSS-

induced reductions in GPR81 expression, and subsequent GPR81

activation can result in valuable atheroprotective effects in OSS-

exposed endothelial cells (107).

Third, SMC proliferation is a key event in atherogenesis. MCT3

mRNA and protein expression are related to atherosclerosis

severity. An impairment in lactate transport, arising from MCT3

inhibition, may result in enhanced SMC proliferation and promote

of atherosclerosis (108). Lactate exerts an anti-atherosclerotic effect,

which may, at least in part, explain the protective effects of

moderate exercise against coronary heart disease. This
FIGURE 3

Implications of lactate in cardiovascular diseases. FFA free fatty acid, GPR81 G protein-coupled receptor 81, OSS oscillatory shear stress, PASMCs
pulmonary arterial smooth muscle cells, PHD2 2-oxoglutarate-dependent prolyl-4-hydroxylase, SMCs smooth muscle cells.
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observation suggests that regulation of lactate metabolism may be a

potential method for preventing coronary heart disease.
Lactate and MI

Diabetic patients with acute MI (AMI) have been reported to

have higher blood lactate concentrations than non-diabetic patients

with AMI (4.54 ± 1.44 vs. 3.19 ± 1.005 mmol/L; P<0.05) (109).

Blood lactate concentrations in AMI with diabetes are associated

with an increased incidence of HF, severe arrhythmias, cardiogenic

shock, and a higher mortality rate (109). Yang et al. reported that

lactate concentrations, LDH levels, and MCT expression were

greater in the ischemic zone than in non-ischemic tissues in a

swine MI model (5). Whether the increase in lactate expression

plays a protective role or is just a secondary change in AMI remains

controversial. Zhang et al. induced AMI in rats and reported that

pharmacological preconditioning with lactic acid and hydrogen-

rich saline or lactic acid alone could rescue the infarct area, serum

myocardial injury markers, and apoptotic index. This was achieved

by creating conditions that mimic persistent tissue acidosis and

allow for the selective generation of reactive oxygen species (110).

However, Aresta et al. identified that increasing tissue lactate

concentrations via repeated transient lactate exposure did not

improve contractile recovery after a prolonged ischemic period in

an isolated rat heart model (111). Therefore, more evidence is

required to reveal the effects of lactate on AMI, which can be an

indicator of prognosis.
Lactate and HF

It is generally acknowledged that elevated lactate concentrations

are common in patients with HF and are related to poor outcomes

(112–115). Several known conditions can cause lactate

accumulation in patients with HF, including (1) the peripheral

tissues lack blood and oxygen supply due to low cardiac output,

vasoconstriction, hypoxemia, impairment in tissue perfusion, or

inability of tissues to increase oxygen extraction (115–118) (2);

adrenergic drive and neurohormonal activation, resulting in higher

oxygen demand (113); and (3) diminished lactate clearance ability

attributable to abnormal hepatic and renal functions (113, 118). An

understanding of the causes of lactate accumulation is conducive to

personalized treatment strategies.

Increased blood lactate concentrations (≥2 mmol/L) are

correlated with a higher 1-year mortality rate in patients with

acute HF (113). According to Kawase et al., elevated lactate levels

(>3.2 mmol/L) on admission were related to worse in-hospital

mortality (odds ratio, 2.14; 95% confidence interval [CI], 1.10–

4.21; P=0.03) in patients with acute decompensated HF, either with

or without acute coronary syndrome (119) This suggests that high

lactate levels could also aid in stratifying the initial risk of early

mortality. Gjesdal et al. reached a similar conclusion, reporting that

the 30-day mortality rate was higher in MI patients complicated by

HF who had a lactate level of ≥2.5 mmol/L than in other patients

(112). All of the above mentioned results are based on studies that
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conducted a single lactate measurement. Biegus et al. investigated

how persistent hyperlactatemia affects patients with HF (120) and

examined 222 patients with elevated lactate levels. They observed

that patients with persistent hyperlactatemia, defined as

hyperlactatemia both on admission and after 24 h of

hospitalization, had a higher rate of adverse events (e.g., HF

worsening) than patients with transient hyperlactatemia.

Additionally, persistent hyperlactatemia was an independent

predictor of 1-year mortality (hazard ratio [HR], 2.5; 95% CI,

1.5–4.3; P<0.001) (120). In addition to the simple increase in

lactate levels, Biegus et al. also observed that hyperlactatemia

combined with intracellular iron deficiency significantly increased

mortality compared to the control group (HR, 5.6; 95% CI, 2.2–14;

P=0.0003) (114, 121). While hyperlactatemia is associated with a

poor prognosis in patients with HF, the available evidence

indicating that lactate is a risk factor for HF is difficult to prove

because lactate is also an important energy source for the

myocardium at rest and during stress (43–45). Danielle et al.,

using metabolomics to quantify blood metabolites from 110

patients, identified that failing hearts consumed more ketones and

lactate (48). A pilot randomized controlled clinical trial identified

that infusion of half-molar sodium lactate to patients with acute HF

increased cardiac output (from 4.05 ± 1.37 L/min to 5.49 ± 1.9 L/

min; P<0.01) and tricuspid annular plane systolic excursion (from

14.7 ± 5.5 mm to 18.3 ± 7 mm; P=0.02) without any detrimental

effects on organ function (36). Furthermore, preclinical experiments

revealed that in cardiac myocytes of rats with congestive HF, the

MCT1 formation was significantly upregulated, and the lactate

uptake rate was increased, which might promote myocardial

energy metabolism and improve heart function (122, 123).

Whether lactate is a protective or risk factor in patients with HF

needs to be further verified.
Lactate contributes to hypertension

Increasing evidence from clinical and preclinical experiments

has shown that lactate contributes to the development of

hypertension. In a study that included 5,554 participants from the

ARIC study who had no diagnosed or subclinical hypertension at

baseline, the mean plasma lactate concentrations were 0.8 mmol/L.

Compared to the first quartile, the fourth quartile of plasma lactate

concentrations was associated with a higher risk of hypertension at

a median follow-up of 11.9 years (HR, 1.18; 95% CI, 1.07–1.31),

even after adjustment for conventional risk factors (124). Moreover,

Lian et al. reported that plasma lactate concentrations were

significantly higher in patients with non-dipping hypertension

than in those with dipping hypertension, which may contribute to

greater targeted organ damage (125). Furthermore, animal

experiments revealed that intravenous injection of sodium lactate

at concentrations of 0.5 M or 2 M led to a prompt and short-term

increase in blood pressure among normotensive Wistar rats and

spontaneously hypertensive rats (126).

Lactate may promote an increase in blood pressure via the

following pathways. First, lactate is a GPR81 agonist that induces

hypertension in wild-type rodents via the endothelin system. Also,
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antagonism of the endothelin receptors can block the increase in

blood pressure (20, 89). Second, lactate promotes an elevation of

systemic arterial blood pressure by increasing central sympathetic

activity. Marina et al. showed that brainstem hypoxia triggers lactate

and ATP release in spontaneously hypertensive rats, promoting C1

neuron excitation in vitro and increasing sympathetic nerve activity

and arterial blood pressure in vivo (127). Third, immunomodulation

is crucial to the development of hypertension and hypertensive organ

injury (128–130). Lactate is an important metabolite that contributes

to immunomodulation, which may potentially elucidate why lactate

promotes the occurrence of hypertension and target organ injury;

nonetheless, further studies are required to confirm this (128, 131,

132). Furthermore, lactic acid can reduce extracellular pH via protons,

leading to the activation of acid-sensing ion channels and reflexively

increasing mean arterial pressure (133).
Lactate promotes PAH

Using ultra-high-performance liquid chromatography coupled

with high-resolution mass spectrometry, our team recently

determined that serum lactate concentrations were higher in

patients with PAH than in healthy controls (134). We also

confirmed that the expression of glycolysis-related enzymes and

LDH increased in a rat model of monocrotaline-induced PAH

(134). Our results are consistent with the findings of other relevant

studies, which reported that the Warburg effect is enhanced with

increased lactate generation in PAH (135, 136). It is well

documented that PASMC hyperproliferation is an important

pathological basis of pulmonary vascular remodeling (137–140).

Lactate not only promotes the proliferation of induced pluripotent

stem cell-derived VSMCs in the human aorta (5) but also

encourages PASMC proliferation and pulmonary vascular

remodeling (57). Recent studies have reported that pulmonary

vascular endothelial cells from patients with PAH have decreased

PHD2 expression and that mice with endothelial cell-targeted

disruption of the gene for PHD2 (EGLN1) develop obliterated

vascular remodeling and complex lesions, similar to patients with

PAH (141). Additionally, lactate can inhibit 2-oxoglutarate-

dependent PHD, predominantly PHD2 (3, 66). These

experiments suggest that lactate may promote the development of

PAH via PHD2 inhibition. Recently, some researchers have focused

on inhibiting the Warburg effect to develop new therapies for PAH

(136, 142). However, prior to that, a more careful investigation of

the mechanism of the Warburg effect and lactate in relation to the

development of PAH is necessary (136).
Targeting lactate metabolism
and signaling

As mentioned above, lactate affects the progression of

cardiovascular diseases. Regulation of lactate production or signal

transduction is a promising approach for cardiovascular disease
Frontiers in Endocrinology 07
therapeutics. Three pathways can directly influence lactate

metabolism and signal transduction.

First, targeting LDH enzymes can directly affect lactate

production. A variety of LDH-targeting compounds have been

validated in preclinical models of cancer (19). Among these

compounds, AT-101 is a nonselective LDH inhibitor, while

galloflaavin, FX-11, and N-hydroxyindole-based compounds have

been identified to preferentially inhibit LDHA than LDHB (19).

Therefore, the efficacy of LDH inhibitors will depend on the

expression of the LDH isoform in tissues and will be

context-dependent.

Second, targeting MCTs may have considerable effects on

lactate-dependent metabolic symbiosis, which is responsible for

intracellular and extracellular lactate homeostasis. Several MCT

inhibi tors have been ident ified, such as a-cyano-4-
hydroxycinnamate (143), organomercurials, and stilbene

disulfonates (144), as well as other MCT inhibitors with higher

selectivity, includingAR-C155858 (145), and the AstraZeneca

compounds AZD3965 (targets MCT1 and MCT2) (146) 7-

aminocarboxycoumarins (targets MCT1 and MCT4), SR13800

(targets MCT1) (147), and AZ93 (targets MCT4) (148).

Currently, inhibition of MCT transport has been widely

investigated in the field of cancer, and some breakthroughs have

been achieved (149). Recent work has also shown that inhibiting

lactate export by targeting MCT4 can mitigate isoproterenol-

induced hypertrophy in cultured cardiomyocytes and in mice (149).

Third, targeting GPR81 is a potentially effective therapeutic

approach, as it plays a signal transduction role by activating GPR81,

thus indicating the potential of this receptor in controlling

hypertension. Numerous studies have reported that lactate

promotes hypertension via GPR81 (20, 89). Hence, theoretically,

selective high-affinity antagonists of GPR81 have promise as

antihypertensive drugs. Furthermore, GPR81 knockout mice ‘do

not have any obvious difference in cardiovascular phenotype,

indicating that pharmacological blockade of the receptor to

antihypertensive might limit any important side effects (20).

However, no such blockers are currently available to test the

validity of this strategy.
Conclusions

Lactate metabolism plays an important role in regulating the

cardiovascular system. Nonetheless, lactate’s mechanism of action

at the molecular level in the cardiovascular system is not fully

understood. New evidence indicates that lactate can extend its

metabolic function to react with cells, tissues, or organs and that

lactate regulates different cellular signaling pathways. Recent

findings also suggest an important role for lactate in the heart.

Growing both embryonic and induced pluripotent stem cells in

lactate-supplemented, glucose-free medium allows for their

differentiation into cardiomyocytes (49), indicating their critical

role in the differentiation of cardiomyocytes. Isoproterenol-induced

hypertrophy could be attenuated by inhibiting lactate export (149),

suggesting a possible therapeutic strategy by targeting lactate. These

findings not only aid us in obtaining a new understanding of how
frontiersin.org

https://doi.org/10.3389/fendo.2023.1205442
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2023.1205442
lactate regulates the cardiovascular system but also encourage us to

re-examine the role of the Warburg effect in the cardiovascular

system. Further exploration of how lactate regulates the

cardiovascular system under physiological and pathological

conditions and examining whether targeting lactate metabolism,

transport, or signal transduction can be exploited as an effective

protective strategy against cardiovascular diseases will

be meaningful.
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113. Zymliński R, Biegus J, Sokolski M, Siwołowski P, Nawrocka-Millward S, Todd
J, et al. Increased blood lactate is prevalent and identifies poor prognosis in patients
with acute heart failure without overt peripheral hypoperfusion. Eur J Heart Fail (2018)
20(6):1011–8. doi: 10.1002/ejhf.1156
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