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The maternal-fetal interface is defined as the interface between maternal tissue

and sections of the fetus in close contact. RNAmethylation modifications are the

most frequent kind of RNA alterations. It is effective throughout both normal and

pathological implantation and placentation during pregnancy. By influencing

early embryo development, embryo implantation, endometrium receptivity,

immune microenvironment, as well as some implantation and placentation-

related disorders like miscarriage and preeclampsia, it is essential for the

establishment of the maternal-fetal interface. Our review focuses on the role

of dynamic RNA methylation at the maternal-fetal interface, which has received

little attention thus far. It has given the mechanistic underpinnings for both

normal and abnormal implantation and placentation and could eventually

provide an entirely novel approach to treating related complications.

KEYWORDS

implantation, placentation, epigenetic modification, post-transcriptional regulation,
RNA methylation, maternal-fetal interface
1 Introduction

The maternal-fetal interface is the interface between maternal tissue and fetal

components in direct contact. It is primarily made up of the placenta and maternal

decidua (1). At the cellular level, these structures are predominantly composed of

trophoblast, decidual, and immune cells (2). Additionally, the normal early embryonic

growth is necessary for the development of the maternal-fetal interface. Poor maternal-fetal
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interface development predisposes to a variety of unfavorable

pregnancy outcomes, like miscarriage and preeclampsia (3, 4).

RNAs play a crucial role in controlling biological functions.

They have emerged as key regulators of RNA function and

metabolism (5). In eukaryotes, RNA methylation modifications

are the most common type of RNA alteration in eukaryotes,

accounting for 60% of all RNA modifications (6). N6-

methyladenosine (m6A), N1-methyladenosine (m1A), 5-

methylcytidine (m5C), and others are prevalent types of RNA

methylation. The most common type of RNA methylation on

messenger RNAs (mRNAs) in complex organisms is m6A RNA

methylation (7). Normal and abnormal implantation and

placentation are both affected by RNA methylation. By

influencing the early stages of embryo development, trophoblast

invasion, endometrial receptivity, and immunological

microenvironment, it is essential for the establishment of the

maternal-fetal interface (8). Furthermore, preeclampsia and other

disorders associated with implantation and placentation are closely

correlated with RNA methylation (9).

Despite significant breakthroughs in the study of pregnancy, it

is still exceedingly challenging to comprehend how RNA

methylation works in human implantation. Our review covers the

most recent RNA methylation studies and discusses the several

forms of RNA methylation in humans, as well as the role of

regulatory factors. Furthermore, we discuss the significance of

dynamic RNA methylation in implantation and placental

development. In addition, our review highlights the previously

unknown involvement of RNA methylation in the formation of

the maternal-fetal interface. In brief, this paper aims to review

recent findings on developmental changes at the maternal-fetal

interface associated with RNA methylation and its implications for

implantation and placenta-associated diseases. This review is crucial

because it provides a comprehensive overview of the current state of

research on RNA methylation at the maternal-fetal interface, points

to future research directions, and offers the prospect of a new

strategy for the future treatment of related disorders (Figure 1).
2 Common types of RNA methylation
modification in homo species

In both prokaryotes and eukaryotes, over 100 different types of

post-transcriptional chemical modifications of RNA have been

discovered in messenger RNA (mRNA), ribosomal RNA (rRNA),

transfer RNA (tRNA), and small RNA (10, 11). RNA methylation is
Abbreviations: mRNA, messenger RNA; rRNA, ribosomal RNA; tRNA, transfer

RNA; m6A, N6-methyladenosine; m5C, 5-methylcytidine; m1A, N1-

methyladenosine; ZFD, zinc finger structural domain; YTH, YT521-B homology;

RNA BS-seq, RNA bisulfite sequencing; ESCs, embryonic stem cells; LLPS, liquid-

liquid phase separation; eRNAs, enhancer RNAs; ECM, extracellular matrix; MZT,

maternal-to-zygote transition; ZGA, zygote genome activation; scm6A-seq, single-

cell m6A sequencing; PGR, progesterone receptor; MET, mesenchymal-epithelial

transformation; EMT, epithelial-mesenchymal transformation.
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one of the most major epigenetic modifications in post-

transcriptional RNA modification (12–14). It is estimated that

methylation is responsible for more than 60% of RNA alterations

(15). They all play critical roles in metabolism, structural stability,

and RNA synthesis (Table 1) (85, 86).
2.1 m6A modification in RNA

As early as 1977, Karen Beemon et al. found residues of m6A in

Rous sarcoma virus RNA (87). Since two groundbreaking papers in

2012 demonstrated the distribution of m6A residues in the

mammalian species, there has been an increase in interest in

RNA-methylation-based research (88, 89). Previous studies reveal

that m6A modification occurs preferentially at the m6A consensus

motif RRACH, but not all RRACH sequences will have m6A

modification (90). The dynamic network of m6A is regulated by

methyltransferase complex (“writer”) and demethylase (“eraser”),

with “writer” adding m6A modification and “eraser” exerting

demethylation activity (91). Moreover, the downstream functions

of m6A are mediated by RNA-binding proteins (“reader”) that

recognize m6A and regulate RNA processing (35, 92).

METTL3 is the first methyltransferase discovered and it is one of

the most fundamentally important “writers” (16). METTL14 and

METTL3 share regions of sequence similarity (>35% nucleotide

sequence identities) (93). They can form a heterodimeric core

complex, with METTL3 acting primarily as a catalytic core and

METTL14 acting as an RNA binding platform (94–96). The solution

structureof the zincfinger structural domain (ZFD)ofMETTL3 fulfills

the methyltransferase activity of the complex (97). The METTL3-

METTL14 dimer mediates the deposition of m6A on nuclear RNA in

mammalian cells (17). WTAP is another regulatory subunit of m6A

methyltransferase in RNA (18). WTAP itself has no catalytic activity

for m6A modification because it lacks a conserved catalytic

methylation domain. However, it acts as a bridging protein for the

interaction with METTL3 and METTL14, thus significantly affecting

RNAm6A loading (17). Themodification can be reversed by FTOand

ALKBH5 since they are chief erasers that mediate the m6A

demethylation process (28, 29). In addition, the m6A “readers”

mainly belong to the YT521-B homology (YTH) family and contain

theYTHstructural domain (98). IGF2BPsare a recently identified class

of m6A readers that preferentially recognize m6A-modified mRNAs

and help to maintain the stability of thousands of possible mRNA

targets, including MYC (44).

A growing body of evidence suggests that m6A is involved in

RNA structural stability, translation, and degradation at the mRNA

level (99–103). It can modulate protein binding by inducing RNA

structural changes that alter the accessibility of the protein binding

site (43). Additionally, m6A modification alteration serves several

functions in linking pre-mRNA maturation to mRNA fate. Recent

studies have shown that m6A in mRNA appears to be involved in

the regulation of selective splicing, translation efficiency, and

stability. m6A also controls the lifetime and degradation of

mRNA. There is sufficient evidence that the YTH structural

domain family promotes mRNA degradation. YTHDF1 interacts

with AGO2 via the YTH structural domain and then undergoes
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liquid-liquid phase separation (LLPS) leading to mRNA

degradation by P-body formation (104).

Similar to mRNA, m6A-related modifications have also been

found to be involved in non-coding RNA synthesis and metabolism

(60, 105). METTL3 can methylate chromosome-associated

regulatory RNAs (carRNAs), such as promoter-associated RNAs

(paRNAs), enhancer RNAs (eRNAs), and RNAs produced from

transposable elements (repeat RNAs). These carRNAs are

destabilized by m6A methylation, which affects adjacent

chromatin states and downstream transcription (106).

In addition, the RNA writers, erasers, or readers mentioned

above are thought to be involved in DNA methylation processes.

FTO and ALKBH5, two m6A erasers, may also be related to DNA

methylation. Evidence suggests that ALKBH5 demethylates DNA’s

3-methylcytosine and has limited DNA repair activity (107). FTO,

however, has a negligible impact on the demethylation of 5-methyl-

2’-deoxycytidine (5mdC) in DNA (108). However, this might lead

to intriguing new directions for an interaction between DNA

methylation and RNA methylation regulators. Recent studies have

also shown that RNA m6A methylation can reverse chromatin

remodeling and histone alterations. Shuang Deng et al. discovered

that RNA m6A modifier reader FXR1 can recruit the DNA 5-

methylcytosine dioxygenase TET1 to genomic areas and remove

DNA methylation (109, 110).
2.2 m5C modification in coding RNA and
non-coding RNA

Aside from m6A, m5C is another common modification found

in RNAs. During m5C modification, “writers”, “erasers”, and
Frontiers in Endocrinology 03
“readers” may act through similar mechanisms compared to m6A

(111). Interestingly, recent studies have revealed that the m6A and

m5C modifications of the same RNA may interact and

synergistically affect protein expression patterns (112, 113). m5C

can be installed by any of the seven proteins of the Nol1/Nop2/SUN

domain (NSUN) family as well as DNMT2 (114).

As an important epigenetic modifier in RNA, m5C plays a

central role in governing transcript abundance. NOP2/NSUN1, a

m5C RNA methyltransferase, inhibits transcription and promotes

viral latency by competing with TAT for TAR binding and

methylation (115). m5C RNA methyltransferase can bind to and

stabilize mRNA. As a typical tRNA methyltransferase, methylation

of p16 3’UTR by NSUN2 may stabilize p16 mRNA (116). m5c

modification has also been shown to regulate the nucleo-plasmic

shuttling mechanism of RNA. NSUN2 can regulate the nucleo-

plasmic shuttle and RNA binding of ALYREF. After NSUN2

knockdown, nuclear retention of ALYREF is enhanced and,

subsequently, cytoplasmic localization is reduced (117). In

mammals, ALYREF recognizes and exports YBX2 and SMO

mRNAs with m5C modifications from the nucleus to the

cytoplasm (118). These findings strongly suggest that m5C is

specifically recognized by ALYREF and thus promotes selective

mRNA export. In addition, cytosine methylation level and the

function of RNA translation are interdependent (119). m5C

methylation increases translation levels in NSUN6-targeted

mRNAs. Further evidence from ribosome analysis shows that

NSUN6-specific methylation is connected to translation

termination (120).

Additionally, these RNA m5C methylation-related writers,

readers, and erasers might also be involved in DNA methylation.

For example, DNA methylation is carried out by members of the
A B

FIGURE 1

Graphical abstract. (A) Embryonic development and maternal-fetal interface formation; (B) RNA methylation.
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TABLE 1 Regulators in coding and non-coding RNA modification.

RNA Regulators
Modification

m6A m5C m1A

Coding RNA mRNA

Writer

METTL3 (1997) (16)
METTL14 (2014) (17, 18)
WTAP (2014) (17, 18)
KIAA1429(2014) (19)
RBM15(2016) (20)
METTL16(2017) (21)
ZC3H13(2018) (22)
VIRMA (2018) (22)
CAPAM (2019) (23)
CBLL1(2021) (24)

NSUN2(2012) (25)
NSUN6 (2020) (26)

TRMT10C (2017) (27)

Eraser
FTO (2011) (28)
ALKBH5 (2013) (29)

TET2 (2016) (30)
TET3 (2014) (31)

ALKBH3 (2022) (32)

Reader

HNRNPA1 (2007) (33)
HNRNPA2B1 (2015) (34)
HNRNPC (2015) (35)
YTHDF1 (2015) (36)
YTHDF2 (2016) (37)
YTHDC1 (2016) (38)
YTHDF3 (2017) (39)
YTHDC2 (2017) (40)
FMR1 (2017) (41)
LRPPRC (2017) (42)
RBMX (2017) (43)
IGF2BP1/2/3 (2018) (44)
ELAVL1 (2019) (45)

ALYREF (2006) (46)
YBX1 (2014) (47)

/

Non-coding RNA tRNA
Writer

METTL16 (2017) (48)
METTL5:TRMT112 (2021) (49)

NSUN2 (2012) (50)
NSUN6 (2020) (26)

TRMT10C (2017) (27)

Eraser
/ TET2 (2021) (51)

TET3 (2014) (31)
ALKBH1 (2016) (52)
FTO (2018) (53)
ALKBH3 (2019) (54)

Reader / YBX1 (2018) (55) /

rRNA
Writer

METTL16 (2017) (48)
METTL5 (2019) (56)
ZCCHC4 (2020) (57)

NOP2 (2010) (58) TRMT10C (2017) (27)

Eraser / TET3 (2014) (31) /

Reader / YTHDF2 (2020) (59) /

microRNA

Writer

METTL3 (2015) (60)
METTL14 (2017) (56)
METTL16 (2017) (48)
METTL4 (2022) (61)

/ /

Eraser
ALKBH5 (2021) (62)
FTO (2021) (63)

TET3 (2014) (31) /

Reader

HNRNPA1 (2007) (64)
HNRNPA2B1 (2015) (34)
ELAVL1 (2018) (65)
IGF2BP1 (2018) (66)
IGF2BP2 (2018) (66)
IGF2BP3 (2018) (66)
FMR1 (2021) (67)
YTHDC1 (2021) (68)
HNRNPC (2022) (69)

/ /

lncRNA

Writer

METTL3 (2016) (20)
RBM15 (2016) (20)
METTL16 (2017) (48)
METTL14 (2020) (70)

NSUN2 (2020) (73) TRMT10C (2017) (27)

(Continued)
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DNA methyltransferase (DNMT) family (121). However,

mammalian DNMT2 is also a tRNA methyltransferase with a

conserved tRNA recognition mechanism (122). DNMT2-

mediated m5C contributes to the secondary structure and

biological properties of small non-coding RNAs (sncRNAs) and

promotes the ability of sperm RNA to induce metabolic changes in

offspring (123).

m5C alterations are also involved in the maturation and

structural changes of non-coding RNAs. Based on miCLIP-Seq

data, Han Liao et al. discovered that NOP2/NSUN1 catalyzes the

deposition of m5C on 28S rRNA and regulates the processing of

pre-rRNA (124). The NSUN4-mTERF4 complex is involved in the

maturation of 16S rRNA (125), while NSUN5 is associated with

overall protein synthesis and normal growth (126).

m5C modification in RNA is considered to be reversible.

Demethylation is carried out by ten-eleven translocation (TET)

enzymes. Although the catalytic activity of TET proteins was

thought to be limited to DNA for several years, current research

has begun to uncover their potential significance in altering RNA

bases. TET2 has been shown to promote the conversion of 5-

methylcytosine on tRNA to hm5C as well as to regulate the

processing and stabilization of different classes of tRNA

fragments (51). This may be related to intracellularly mediated

m5C oxidation by TET2 (127, 128).

Furthermore, readers are responsible for reading the

information on RNA m5C modification. ALYREF was

characterized as a nucleoplasmic mRNA m5C reader (117).

Further studies indicated that CDKN1A is an ALYREF target and

a reader of m5C-modified mRNA (129). In humans, FMRP has

been identified as a novel “reader” of m5C modification, promoting

mRNA-dependent repair and cell survival in cancer (130).

Moreover, YTHDF2 can also be considered as a type of m5C
Frontiers in Endocrinology 05
reader. It can bind directly to m5C in rRNA based on Trp432, a

conserved residue located in the hydrophobic pocket of

YTHDF2 (59).

Overall, the functional roles of m5C modification involve pre-

RNA processing and splicing, mRNA stability, and other processes

(131–135). However, the detailed mechanism is not clear. In

addition, current research on m5C demethylases is restricted, and

its role in RNA has to be investigated further.
2.3 m1A modification in RNA

As a novel form of RNA modification, m1A has received

considerable attention in recent years. m1A is mainly present in

the T-loop structure of tRNA and is introduced by the TRMT6/

TRMT61A complex. It appears less commonly in mRNA. Modi

Safra et al. discovered a m1A site catalyzed by TRMT10C in

mitochondrial ND5 mRNA with high tissue-specific and tight

developmental control of methylation levels (27).

Erasers act as m1A demethylases, removing the methyl group

from m1A and making it functionally reversible. ALKBH1 and

ALKBH3 are two common demethylases (52, 54).

Using a photocrosslinking approach, Seo KW et al. discovered

that YTHDF1/2 is the reader of m1Amodification on RNA and that

the binding of YTHDF2 to m1A promotes the degradation of m1A

RNA (136).

Nevertheless, little is known about m1A development pathways,

and their function in RNA remains to be elucidated.

Notably, over the last few years, more than 100 alterations

inside RNAs have been discovered, including m1G, m6G, and

others. Further inquiry is required to determine their role in

molecular function.
TABLE 1 Continued

RNA Regulators
Modification

m6A m5C m1A

VIRMA (2021) (71)
WTAP (2022) (72)

Eraser
ALKBH5 (2019) (74)
FTO (2022) (75)

TET3 (2014) (31) /

Reader

IGF2BP1 (2013) (76)
HNRNPC (2015) (35)
YTHDC1 (2016) (20)
RBMX (2017) (43)
ELAVL1 (2019) (77, 78)
HNRNPA2B1 (2020) (79)

/ /

circRNA
Writer

METTL3 (2017) (80)
METTL16 (2017) (48)
METTL14 (2022) (81)

/ /

Eraser / TET3 (2014) (31) /

Reader

FMR1 (2006) (82)
YTHDF3 (2017) (80)
HNRNPA2B1 (2022) (83)
YTHDC1 (2020) (84)

/ /
/, Not available.
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3 RNA methylation in the formation of
the maternal-fetal interface

During the establishment of pregnancy, early embryonic

development and implantation are important components (137).

Normal preimplantation embryo development is a crucial step for a

successful pregnancy. The human blastocyst begins to implant in

the uterus seven days after fertilization by adhering to the receptive

endometrium via its trophectoderm (138).

During the first trimester of human pregnancy, an interface is

formed between the maternal decidua and the placenta of the fetus,

which is also known as the maternal-fetal interface (139). It is a

unique microenvironment composed of the maternal decidua and

fetal trophoblast. Immune crosstalk at the maternal-fetal interface is

also required for a successful pregnancy (1). Trophoblast, decidual

stromal cells, and immune cells are important in metaphase
Frontiers in Endocrinology 06
vascularization, maternal immune tolerance, and maternal

metabolic changes that facilitate fetal nutrient delivery (4).

RNA methylation may have a major role in the development of

the maternal-fetal interaction. In this section, we summarized the

function of RNA methylation in this section, focusing on four

aspects in particular: early embryo development, embryo

implantation, endometrial receptivity, and immunological

microenvironment (Figure 2).
3.1 RNA methylation in the early
embryo development

Semen RNA epigenetic modifications have potential effects on

early embryogenesis and paternal epigenetic inheritance (140).

METTL3-mediated m6A regulation is critical for male fertility
A B

DC

FIGURE 2

The function of RNA methylation in the formation of the maternal-fetal interface. (A) Early embryo development. Early embryonic development
undergoes a transition from the zygote, 2-cell stage, 4-cell stage, morula, compacted morula, early blastocyst, late blastocyst, implanted embryo,
and embryo; (B) The changes in blastocyst during embryo implantation; (C) The establishment of endometrium receptivity; (D) Different immune
cells involved in the immune microenvironment.
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and spermatogonia differentiation during spermatogenesis (141). It

also modulates protein synthesis in spermatogonial stem cells and

spermatids. Dual deletion of METTL3 and METTL14 in advanced

germ cells can result in poor spermatogenesis due to altered

translational efficiency of m6A-containing transcripts (142).

Furthermore, ALKBH5-mediated m6A erasure is required for

appropriate splicing and production of longer 3’-UTR mRNAs,

and reversible m6A modification is a key mechanism for post-

transcriptional control of mRNA fate in late meiotic and haploid

germ cells (143). These studies hint to the impact of RNA alteration

on sperm development, which is responsible for the normal

development of the embryo after fertilization.

Maternal RNA degradation, comprising maternal (M) and

zygotic (Z) decay pathways, is also essential for oocyte maturation

and embryogenesis. YAP and TUT4/7 may regulate maternal

mRNA Z-decay during the human maternal-to-zygote transition

(MZT) and play an important role in the early development of

mouse and human embryos (144, 145). RNA methylation is

believed to have a major role in maternal RNA degradation. In

Drosophila, METTL3-METTL4 complex-mediated m6A

modification contributes to normal embryogenesis and may be

involved in the partial degradation of maternal RNA.

Additionally, FMR1 preferentially binds RNAs containing the

m6A-modified “AGACU” and controls the decay of its target

parent mRNA in a m6A-dependent way (146). During the MZT,

transcriptionally silenced embryos are dependent on post-

transcriptional regulation of maternal mRNA until zygote

genome activation (ZGA) (147). There is evidence that the

recently identified m6A reader IGF2BP recruits the mRNA

stabilizer HuR to prevent the degradation of m6A-containing

mRNAs and to promote their translation (44). Maternal mRNA

stability in zebrafish has been found to be significantly regulated by

IGF2BP3. In zebrafish, cytoplasmic division and cytoskeletal

processes are reportedly mediated by AURKB (aurora B). As a

target of IGF2BP3, AURKB showed significantly reduced mRNA

expression in embryos with IGF2BP3 knockdown, resulting in

quick degradation of maternal mRNA (148, 149). The m6A

reader YTHDF2 are also proved to primarily affect the

methylated maternal mRNA at 4 h.p.f, regulating zebrafish

maternal mRNA clearance and thereby controlling development

through MZT (149). Further research indicated that the

methyltransferase METTL16 is essential for the viability of early

mouse embryos by modulating MAT2A mRNA. The loss of

METTL16 causes a dramatic change in the E3.5 blastocyst

transcriptome, preventing the further development of mouse

embryos (150). Most recently, single-cell m6A sequencing

(scm6A-seq) methods were used to analyze the m6A methylome

and transcriptome in individual oocytes as well as organelles of

cleavage-stage embryos. It has been demonstrated that METTL3-

catalyzed m6A primarily affects RNA stability and can

preferentially promotes degradation in germinal vesicle oocytes.

In the field of single-cell research, the findings indicated dynamic

m6A regulation in RNA metabolism during oocyte development

and syncytial genome activation (151). In addition, the m6A reader

YT521-B homology domain protein 1 (YTHDC1) and its target

m6A RNAs function upstream of SETDB1 to maintain mouse
Frontiers in Endocrinology 07
embryonic stem cells and repress retrotransposons and bicellular

phase (152).

After implantation of the embryo in the uterus, RNA post-

transcriptional modifications also regulate germ layer growth. The

rRNA m6A methyltransferase METTL5 is engaged in the

developmental process (153) . METTL5 must form a

heterodimeric complex with TRMT112 to establish metabolic

stability in cells (56). It methylates 18S rRNA both in vivo and

in vitro, and METTL5-deposited m6 A is involved in regulating

efficient translation of the F-box andWD repeat domain-containing

7 (FBXW7) to enhance mouse embryonic stem cell differentiation

(154, 155). In addition, evidence suggests that m6A deposition is

particularly necessary for the induction of ectoderm, but not for the

differentiation of the stereotyped endoderm. METTL14 promotes

ectodermal maturation, which is necessary for post-implantation

development in mice. The absence of METTL14 and the associated

drop in m6A levels impede the ability of ESC initiation and further

differentiation, resulting in the inability of mouse ESC to transition

from the naive to the initiating state (156). However, various

researchers believe that m6A deposition is equally crucial in the

induction of endodermal differentiation. Arginine methylation of

METTL14 is a novel molecular mechanism that regulates m6A

deposition. m6A deposition is regulated by PRMT1-mediated

arginine methylation of METTL14 at its disordered C-terminal

region (157). The R255 location of METTL14 was discovered to

impact the endodermal differentiation of mouse embryonic stem

cells, implying a direct link between protein methylation and RNA

methylation (158). Of note, the exact effect of m6A methylation

modification of RNA on which germ layer differentiation takes

place still needs further study.

Other methylation changes, such as m5C methylation, have

been demonstrated to have similar consequences to m6A

methylation in early embryonic development.

The majority of m5C sites in protein-coding RNAs are

catalyzed by NSUN6. Evidence suggests that embryonic

development in mice is largely unaffected by the complete loss of

NSUN6. In vitro cellular investigations and in vivo animal assays

were carried out for verification. Reduced levels of NSUN6-targeted

mRNAs are demonstrated in embryonic-like bodies lacking NSUN6

(120). However, there are currently conflicting perspectives on

whether m5c promotes embryonic development. Jianheng Liu

emphasized the functional importance of the maternal mRNA

m5C by quantitative mRNA m5C maps of six vertebrate and

invertebrate species at different developmental stages. They

discovered that NSUN2 deletion embryos incur cell cycle

stoppage or delay and fail to commence maternal-to-zygotic

transition in time using D. mel as a model (159). Moreover,

NSUN5 deficiency leads to decreased m5C in the exon and

3’UTR regions as well as a reduction in the translation efficiency

of mitotic arrest deficient 2 like 2 (MAD2L2) and growth

differentiation factor 9 (GDF9) in the ovary, inhibiting

folliculogenesis and development during ovarian aging. This

suggested that NSUN5/m5C-regulated maternal mRNA stability

is essential for MZT transition as well (160). In zebrafish, Ybx1 and

Pabpc1a coordinate to regulate the stability of m5C-modified

maternal mRNA. Y-box binding protein 1 (Ybx1) recognizes
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m5C via p-p interaction with the key residue Trp45 in the Ybx1

cold shock domain (CSD) preferentially C-modified mRNA, which

plays a role in maternal mRNA stability and early embryogenesis

(161). Additionally, the RNA cytosine methyltransferase NSUN3 is

an important factor in ESC differentiation, especially in

neuroectodermal differentiation. Inactivation of NSUN3 skews ESC

differentiation towards the mesendoderm and affects Wnt signaling

and mitochondrial ROS production in embryonic stem cells (162).

Based on m7G methylated tRNA immunoprecipitation

sequencing (MeRIP-Seq) and tRNA reduction and cleavage

sequencing (TRAC-Seq), increased ribosome occupancy of the

corresponding codon in METTL1 knockout mESCs was observed.

This suggests an important role for the mammalian m7G tRNA

methylome in ESCs (163).
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However, the specific effects of RNA methylation on different

phases of embryonic development, whether in m5C modification or

m7G modification, have yet to be studied. Their different roles and

mechanisms in sperm development, egg maturation, MZT, and

embryo layer differentiation after embryo implantation remain the

focus of future research.

Overall, RNA methylation is involved in spermatogenesis, egg

maturation and MZT, and embryo layer differentiation in early

embryo development (Figure 3). Further research is still required

for the possible different mechanisms of RNA methylation and

demethylation in the development of embryos before and after

implantation. Moreover, it also needs further exploration of the

function of m5C and m7G RNA modification during early

embryo development.
FIGURE 3

RNA methylation in the early embryo development. METTL3, METTL14, and ALKBH5 modify mRNA and participate in spermatogenesis. METTL3,
METTL14, METTL16, FBX1, FMR1, and YTHDF2 are involved in maternal mRNA degradation during the maternal-to-zygote transition. METTL3,
METTL14, and METTL15 are involved in germ layer differentiation after embryo implantation.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1205408
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2023.1205408
3.2 RNA methylation in
embryo implantation

Embryo implantation is one of the important aspects of maternal-

fetal interface formation. The embryo implantation requires the

degradation of the extracellular matrix (ECM) and the establishment

ofuterine receptivity (164).Embryonic trophoblasts are also important

for embryo implantation and placental development. The

proliferation, differentiation, and invasive activity of trophoblast cells

are all linked to successful embryo implantation, placenta formation,

and growth and development. During embryo implantation,

trophoblast cells adhere to and invade the maternal endometrium

and eventually form the placenta. After implantation, trophoblasts

invade and remodel the decidual spiral arteries, providing the basis for

material exchange and oxygen transport between the fetus and the

mother.Angiogenesis occurs at thematernal-fetal interface andplays a

key role in fetal development as the embryo grows after implantation.

Thus, trophoblast invasion is a hallmark of placental development in

early pregnancy and plays an important role in the implantation and

formation of the maternal-fetal interface during pregnancy (165).

Trophoblast invasion behavior and its regulatory factors have

become a hot topic of current research.

Trophoblast invasion can be regulated by dynamic methylation

modifications of mRNA. By modulating MYLK expression, METTL3

enhances trophoblast cell invasion (166). Further analysis revealed that

RNA methylation may affect trophoblast invasion by influencing

mRNA stability. Based on stromal gel invasion assay and transwell

migration assays with METTL3 over-expressing and knockdown in

HTR-8 cell lines, the reduction of METTL3-mediated m6A

modification attenuated the attenuation of ZBTB4 and increased the

expression of ZBTB4, thereby impairing the invasive ability of

trophoblast cells. m6A modification in RNA is crucial for controlling

trophoblast invasion (167). Another m6A methyltransferase, WTAP,

promotes trophoblast invasion and metastasis by regulating the

stability of HMGN3 mRNA in a m6A-dependent way (168).

Reduced m6A modification may result in inadequate early

trophoblast implantation and produce poor pregnancy outcomes. By

comparing ALKBH5 and m6A mRNA methylation levels in patients

with recurrent miscarriage and normal population, Xiao-Cui Li et al.

found that ALKBH5 controls CYR61 mRNA stability by regulating

m6Amethylation and regulates early gestational trophoblast invasion

through its effect onmRNAm6Amethylation.CYR61mRNA levels in

villi were inversely linked with ALKBH5 mRNA levels, and ALKBH5

knockdown significantly promoted cell invasion (169). DNA

microarray analysis of endometrial cells revealed that IGP2BP family

molecules (m6A readers), such as IGF2BP1 and IGF2BP3, were

upregulated in human trophoblast ectoderm cells and receptive

endometrium cells during the implantation window (170). The

relationship between embryo implantation and the IGF2BP growth

factor properties or the methylation effect, however, has not yet been

thoroughly investigated. In addition to m6A methylation, other

modifications in RNA also work in the biological behaviors of

trophoblast cells. 5-hmC RNA methylation is also associated with

cell invasion and early placental formation. In early pregnancy,

hypoxia is the typical extrinsic factor regulating trophoblast

migration invasion and placental formation. TET1 is an enzyme that
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converts 5-mC to 5-hydroxymethylcytosine (5-hmC). By simulating

the physiological hypoxic conditions of early pregnancy, TET1 was

found to be activated in cells exposed to 3%O2, andTET1 knockdown

inhibited cell migration and invasion (171). It has also been proposed

that m1A methylation influences trophoblast invasion. YTHDF3

selectively interacts to m1A-containing RNA, and hypoxia

downregulates its expression in trophoblast HTR8/SVneo. YTHDF3

suppresses IGF1R expression by binding to m1A modifications and

enhances IGF1R mRNA attenuation, inhibiting MMP9 expression

and, as a result, trophoblast invasion (172).

These studies demonstrated that trophoblast cell invasion is

mediated by revisable RNA methylation. Additionally, RNA

methylation alterations encourage trophoblast invasion, while

demethylation modifications prevent it. Nonetheless, a few

considerations challenge the hypothesis. Evidence shows that

hypoxia treatment can significantly upregulate ALKBH5

expression and induced ALKBH5 translocation from the nucleus

to the cytoplasm, followed by ALKBH5 demethylation of m6A

modification on SMAD1/5 mRNA, which promoted its expression

and activated the TGF-b signaling pathway to induce MMP9

expression, thereby increasing trophoblast migration and invasion

(173). ALKBH5 has also been demonstrated to reduce the m6 A

level of PPARGmRNA and increase the stability of PPARGmRNA,

hence increasing PPARG translation. PPARG overexpression

promotes trophoblast cell proliferation and migration through the

upregulation of ALCAM expression (174). Another study revealed

that overexpression of METTL14 in HTR8/SVneo cells inhibited

trophoblast proliferation and invasion by increasing FOXO3a

expression (175). These results reveal the complexity of the

regulation of trophoblast invasion by RNA methylation.

Non-coding RNA methylation also affects trophoblast cell

proliferation and invasion. YTHDC1, for example, degrades circMPP1

via mA6 alteration, enhancing placental villi function (176). The m6A

modification of circSETD2 repressesmiR-181a-5p and increasesMCL1

transcription, thereby regulating trophoblast cells (177).

Mounting evidence implies that B(a)P/benzo(a) pyrene-7,8-

dihydro diol-9,10-epoxide (BPDE) inhibits the proliferation of

human chorionic trophoblast cells and is related to RNA m6A

modification. Mengyuan Dai e al. discovered a novel lncRNA, lnc-

HZ09, and its putative function in recurrent miscarriage villous

tissue and human trophoblast cells exposed to BPDE. Cells over-

expressing METTL3 have higher levels of m6A RNA modification

on lnc-HZ09 and result in reduced stability of lnc-HZ09. lnc-HZ09

regulates trophoblast migration and invasion through the PLD1/

RAC1/CDC42 pathway, and lnc-HZ09-silenced cells exhibit

significantly greater migration and invasion (178). In addition,

lnc-HZ01 and METTL14 were also shown to be upregulated in

the recurrent miscarriage group compared to the normal group in

villi tissue. METTL14 levels were positively correlated with m6A

methylation levels on lnc-HZ01 levels. The downstream MXD1/

EIF4E pathway is activated, which reduces trophoblast growth and

causes miscarriage (179).

These findings highlight the significance of RNA methylation in

controlling the biological behaviors of trophoblast cells. However,

whether RNA methylation changes on trophoblast cells promote or

impede invasion is debatable. Furthermore, the majority of the
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aforementioned pathways were discovered during the aberrant

trophoblast implantation experiments. It is unclear whether these

mechanisms have a role in normal trophoblast invasion and

maternal-fetal interface establishment during early pregnancy.
3.3 RNA methylation in decidualization

Decidualization refers to the functional and morphological

changes occurring in the endometrium. The main changes that

occur during metaplasia are changes in the endometrial stromal

cells, increased uterine gland secretion, increased uterine natural

killer cells, and vascular remodeling. Accumulating experimental

and clinical evidence demonstrated that defective decidualization or

blocked decidualization may lead to abnormal maternal-fetal

interface (180).

Endometrial stromal cells are the most common type of cell

involved in decidualization. During embryo implantation, METTL3

is necessary for the decidualization of human endometrial stromal

cells in vitro. Progesterone receptor (PGR) mRNA is a direct target

of METTL3-mediated m6A modifications. In METTL3f/f mice, the

m6A-modified PGR mRNA in 5 ‘- UTR is recognized by YTHDF1,

thereby promoting PGR protein translation. However, in Mettl3d/d

mice, the m6Amodification in PGRmRNA is missing, and the PGR

protein cannot be effectively translated. The low level of PGR

protein ultimately leads to implantation and decidualization

failure. The METTL3-PGR axis may be conserved between mice

and humans (181). Of note, overexpression of METTL3 increases

m6A methylation and destroys embryo attachment by inhibiting

the expression of endometrial receptive biomarker HOXA10 (182).

Additionally, a major hallmark of decidualization is the

mesenchymal-epithelial transformation (MET) of endometrial

mesenchymal cells (183). The transformation between

mesenchymal and epithelial was strongly correlated with RNA

methylation. METTL3 enhances ZMYM1 mRNA expression

through an m6A-HuR-dependent pathway, and epigenetic

activation of ZMYM1 can lead to epithelial-mesenchymal

transformation (EMT) (45). m6A-seq data revealed that during

EMT, m6A modification occurs on a few genes related to cell

attachment, adhesion, and migration (184). However, the effect of

RNA methylation on the transition between mesenchyme and

epithelium has not been demonstrated in the endometrium.

Whether RNA methylation promotes decidualization through

MET remains a mystery.

Collectively, the above findings imply that m6A methylation is

linked to the decidualization of human endometrial stromal cells

and may potentially be linked to MET. More research, however, was

required to confirm the rationale behind these findings.
3.4 RNA methylation of the immune
microenvironment at the
maternal-fetal interface

The immune microenvironment at the maternal-fetal interface

is essential for maintaining normal embryonic development.
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Decidual natural killer (dNK) cells are the most prevalent in the

maternal-fetal interface, followed by decidual macrophages (dM F)

and then decidual T cells (185).

There is evidence that m6A methylation and NK cell effector

function are linked to METTL3 expression levels. METTL3-

mediated m6A methylation protects the signaling pathway

downstream of IL-15R, thereby regulating the responsiveness of

NK cells to IL-15 (186). NPM1 is associated with m6A methylation

and immune infiltration. Its expression is linked to B-cell and NK-

cell marker genes (187). However, there is currently no direct

evidence to prove the influence of RNA m6A modification

on dNKs.

RNAmethylation can affect macrophage polarization. The m1A

“reader” YTHDF3 may be involved in regulating macrophage

polarization that promotes aortic inflammation (188). According

to the findings of the ssGSEA analysis, the maternal-fetal interface

comprises a substantial number of immune-related cells, with

ALKBH5 serving as the key m6A regulator of macrophages.

Overexpression of ALKBH5 in ESC affects macrophage

differentiation through VEGF secretion (189). Mechanically,

METTL3 can drive M1 macrophage polarization through direct

methylation of STAT1 mRNA and may serve as an anti-

inflammatory target (190).

RNA methylation also affects TCR signaling and determines T

cell activation and survival. WTAP and m6A methyltransferase

functions are required for thymocyte differentiation and control of

activation-induced peripheral T-cell death (191). By targeting the

IL-7/STAT5/SOCS pathways, m6A mRNA methylation controls T

cell homeostasis (192). It also maintains Treg inhibition through the

IL2-STAT5 signaling axis (193). In addition, TRMT6/TRMT61A

complex-mediated m1A modification of transfer RNA (tRNA)

promotes the synthesis of MYC proteins essential for T cell

proliferation (194, 195). This demonstrates that m1A methylation

also has important effects on T cells.

Based on the above findings, we propose that RNA methylation

may have important effects on the immune microenvironment.

Changes in NK cell function, macrophage polarization, and T cell

activation are all linked to RNAmethylation. Although the majority

of the current studies on the impact of RNA methylation in the

immune microenvironment focus on the tumor immune

microenvironment, these studies can provide some insight into

the role of RNA methylation in the maternal-fetal immune

microenvironment to a certain extent.

Taken together, due to its ability to promote embryo

development, regulate embryo implantation, extend uterine

receptivity, and provide a stable immune microenvironment,

RNA methylation is important in the formation of the maternal-

fetal interface.
4 RNA methylation in implantation
and placentation-related diseases

Common implantation and placentation-related diseases like

miscarriage, preeclampsia, and preterm birth have been proposed to

be associated with aberrant RNA methylation in the formation of
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the maternal-fetal interface. Abnormalities in RNA methylation

may impact the establishment of the maternal-fetal contact,

ultimately leading to illness.
4.1 Miscarriage

Miscarriage, especially recurrent miscarriage, may be

multifactorial. Problems in any part of the maternal-fetal interface

formation can lead to miscarriage. In this process, RNA

methylation probably plays an important role. It was discovered

that m6A levels in the uterus rise throughout pregnancy. The

mRNA levels of the methyltransferases METTL16 and WTAP

were lower in the endometrium of patients with miscarriage and

infertility, whereas the mRNA levels of ALKBH5 and IGF2BP2 were

higher (196).

In the process of early embryonic development, abnormal

methylation in epigenetic factors of both the father and mother

can affect embryonic development (197). Abnormal RNA

methylation plays a role in abnormal embryo implantation and

may also lead to spontaneous abortion. High-throughput

sequencing of villous tissue from the spontaneous abortion group

and the normal group during early pregnancy, based on combined

analysis of meRIP-seq and RNA-seq data, revealed that genes with

differential m6A methylation were primarily related to the Wnt

signaling pathway, phosphatase activity regulation, protein

phosphatase inhibition activity, and transcriptional inhibition

activity (198). The expression levels of ALKBH5 and CYR61 were

negatively correlated in the villous tissue of the recurrent abortion

group, which is related to the pathogenesis of recurrent

abortion (169).

Moreover, FTO deficiency in the chorionic villi affects

immunological tolerance, leading to aberrant methylation and

oxidative stress and, eventually, spontaneous abortion. Compared

with normal pregnant women, the levels of FTO-binding HLA-G,

VEGFR, and MMP9 mRNA in spontaneous abortion patients were

significantly reduced, and the concentration of FTO-binding

MMP7 was significantly increased. This is due to oxidative stress

and abnormal m6A accumulation at the maternal-fetal

interface (199).

These all prove that abnormal methylation of RNA might be

one of the reasons for spontaneous abortion.
4.2 Preeclampsia

Preeclampsia is classified as early-onset or late-onset based on

when it appears, which is usually at 34 weeks of gestation. Early-

onset preeclampsia often results in a high perinatal mortality rate,

significant placental dysfunction, and poor maternal and fetal

prognosis. Our review focuses on early-onset preeclampsia

because it is the most severe and is a major cause of maternal and

fetal death. It is strongly associated with RNA methylation.

Trophoblast dysfunction is thought to be an important cause of

early-onset preeclampsia, and RNAmethylation has a major impact
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on trophoblast function in two ways, according to the

existing studies.

On the one hand, RNA methylation influences trophoblast

invasion in patients with preeclampsia. We discovered that

DNMT3B and TET3 were significantly elevated in PE samples

compared to the normal group by analyzing the mRNA expression

levels of m5C RNA methylation regulators. Surprisingly, these two

methylation regulators have a negative correlation. A comprehensive

analysis ofUMI-MeRIPSeqdata revealed adecrease in theoverall peak

value of m5C methylation in placental tissue from patients with

preeclampsia. However, compared with the normal blood pressure

group, the m5C peak value before the coding sequence was stopped in

the preeclampsia group significantly increased (200). In addition,

preeclampsia placental samples exhibited consistently increased

SMPD1 protein levels and increased 5’-UTR of m6A (201). Evidence

suggests that m6A RNA methylation expression is significantly

increased in trophoblast cells of preeclamptic placentas compared

with normotensive placentas and that abnormal m6A modification

may contribute to trophoblast cell invasion dysfunction in

preeclampsia (202). An increase in m6A-modified circRNA was

found to be prevalent in the PE placenta. The m6A-modified

circPAPPA2 has a role in trophoblast invasion (203). Several

evidences have shown that the downregulation of m6A reader

IGF2BP2 is associated with trophoblast invasion disorder and PE.

For example, there is a correlation between reduced IGF2BP2

expression and downregulation of MNSF in the placenta of MNSF-

deficient mice and patients with severe (204). However, it is yet

unknown whether methylation has a role in how IGF2BP affects PE.

RNA methylation, on the other hand, induces trophoblast

apoptosis. YTHDF2 can target TMBIM6 mRNA via METTL3,

resulting in ROS production and trophoblast apoptosis,

exacerbating endoplasmic reticulum stress in preeclampsia (205).

Similarly, m6A modification promotes circSETD2 expression,

suppresses miR-181a-5p, and increases MCL1 transcription to

affect the apoptosis of chorionic trophoblast cells (177).

In short, in patients with preeclampsia, a decrease in the overall

peak of m5C methylation or an increase in m6A modification may

lead to trophoblast invasion dysfunction. In addition, increased

RNA methylation can promote trophoblast cell apoptosis, further

exacerbating preeclampsia. Interestingly, the methylation trends of

m5C and m6A in preeclampsia appear to be different. In addition,

in the process of m5c methylation regulation, DNMT3B and TET3

seem to have opposite effects, but they are highly expressed in

preeclampsia patients. In this process, the molecular mechanism of

regulators is still unknown.
4.3 Preterm birth

Preterm birth is defined by the World Health Organization

(WHO) as delivery before 37 completed weeks of gestation.

Between 25% and 40% of all preterm births are associated with

intrauterine infection, including viral and bacterial infections (206).

m6A factors can regulate the virus life cycle. By adding m6A to

the genome RNA and mRNA of a virus, changing gene expression,

or the fate of corresponding RNA involved in virus or replication,
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the effect of m6A modification can directly or indirectly regulate

virus replication. The strength and duration of innate immune

response activation can also be determined by m6A methylation

(207). m6A-modified HBV RNA can be coupled to YTHDF2, which

can protect viral RNA from being recognized by RIG-I and prevent

HBV RNA degradation (208). During the infection cycle, HSV-1

controls the redistribution of the nuclear m6A mechanism in

primary fibroblasts. WTAP stays in the nucleus, while METTL3

and METTL14 are distributed throughout the cytoplasm (209).

Based on the role of m6A modification in viral infection, m6A

modification can be used to develop anti-viral methods. For

instance, interferon-stimulating gene 20 (ISG20) can treat HBV

infection by selectively recognizing and processing m6A-modified

HBV transcripts, and regulated by YTHDF2 (210).

Bacterial infections, in addition to viral infections, can result in

premature delivery. The P/Q/N rich domain in m6A reader

YTHDF1 interacts with the DEAD domain in host factor DDX60,

thereby regulating the immune response to bacterial infection by

recognizing the target Traf6 transcript (211).

Moreover, in patients with spontaneous preterm delivery,

abnormalities in immune function at the maternal-fetal interface

may be a major cause of their preterm delivery (212). The

association between RNA methylation and the immune

microenvironment has primarily been examined in malignancies,

but whether there is a similar relationship at the maternal-fetal

interface still needs to be investigated.

Currently, research in the field of RNA modification in preterm

birth is mainly focused on infection. The m6A methylation is the

most common type of RNA alteration involved. However, whether

or not RNA methylation alteration is one of the major biochemical

pathways causing premature delivery is still being contested.

Above all, an imbalance in RNA methylation is critical in the

development of implantation and placental disorders. Interestingly,

the newly discovered programmed cell death pathways, including

autophagy, ferroptosis, and pyroptosis are also associated with

implantation and placenta disorders. Recently, autophagy has shown

to have a role in miscarriage. In women who have had an early

abortion, dysregulated autophagy promotes oxidative stress and

aberrant production of ABC transporter proteins (213). Many

individuals with unexplained spontaneous abortion have insufficient

autophagy (214). Rapamycin, a known inducer of autophagy, was

found to dramatically boost endometrial autophagy and NK cell

residency, as well as improve spontaneous abortion in mice (215).

Ferroptosis and pyroptosis have also been linked to preeclampsia in

recent studies. Preeclampsia is characterized by hypoxia, which causes

iron death of trophoblast cells via apoptosis, autophagy, and necrosis.

Iron death-related proteins SRXN1 and NQO1 may be important in

the etiology of preeclampsia (216). In early-onset pre-eclamptic

placentas and human trophoblast cells exposed to hypoxia and

endoplasmic reticulum stresses, pyroptosis is suggested to represent

a significant inflammatory mechanism (217). Current evidence

suggests that impaired autophagy and increased apoptosis in a

placental microenvironment with Th1/Th2 imbalance are associated

with spontaneous preterm birth (218).

There is currently a growing body of evidence linking RNA

methylation to programmed cell death. m6A methylation is
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associated with autophagy and plays a role in apoptosis induced

diseases. Silencing METTL3 enhances autophagic flux and inhibits

apoptosis in H/R-treated cardiomyocytes (219). Moreover, the role

of m6A modification and autophagy is of great importance in

inflammatory diseases and cancer progression. METTL3-mediated

m6A modification of ATG7 regulates the autophagy-GATA4 axis

and promotes cellular senescence and osteoarthritis (220).

However, it is unclear whether RNA methylation affects

implantation and placenta-associated diseases by influencing

programmed cell death. As a result, more evidence is needed to

demonstrate whether RNA methylation-mediated programmed

death is directly involved in these diseases.
5 Conclusions and future directions

This is the first description of the dynamic RNA methylation

function during the maternal-fetal interface development. We

performed in-depth investigations of RNA methylation for this

review. The three most frequent RNA modifications, m6A, m1A,

and m5C, are all essential for the biogenesis, metabolism, structural

stability, and function of RNA.

RNA methylation may have a considerable impact on the

creation of the maternal-fetal interface by influencing early

embryonic development, embryo implantation, endometrial

receptivity, and the immunological microenvironment.

Furthermore, abnormal RNA methylation during the formation

of the maternal-fetal interface is thought to be associated to

implantation and placenta-related disorders such as miscarriage,

preeclampsia, and preterm birth.

Given the significance of RNA methylation in the formation of

the maternal-fetal interface during pregnancy, further investigation

is warranted to elucidate the underlying mechanism. The potential

various mechanisms of RNA methylation and demethylation

during the development of embryos before and after implantation

still require further research. Furthermore, there are differing views

on whether trophoblast cell RNAmethylation changes encourage or

impede invasion. The majority of RNA methylation mechanisms in

trophoblast cells have been discovered in studies of abnormal

trophoblast implantation, but it is still unknown whether these

mechanisms contribute to normal trophoblast invasion and the

establishment of the maternal-fetal interface in the early stages of

pregnancy. There is also no direct evidence for the effects of RNA

methylation on the immunological milieu at the maternal-fetal

interface. It is noteworthy that whereas m6A methylation has

been linked to EMT and metaphase, the underlying regulatory

mechanism is yet unknown.

Additionally, it is unclear whether RNA methylation affects

implantation and placenta-associated diseases by influencing

programmed cell death. From a broader perspective, the role of

RNA methylation and programmed cell death in implantation- and

placentation-related illnesses is another significant area of challenge

and promise for future research.

Together, our study highlights the importance of dynamic RNA

methylation at the maternal-fetal interface. It has given the

molecular underpinnings for both normal and abnormal
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implantation and placentation and could eventually offer a fresh

approach to treating related disorders.
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