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Over the last decade, a considerable amount of new data have revealed the

beneficial effects of exercise on hippocampal neurogenesis and themaintenance

or improvement of cognitive function. Investigations with animal models, as well

as human studies, have yielded novel understanding of the mechanisms through

which endocrine signaling can stimulate neurogenesis, as well as the effects of

exercise on acute and/or chronic levels of these circulating hormones.

Considering the effects of aging on the decline of specific endocrine factors

that affect brain health, insights in this area of research are particularly important.

In this review, we discuss how different forms of exercise influence the peripheral

production of specific endocrine factors, with particular emphasis on brain-

derived neurotrophic factor, growth hormone, insulin-like growth factor-1,

ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor,

erythropoietin, and cortisol. We also describe mechanisms through which

these endocrine responses to exercise induce cellular changes that increase

hippocampal neurogenesis and improve cognitive function.

KEYWORDS

testosterone, insulin-like growth factor (IGF- I), exercise, neurogenesis, Brain-derived
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Introduction

In the adult mammalian brain, the production of new neurons is restricted to two

distinct regions, the subventricular zone, which supplies new neurons for the olfactory

bulb, and the subgranular zone of the dentate gyrus, which produces new granule cells in

the hippocampus (1). Neurogenesis in the hippocampus is particularly important for

learning and memory (2). Rates of hippocampal neurogenesis can be influenced by a

variety of factors, among which exercise has been established as a potent stimulus (3, 4).

Regulation of neurogenesis in response to exercise may significantly affect cognitive
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performance. For example, sedentary activity is associated with

greater risk of cognitive decline, whereas a greater level of

cardiorespiratory fitness is associated with a larger prefrontal

cortex in older adults (5). Moreover, exercise reduces the decline

in performance of independent living activities of those with early

Alzheimer’s disease (4) and can change the structure and function

of the hippocampus, a brain region that is critical for learning and

memory (5, 6). Over the last decade, an abundance of other studies

using animal models and human subjects have revealed positive

effects of exercise in stimulating neurogenesis and reducing

cognitive decline with aging. [e.g (3, 7–10)]. Thus, understanding

the molecular interactions underlying these beneficial effects of

exercise has become increasingly pertinent.

The effects of exercise on neurogenesis partially relate to

changes in the brain in several neurotransmitter systems,

including those for serotonin, dopamine, acetylcholine, and

norepinephrine (for review, see (11)). However, our lab and

others have also revealed a variety of peripheral endocrine

responses to specific forms of exercise that are important for

metabolism, tissue growth and repair, cardiovascular function,

and other functions. [e.g (12–15)]. While many of these

circulating hormones that respond to exercise stress, including

estrogens and androgens (12, 13), somatotrophs (GH, IGF-1) (3,

13, 16, 17), VEGF (7) irisin (18, 19), and cortisol (20) are

peripherally produced, emerging evidence indicates that these

hormones and/or their effectors can cross the blood-brain barrier

to profoundly influence neurogenesis and cognitive function. A

number of these peripheral hormones can modulate neurogenesis

during or after exercise by regulating activity of the neurotrophin,

brain-derived neurotrophic factor, [e.g (21)], as well as through

other pathways. Moreover, there is increasing interest in targeting

these endocrine systems to reduce cognitive impairment associated

with neurodegenerative diseases [e.g (22, 23)]. In the present review,

we discuss changes in circulating hormone levels in response to

different modes of exercise and the possible mechanisms through

which these endocrine factors regulate neurogenesis.
Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) is a neurotrophin

that regulates diverse neural functions, including neurite growth,

synaptic plasticity, neuronal differentiation, and cell survival (24).

BDNF performs these functions through interactions with two

different receptors. Activation of the tropomyosin-related kinase

B (TrkB) receptor by BDNF stimulates signaling via the

extracellular signal-regulated kinase (ERK), phospholipase Cƴ,
and phosphoinositide 3-kinase (PI3K) pathways (25). BDNF can

also activate the p75 Neurotrophin Receptor (p75NTR), a

transmembrane protein that can promote c-Jun N-Terminal

Kinase signaling, induce Nuclear Factor kB (NFkB) activity, and
regulate Rho family members, among other functions (26). BDNF is

produced at high levels in several brain regions, including the

amygdala, cerebellum, cerebral cortex, and hippocampus (27)

(28), and it is also synthesized by various non-neuronal cells,

including vascular endothelial cells (29, 30), lymphocytes (31),
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and skeletal muscle cells (32, 33). There are two different pools of

BDNF circulating in the blood, including platelet-bound BDNF and

unbound plasma concentrations that can bind to TrkB or p75NTR

receptors (34, 35). Like other neurotrophins, BDNF is initially

synthesized as a precursor, termed proBDNF, that can be

proteolytically processed in the Golgi apparatus or in the

extracellular mileu to yield mature BDNF. However, in certain

physiological contexts, secreted proBDNF persists in its uncleaved

form, which lacks affinity for Trk receptors and functions as a high-

affinity ligand for the p75NTR-sortilin complex (26, 36).

Multiple lines of evidence have established BDNF as a key

regulator of hippocampal neurogenesis. Several in vitro studies

involving cultured neural precursor cells from the dentate gyrus

or organotypic mice hippocampal slice cultures have revealed that

BDNF induces cell proliferation, neuronal differentiation and

neuronal survival (37–40). These findings have been corroborated

by a variety of in vivo studies. For example, an analysis of

heterozygous BDNF knockout mice revealed deficits in

neurogenesis and reduced hippocampal volume (41), while

another investigation demonstrated that intrahippocampal

administration of BDNF increased the number of mature granule

cells in the dentate gyrus (42). Beyond stimulating the genesis of

new hippocampal granule cells, it is also well-established that BDNF

promotes synaptogenesis, dendritic spine formation, and synaptic

strengthening within the hippocampus (43). Thus, BDNF critically

regulates the formation and modulation of hippocampal circuitry.

Unfortunately, levels of BDNF decline in the periphery with age (44,

45), and aging-related loss of BDNF may occur in the hippocampus

as well (46–48). Moreover, reductions in BDNF have been

associated with decreased hippocampal volume and increased risk

of dementia (44, 49, 50). Thus, studies elucidating strategies to

enhance BDNF-induced neurogenesis and synaptic remodeling in

the hippocampus may be of important therapeutic benefit. For

example, 28-day infusions of BDNF into the entorhinal cortex, a

region of the hippocampal formation that serves as an interface

between the hippocampus and neocortex, were reported to enhance

spatial memory in aged rats (51). Moreover, interventions that

modulate BDNF signaling have been demonstrated to alter synapse

loss or neuronal death in severa l rodent models of

neurodegenerative disease (37), including models of Huntington’s

disease (52), Parkinson’s disease (53), and Alzheimer’s disease (51).

Exercise is a powerful stimulus for increasing circulating BDNF.

Transient increases in circulating BDNF occur in response to a

variety of exercise modalities, including moderate-intensity aerobic

exercise (54, 55), resistance training (54, 56), and high-intensity

interval training (57, 58). Mechanisms through which exercise

increases BDNF production may involve activation of Sirtuin-1

deacetylase by the metabolite lactate (59), stimulation of fibronectin

type III domain-containing protein 5 (FNDC5) (60), production of

beta-hydroxybutyrate (61), or induction of pro-BDNF cleavage by

tissue-type plasminogen activator (tPA) (62), among other

mechanisms. Additionally, BDNF production is regulated by

multiple endocrine systems, as discussed in later sections of this

article. Due to conflicting reports, the type of training modality that

is most effective in enhancing circulating BDNF levels remains

unclear. However, given that lactate concentrations stimulate
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hippocampal expression of BDNF, exercise regimens that are above

an individual’s lactate threshold would be expected to induce

greater circulating BDNF concentrations. Fittingly, multiple

studies have indicated that the magnitude of increase in BDNF is

intensity-dependent (63–65). Beyond the well-established effects of

exercise in transiently increasing circulating BDNF, exercise

training may also modestly enhance resting BDNF levels, though

reports in this regard have been variable (34, 66). Tissue sources

responsible for exercise-induced increases in circulating BDNF

remain incompletely understood. While a small number of

reports suggest that BDNF does not cross the blood-brain barrier

(BBB) (67, 68), direct and indirect evidence from a greater number

of studies indicate that BDNF bidirectionally traverses the BBB, as

well as that circulating BDNF levels reflect brain levels (34, 69–73).

Thus, exercise-induced increases in circulating BDNF may not only

stem from peripheral sources such as release from vascular

endothelial cells and platelets, but also from the brain (34, 72).

Importantly, BDNF production is critical for exercise-induced

cognitive benefits, since knockdown or antagonism of

hippocampal BDNF prevents exercise-associated improvements in

spatial reasoning and memory in rodents (66, 74, 75). Circulating

BDNF likely serves a key role in these exercise-associated cognitive

benefits, since peripheral administration of BDNF was sufficient to

enhance hippocampal neurogenesis and hippocampal-dependent

learning (73).

While a wealth of evidence has established BDNF as a positive

regulator of hippocampal neurogenesis, the specific mechanisms

through which BDNF increases the abundance of mature granule

cells remain incompletely understood. One possibility is that BDNF

stimulates proliferation of neural precursor cells (NPCs). Indeed,

BDNF has been demonstrated to enhance NPC proliferation in

neurosphere cultures (38, 76), and conditional disruption of BDNF

signaling in hippocampal NPCs in vivo was reported to decrease

proliferation (77). This ability of BDNF to stimulate NPC

proliferation may involve activation of the transcription factor

CREB via the TrkB-ERK pathway, since disruptions in

hippocampal neurogenesis have been reported in animal models

with genetically altered TrkB, ERK, or CREB signaling (77–79).

CREB activation can stimulate cell proliferation through regulation

of multiple targets, including CyclinD1, Replication Factor C3

(RFC3), proliferating cell nuclear antigen (PCNA), and JunD (80–

85). However, the role for this pathway in promoting NPC

proliferation has been contradicted by studies yielding evidence

that BDNF, TrkB, and CREB do not positively impact NPC

proliferation (86–90). Another possibility is that BDNF increases

the number of granule cells by promoting NPC or granule cell

survival. This hypothesis has been supported by multiple studies

revealing decreased survival of hippocampal progenitor cells in

mice with genetic depletion of BDNF (86, 87). This role for BDNF

may be mediated through the TrkB-Akt pathway, since in injury

models this pathway promotes survival of mature hippocampal

neurons (91, 92). CREB, which can be activated by ERK or Akt, has

also been demonstrated as necessary for the survival of newborn

hippocampal neurons (89). However, the hypothesis that BDNF

stimulates neurogenesis by facilitating the survival of hippocampal

neurons has been contradicted by a report that deletion of BDNF in
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the central nervous system does not alter the survival of new

hippocampal cells. Rather, the study indicated that BDNF

promotes neurogenesis by facilitating the terminal differentiation

of NPCs into mature granule cells (88). Altogether, the conflicting

findings pertaining to the effects of BDNF on hippocampal NPCs

may partially relate to developmental adaptions that may occur in

animal models with genetic deletions. Thus, performing fate-

mapping and thorough time-course assessments in models with

temporally induced-genetic deletions may help to clarify the specific

effects of BDNF-TrkB signaling on NPC proliferation, survival, and

neuronal differentiation.

Of note, BDNF may not only regulate hippocampal

neurogenesis through interaction with TrkB, but also through

p75NTR. Multiple studies have revealed deficits in hippocampal

neurogenesis in adult mice lacking p75NTR, suggesting that

p75NTR positively regulates neurogenesis (93–95). This promotion

of neurogenesis by p75NTR likely occurs through its crosstalk with

TrkB, as p75NTR has been demonstrated to augment TrkB signaling

in hippocampal neurons (96). Interestingly, negative regulation of

neurogenesis has also been reported in response to proBDNF,

which binds to p75NTR and sortilin but not TrkB (97, 98).

Moreover, multiple types of exercise training have been

demonstrated to enhance mature BDNF production in the

hippocampus while concurrently stimulating in the brain the

activity of tPA, a proteinase that cleaves proBDNF to yield

mature BDNF (62, 99–102). Altogether, these findings suggest

that exercise training can stimulate hippocampal neurogenesis by

enhancing BDNF-TrkB-p75NTR cascades while limiting activation

of proBDNF-p75NTR-sortilin signaling.
Growth hormone (somatotropin),
insulin-like growth factor-1,
and ghrelin

Growth hormone releasing hormone (GHRH) is a

hypothalamic peptide hormone that is released during different

forms of exercise. GHRH acts upon growth hormone releasing

hormone receptor (GHRHR), a G protein-coupled receptor,

activating the Gs-PKA-cAMP signaling pathway and stimulating

growth hormone (GH) release from the anterior pituitary (103,

104). Growth hormone (GH) is a somatotropin that is composed of

a polypeptide chain with approximately 190 amino acid residues. It

contains two disulphide bridges with four alpha helices and has two

binding sites for two receptor molecules (105). GH is released in a

pulsatile manner from the anterior pituitary and circulates to the

liver, where it acts directly upon GH receptors (GHR) in

hepatocytes. Activation of GHR induces Janus kinase (2)/signal

transducers and activators of transcription 5 (JAK2/STAT5)

signaling and stimulates production of insulin-like-growth factor

1 (IGF-1) from liver hepatocytes, as well as paracrine production of

IGF-1 from other tissues (103). IGF-1 is a 70 amino-acid single

chain peptide that has a molecular weight of 7.6 kDa and contains

three disulphide bridges creating a tertiary structure important for

optimal binding to the IGF-1R (106). Most IGF-1 polypeptides are
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transported by carrier proteins that determine the amount of IGF-1

available to different tissues (107). The actions of IGF-1 occur via

IGF-1R, a membrane-bound receptor tyrosine kinase (RTK). IGF-

1R activation can result in mitogen-activated protein kinase

signaling, as well as activation of the PI3K-Akt signaling pathway,

thereby promoting cell growth and maturation (108).

A variety of forms of exercise stimulate the GHRH/GH/IGF-1

axis, causing increased circulating concentrations of GH and IGF-1

(13, 16, 109, 110). Data from the Kraemer lab has revealed increases

in circulating GH concentrations in response to three sets of four

different resistance exercises, with GH averaging over an eight-fold

increase during recovery (12). Additional research groups have

reported strong GH increases in response to other resistance

exercise protocols (111). GH response to anaerobic cycling has

also been reported (112). We have also reported elevated circulating

concentrations of both GH and IGF-1 in response to treadmill

running at four progressively increased exercise intensities, with

GH increase averaging approximately 5 times resting values while

area under the curve values for IGF-1 revealed significantly higher

levels over time (13). Others have reported GH increases in

response to prolonged treadmill running at 60% VO2 max (113).

In the aforementioned study of older men averaging 60.8y (54),

increases in IGF-1 were observed in response to 30 min of both

moderate intensity running and moderate intensity circuit weight

training exercise. Collectively, these studies reveal that both aerobic

exercise at moderate and high intensity as well as resistance exercise

will stimulate acute increases in GH and IGF-1. In addition to acute

responses to exercise, a systemic review of multiple aerobic and

resistance training studies revealed that both forms of exercise

training increase resting levels of GH and IGF-1 (114).

Secretion of GH from the pituitary gland is not only controlled

by GHRH but also regulated by ghrelin, a 28 amino acid hunger

hormone primarily produced in the stomach. There is some

evidence that exercise training increases resting ghrelin levels

(115–118), thus implicating ghrelin as a hormone that can

potentially modulate GH-induced neurogenesis. However, for

several of these studies, result interpretations are confounded by

training-induced reductions in body weight (116–118), and

conflicting studies have reported training-induced reductions in

circulating ghrelin concentrations (119, 120). Additionally,

circulating ghrelin concentrations do not increase in response to

acute running or cycling (121, 122). Overall, due to limited and

conflicting findings, further research is needed to clarify the

relationship between various forms of exercise, ghrelin, and GH-

IGF-1 signaling.

GH and IGF-1 are important regulators of neurogenesis and

neuronal connectivity in the adult hippocampus. Both hormones

can cross the blood-brain barrier (123, 124) and have specific

receptors expressed in the central nervous system, including the

hippocampus (125–127). Peripheral administration of GH has been

demonstrated to enhance cellular proliferation in the dentate gyrus

of healthy adult rats (128), as well as to increase the number of

newborn neurons in the hippocampus in a rodent model of

hypopituitarism (129). In vitro experiments from the

aforementioned study suggest that GH increases hippocampal

neurogenesis by stimulating NPC proliferation. However, GH has
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also been demonstrated to have a variety of neurotrophic actions in

the central nervous system, including neuroprotection, axonal

growth, and synaptogenesis (130, 131). Like GH, peripheral

administration of IGF-1 has been demonstrated to enhance

hippocampal neurogenesis (132). Evidence of the neurogenic

potential of IGF-1 has also been corroborated by studies revealing

that central infusion of IGF-1 increases the number of immature

neurons in the dentate gyrus of rodent models of aging and

traumatic brain injury (133, 134). Moreover, IGF-1 has been

demonstrated to enhance synaptic complexity in the

hippocampus, thereby suggesting that the hormone not only

regulates hippocampal circuitry through modification of neuron

abundance but also via regulation of neural connectivity (135).

While the mechanisms through which GH and IGF-1 promote

hippocampal neurogenesis remain incompletely understood, both

hormones stimulate production of BDNF (136, 137). Additionally,

IGF-1 has been shown to promote the proliferation of hippocampal

NPCs and induction of pro-neural gene expression through a novel

cascade involving activation of Sox2 by the Ras-related GTPase,

RIT1 (138). IGF-1 signaling has also been linked to a variety of

other signaling events, including suppression of proinflammatory

cytokine signaling by IL-1b and TNF-a (137), activation of CREB

(139), and modulation of glutamatergic neurotransmission (137).

Interestingly, beyond stimulation of hippocampal neurogenesis by

GH and IGF-1, hippocampal neurogenesis can also be directly

stimulated by the GH secretagogue ghrelin. Ghrelin will bind to the

GH secretagogue receptor GHS-R1a that has been identified in the

rat brain, and in vitro experiments have revealed that ghrelin acts

through the ERK1/2, PI3K/Akt, and STAT3 signaling pathways to

stimulate neurogenesis cultured hippocampal NPCs (140).

However, due to the aforementioned conflicting reports on

ghrelin responses to various forms of exercise, the role of ghrelin

in exercise-induced neurogenesis remains unclear.

In a process termed somatopause, there is a considerable and

progressive reduction in circulating GH and IGF-1 with aging

(141). Additionally, multiple human studies have indicated that

higher levels of circulating GH and IGF-1 correlate with improved

cognitive performance (142, 143). Thus, the GHRH-GH-IGF-1 axis

may represent a promising target for therapeutic interventions to

improve cognitive deficits. Indeed, administration of GH has been

demonstrated to improve cognitive deficits associated with cortical

impact in rats (136), as well as reduce tissue loss and enhance

memory function in a mouse model of stroke (144). Moreover,

while the cognitive benefits of exercise have been well-established

(145), emerging evidence suggests a key role for GH-induced

neurogenesis in exercise-induced cognitive improvement. For

example, a recent investigation by Blackmore et al. revealed that

GH signaling and neurogenesis are necessary for exercise-induced

improvement in hippocampal-dependent spatial learning in aged

mice (146).

In summary, utilizing different forms of acute exercise at the

proper exercise intensity could be helpful in promoting

neurogenesis in patients with neurodegeneration via increases in

GH and IGF-1. In addition, exercise training may be helpful in

maintaining hippocampal function by increasing resting circulating

ghrelin levels. (147).
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Estradiol

17ß estradiol (Estrogen/E2) is a steroid hormone that exerts

diverse actions after being produced in the ovaries, liver, heart,

muscle, bone and brain (148). The production of E2 occurs via

activation of the hypothalamic-pituitary-gonadal axis (149).

Gonadotropin-releasing hormone (GnRH), a 10-amino acid

peptide, is secreted by hypothalamic neurons into the median

eminence and is then transported through the hypophyseal portal

system to act upon GnRH receptors in pituitary gonadotrope cells

(150). This signals production and secretion of luteinizing hormone

(LH) and follicle-stimulating hormone (FSH) (151). Circulating LH

and testosterone act on receptors in the gonads, stimulating release

of the sex steroids, androgens and estrogens (151). Circulating E2
can cross the blood-brain barrier and bind to ERa, ERb, and the G

protein-coupled estrogen receptor 1 (GPER1) that are expressed in

in both genders and found in multiple areas of the brain, including

the hippocampus (152). A majority of the actions of E2 are thought

to be induced through ERa and ERb receptors (153). Binding of E2
to ERa and ERb stimulates formation of a receptor-ligand complex

that dimerizes and translocates to the nucleus, where it binds to

estrogen response elements on DNA (154) and regulates gene

transcription (155). There are also estrogen receptors in the cell

membrane, and their binding induces quick, non-genomic effects

such as changing cell permeability and stimulating 2nd messenger

cascades (156).

Changes in circulating E2 have been reported to respond to a

variety of forms of exercise. Bunt et al. revealed that 60 min of

treadmill running at 60% VO2max in trained and untrained male

and female runners elicited significant increases in E2 in all subjects

(157). Similarly, Gray et al. reported a 45% increase in E2 in young

men after an average of 15.6 one-minute treadmill runs (158). Our

lab has reported increases in E2 in young women in response to

three sets of four resistance exercises with greater increases during

the luteal than the follicular phase of the menstrual cycle (17).

Interestingly, in the aforementioned studies, elevated levels of E2
after exercise correlated with increases in GH (158). Moreover,

hormone replacement therapy (HRT) in post-menopausal women

has been demonstrated to induce greater GH responses to 30 min of

treadmill exercise compared to those not taking HRT (159). Thus,

higher E2 concentrations with exercise can increase GH levels and

may thereby potentially exert positive effects on adult neurogenesis.

Accumulating evidence also suggests that E2 can function as a

direct, positive regulator of adult neurogenesis. The E2 receptors

ERa and ERb are expressed in the hippocampal NPCs (160) and

multiple studies have indicated that E2 signaling enhances NPC

proliferation. For example, E2 treatment was demonstrated to

induce proliferation in NPC cultures of both embryonic rat and

human cell-line origin (161–163). In a separate study, chronic

estradiol treatment of spontaneous hypertensive rats resulted in

reduced blood pressure, increased neurogenesis in the

hippocampus, and increased BDNF RNA and protein expression

in the dentate gyrus (164). Considering that the BDNF gene

contains an estrogen-sensitive response element (ERE), the

upregulation of BDNF expression may represent one mechanism
Frontiers in Endocrinology 05
through which E2 stimulates NPC proliferation (165). However, the

effects of E2 on NPC proliferation have also been attributed to ERß-

mediated activation of ERK and subsequent centrosome

amplification (163).

Fitting with the potential role of E2 in regulating hippocampal

neurogenesis, the hormone has also been demonstrated to confer

cognitive benefits in specific physiological contexts. For example, E2
hormone therapy has been shown to be more protective of

cognition in women with greater risk for Alzheimer’s Disease

who continue to use it up to two years following menopause

onset (166). Given that E2 has been shown to protect neural

tissue (167, 168) more research is needed to establish the optimal

exercise protocols for enhancing the effectiveness of medication in

patients taking hormone replacement therapy to prevent cognitive

decline following menopause.
Testosterone

The hypothalamic-pituitary-gonadal axis is responsible for

regulating testosterone production. Secretion of gonadotropin-

releasing hormone (GnRH) by the hypothalamus induces release

of luteinizing hormone (LH) and follicle stimulating hormone

(FSH) from the anterior pituitary (169). LH stimulates production

and release of testosterone from the testes and adrenal glands in

men (170) and from ovaries, adrenal glands and peripheral tissues

in women (171). In a variety of tissue types, testosterone can be

metabolized via the enzyme 5a-reductase to dihydrotestosterone

(DHT) (172). Testosterone and DHT function as androgens that

bind to nuclear receptor subfamily 3, group C, member 4 (NR3C4)

(173). Upon activation in the cytoplasm, the androgen receptor

translocates to the nucleus, where it functions as a transcription

factor (174). Testosterone circulating in men will be converted into

both active metabolites, E2 and DHT, that will mediate some

testosterone action in the target tissues (175).

Multiple studies have revealed acute changes in testosterone

levels in response to different forms of exercise in males and

females. Strenuous intermittent exercise consisting of treadmill

running at 60%, 75%, 90% and 100% of VO2max was shown to

increase circulating testosterone levels in young males (176).

Moreover, testosterone levels were reported to significantly

increase in young women athletes in response to a discontinuous

treadmill test to exhaustion, with 4- and 7-week training resulting in

higher testosterone responses than 1-week training (177). Both

concentric as well as eccentric muscle actions during resistance

exercise have been reported to increase total and free testosterone

levels in males (16). Heavy resistance exercise has been shown to

significantly increase circulating levels of total and free testosterone

in younger and older men, with greater responses found in younger

than older men (178). These studies reveal the positive effects of

acute and chronic exerc ise on increased circulat ing

testosterone levels.

As a steroid hormone, circulating testosterone can permeate the

blood-brain barrier (179) to interact with androgen receptors,

which are located in multiple regions of the brain (180), including
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the human hippocampus (181). Additionally, testosterone in the

hippocampus can be converted by 5a-reductase to DHT, which has

a strong binding affinity for androgen receptors in the brain (169).

There is some evidence that androgen signaling increases adult

neurogenesis in the dentate gyrus of the hippocampus. For example,

two weeks of light exercise has been shown to increase synthesis of

5a-reductase, DHT, and androgen receptors in the hippocampus of

adult rats, and pharmacological antagonism of androgen receptors

blocked exercise-induced neurogenesis (182). Additionally,

systemic administration of testosterone or DHT, but not estradiol,

was found to enhance hippocampal neurogenesis in male rats (183).

However, in a separate study, DHT administration had inconsistent

effects on hippocampal proliferation and the number of newborn

hippocampal neurons in rats of different age and sex, thereby

indicating that the pro-neurogenic effects of androgens on

neurogenesis are sex- and age-dependent (184). Interestingly, the

manner in which the gonadal steroids, testosterone and estrogen,

act on neurogenesis differs in that estrogens appear to induce cell

proliferation, whereas androgens increase neuron number via

increasing cell survival (185). The pro-survival effects of androgen

signaling on hippocampal neurons has been suggested to involve

upregulation of BDNF and PKC-dependent phosphorylation of

CREB, among other pathways (169). Further investigations are

needed to understand the degree to which androgen-stimulated

neurogenesis influences cognitive performance in individuals of

different age and sex, as well as how such effects are modulated by

different forms of exercise. However, a variety of studies have

reported positive effects of androgen signaling on spatial working

memory (186, 187), and some of the memory-enhancing effects

have been verified using memory tasks affected by neurogenesis

(169). Considering that andropause, a decline in circulating

andogens, occurs in males with aging (188), utilizing exercise to

increase circulating levels could represent an important method for

maintaining cognitive function.
Dehydroepiandrosterone

Dehydroepiandrosterone is an endogenous steroid hormone

produced in the adrenal glands and nervous system from

pregnenolone in the delta-5 pathway via activity of the enzyme

cytochrome P450c17 in humans (189). Circulating DHEA can be

converted to androstenedione or androstenediol, which

subsequently can be converted to testosterone (190). Circulating

DHEA declines with age and regulates hippocampal neurogenesis

as well as regulates suppression effects of cortisol on formation and

survival of new neurons (191). DHEA and its sulfated form,

DHEAS, bind to GABA receptors and alter neurosecretion

affected by N-Methyl-D-Aspartate (NMDA) receptors (192, 193).

In addition, DHEA crosses blood-brain barrier (194). A study of

post-menopausal women both on and off of estrogen and progestin

replacement therapy reported increases in DHEA and its sulfated

form, DHEAS, in response to 30 min of high intensity treadmill

running (80% of VO2max) (195). Moreover, the DHEA responses

to exercise were greater in those taking hormone replacement

therapy, suggesting that women with higher circulating estrogen
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concentrations would have greater DHEA responses to exercise. A

study involving teenage female runners over the course of 7 weeks

of a competitive season examined the effects of a graded treadmill

test to exhaustion on DHEA and DHEAS across the 7 weeks. The

investigators reported significant increases in DHEA and DHEAS

in response to each of the graded treadmill tests after weeks 1, 4, and

7; However, the increases in DHEA and DHEAS were similar in

response to each exercise bout even through participants aerobic

fitness level (VO2max) increased across the season (177). In an

investigation of well-trained and untrained young adults, DHEA

concentrations increased in the untrained in response to 15-min

bouts of cycle ergometry at 40% and 70% VO2peak, and increased

cycling at 100% of VO2peak until exhaustion; however, DHEA only

increased in the well-trained young adults after exercising at 100%

VO2peak (196). Results altogether suggest that well trained

individuals would need to exercise at higher intensities to

stimulate increases in circulating DHEA. A recent systematic

review of exercise training studies found that regular training of

both males and females over the age of 40 increased circulating

basal levels of DHEA as well as testosterone and GH (114). In the

harvested rat brain cortex, DHEA treatment increased

neurotrophin expression as well as neurite extension (197). An

older study revealed that subcutaneaous treatment of male rats with

DHEA pellets caused increases in newly formed cells in the dentate

gyrus of the hippocampus (191). It also reduced the suppressive

effect of corticosterone. A review of studies investigating the

effectiveness of DHEA for treatment of older adults for dementia

reported that there was not enough positive evidence for use of

DHEA to treat dementia (193).
Irisin

In 2010, Bostrom et al. discovered a peroxisome proliferator-

activated receptor-gamma co-activator 1a (PGC-1a)-dependent
myokine named irisin and demonstrated that PGC-1a stimulates

expression of the membrane protein FNDC5, which is cleaved and

released from muscle as the hormone irisin (198). The irisin

receptors in the brain were recently identified as integrin aVb5
heterodimers (199).

A skeletal muscle response to exercise is the expression of the

transcriptional co-activator, PGC-1a (200). Fittingly, numerous

studies have revealed increases in irisin in response to different

forms of exercise, including moderate to high intensity exercise

(201). The first author has reported increases in circulating irisin in

men and women in response to 90 min of moderate (60% VO2max)

treadmill exercise (18). Qui et al. (202) also reported increases in

irisin in response to aerobic exercise (cycling and running).

Interestingly, irisin is significantly lower in patients with

Alzheimer’s disease (203). However, there is recent evidence that

resistance exercise training increases circulating irisin levels in older

men. Zhao et al. (204) compared circulating irisin concentrations in

older men who had performed resistance training 2x/wk for 12

weeks versus a control group. They reported that the trained group

had significantly higher irisin resting levels than the group that did

not perform resistance training. Interestingly, the effect of exercise
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training on irisin levels is influenced by environmental temperature.

McCormick et al. (205) recently conducted a study comparing irisin

responses to exercise in older and younger men under hotter and

more temperate conditions. They reported elevated irisin responses

to aerobic exercise in hotter conditions in younger and older men

with greater responses in younger men. Jurimae et al. (206) recently

reported that three weeks of sprint interval training in older men

(63+/-8 y) significantly increased resting circulating irisin

concentrations while reducing inflammatory cytokines.

Both FNDC5 and irisin have been found in mouse and human

brains (21, 207), and exercise has been shown to increase

hippocampal FNDC5 levels and upregulate the expression of

BDNF. Additionally, knockdown of FNDC5 has been reported to

reduce central BDNF expression (208), while adenoviral mediated

irisin expression increases BDNF in hippocampal cultures (207,

209). Cyclic AMP element response binding protein (CREB) is a

cellular transcription factor known for inducing neuronal plasticity

and long-term memory formation in the brain (210). Lourenco

et al. found that in human cortical slices, recombinant irisin

stimulated the cAMP/PKA/CREB pathway (21). When considered

with the aforementioned evidence for the role of BDNF and CREB

signaling in the regulation of hippocampal neurogenesis, these

findings suggest that beneficial effects of different forms of

exercise in younger and older individuals may occur through

positive effects on neurogenesis mediated by increased circulating

irisin concentrations.
Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is an important

angiogenic factor for endothelial cells. Platelets are known to be

major contributors of circulating VEGF (211). VEGF binds to two

tyrosine kinase receptors (VEGFRs), VEGFR-1 and VEGFR-

2 (212).

Multiple forms of exercise have been reported to stimulate

increases in VEGF. For example, acute sprint training has been

shown to increase circulating levels of VEGF (213). A study of older

men (72 +/- 6.5y) who performed 5 sets of unilateral leg extensions

at 20% 1-repetition maximum of both limbs using either vascular

occlusion or no vascular occlusion, reported increased circulating

concentrations of VEGF as well as GH in response to the resistance

exercise with vascular occlusion (214). A recent investigation on

effects of only 15 min of aerobic exercise on circulating VEGF, GH

and IGF-1 reported no change in older men and women, suggesting

longer bouts of aerobic exercise may be required for alterations in

these hormones (215). They also reported that cerebral blood flow

increased in the hippocampus of the participants including those

with genetic risk factor for Alzheimer’s. A recent study compared

the effects of cycling at 60% of VO2max in older and younger

participants on VEGF and reported significant increases

immediately following exercise in older, but not younger

participants (216). Three hours post-exercise VEGF values were
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at baseline levels. Another recent study compared the effects of

training that included walking and resistance band exercise 3x/week

for 12 weeks in young/old (65-74y) and old/old (75-84y) individuals

(217). They found increases in resting VEGF levels in the young/old

but not the old/old group after 12 weeks of training, suggesting that

this form of training in individuals >74y may not increase resting

VEGF values.

A large number of studies have shown that VEGF receptors

VEGFR-1 and VEGFR-2 are expressed in neurons (218). VEGF can

exert a variety of important functions in the brain, including

increasing the permeability of the blood-brain barrier (219) and

regulating blood flow in the hippocampus to stimulate neurogenesis

(220). A recent review of studies determining the effects of acute

aerobic and resistance exercise on VEGF as well as BDNF reported

that both forms of exercise increase VEGF and BDNF to potentially

affect neurogenesis (221). VEGF-R1 is prevalent in postnatal

neurons of the cortex, striatum, and hippocampus but declines

with age; however, VEGF-R2 signaling has been shown to lead to

proliferation, migration and differentiation of neurons, with

expression persisting during adulthood. (218). Sun et al. (222),

using a 3-day old rat model, reported increased angiogenesis via

altering VEGF with concomitant neural stem cell proliferation and

differentiation in the premature brain. Another study found that

implantation of biodegradable nanospheres of VEGF in the cerebral

cortex of a transgenic mouse model of Alzheimer’s Disease caused

cellular proliferation in the hippocampus and dentate gyrus (223).

Thus, evidence indicates that VEGF responses to exercise could play

a positive role in neurogenesis.
Erythropoeitin

Erythropoeitin (EPO) is produced by the peritubular cells of the

cortex/medullary border of the kidney (224). EPO gene expression

is stimulated by hypoxia that will induce elevated red blood cell

number, hemoglobin levels and O2 capacity in the blood (225).

Binding of EPO to the EPO-R results in receptor trans-

autophosphorylation, resulting in activation of JAK2-STAT5, PI3-

kinase, PKC, and MAPK pathways (226, 227).

EPO levels have been shown to increase in women completing

three sets of 12 repetitions of bench press, dumbbell curl, dumbbell

squat, and standing dumbbell upright row at either 60%, 70%, or

80% of one-repetition maximum. EPO levels increased to the

greatest degree in the groups completing the exercise at 80% one-

repetition maximum (228), revealing that heavier workloads

resulted in greater EPO response. Female runners completing a

marathon were found to not have increased erythropoeitin levels

until three days following the run (229). After running a marathon,

EPO levels have been shown to increase in male runners; however,

the increases were reported to be dependent upon serum iron levels

(230). Another study reported a 26% increase in EPO levels in eight

males following completion of a half-marathon (231). A recent

study compared EPO responses of participants (age 31+/- 6y) to
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running at high intensity for 30 min vs. running at moderate

intensity for 90 min. The moderate intensity runners showed

increases in EPO during exercise that returned to baseline at the

end of the exercise bout, but there was no significant change in EPO

in the high intensity runners (232). Another investigation examined

the effects of eight weeks of 1-hr cycle ergometry training sessions,

three to four times per week for eight weeks, on regulators of

erythropoiesis (233). They reported mild, transient increases in

EPO with training over the 8 weeks. A recent study compared

circulating EPO levels in men cycling at 60% of power output at

VO2max in an environmental chamber under either hot-hypoxic,

hypoxic, or normoxic conditions (234). They reported increases in

EPO after the hot-hypoxic and hypoxic conditions, but not under

normoxic conditions. Altogether, results of these studies suggest

there are increases in EPO in response to fairly intense resistance

exercise and long aerobic exercise bouts. There is some evidence

that longer, less intense aerobic exercise results in EPO increases;

whereas shorter, more intense aerobic exercise does not. Aerobic

training appears to cause transient increases in resting EPO. Finally,

moderate exercise under hot or high altitude conditions appear to

increase circulating EPO concentrations.

Despite its large molecular weight and susceptibility to

glycosylation, circulating EPO is able to cross the blood-brain

barrier (235, 236). EPO-R brain expression has been observed

during development and adulthood in humans, non-human

primates, and other mammals; and the binding of I125–labeled

EPO localized EPO binding sites in the hippocampus, cortex and

midbrain in mouse. While brain expression of EPO-R is low during

adulthood, expression of the receptor increases in response to

hypoxia or other types of stress (237). During the past two

decades, an abundance of studies has established that circulating

EPO can exert robust neuroprotective effects in the brain. For

example, systemic administration of EPO has been found to

reduce neural tissue damage in mouse models of ischemia,

traumatic brain injury, autoimmune encephalitis, seizures,

Alzheimer’s disease, and amyotrophic lateral sclerosis (227, 236,

238–240). The beneficial properties of EPO in the brain likely relate

to the ability of EPO-R signaling to stimulate anti-apoptotic

proteins such as B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-

extra large (BclxL) (241), to inhibit pro-apoptotic proteins

cytochrome-c and p53 (242, 243), and to promote the release of

anti-inflammatory cytokines (239, 227). However, such beneficial

effects may also relate to modulation of neurogenesis. For example,

in a rat model of Alzheimer’s disease, systemic injection of EPO

enhanced neuronal proliferation in the dentate gyrus (244).

Additionally, a recent study by Wakhloo and colleagues indicates

that cognitive challenge induces local hypoxia in hippocampal

pyramidal neurons, thereby stimulating upregulation of EPO and

EPO-R. Subsequently, EPO signaling promotes the formation of

new hippocampal pyramidal neurons and enhances dendritic spine

densities (245). Given this evidence for the role of EPO signaling in

facilitating hippocampal circuitry formation in response to

cognitively-demanding tasks, and considering the aforementioned
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effects of exercise in increasing circulating EPO, EPO may serve as a

central mediator of exercise-induced cognitive benefits.
Cortisol

Cortisol is a glucocorticoid (GC) hormone that is released from

the adrenal glands in response to activation of the hypothalamic-

pituitary-adrenal (HPA) axis (246). Higher levels of stress will

stimulate the neurons in the paraventricular nucleus of the

hypothalamus to secrete corticotropin-releasing hormone (CRH)

into the hypophyseal portal system, thereby stimulating the anterior

pituitary to release adrenocorticotropic hormone (ACTH) (246).

ACTH will circulate to the adrenal glands and stimulate the release

of cortisol into circulation. Cortisol, a glucocorticoid hormone, will

bind to corticosteroid binding globulin and be carried in the blood

(247). Corticosteroid-binding globulin (CBG) is the main GC-

binding protein in the plasma, with about 80–90% of the GCs

bound to it. It will circulate in the blood stream and bind to mineral

corticoid receptors and glucocorticoid receptors (248). Cortisol and

other glucocorticoids are soluble lipids that easily cross the blood-

brain barrier and are able to bind to glucocorticoid receptors in the

amygdala, prefrontal cortex, and the hippocampus (249).

Exercise at higher intensities as well as extended exercise

duration at moderate intensities will activate the HPA axis (250,

251). For example, a study involving adolescent female runners

examined hormone responses to a maximal graded exercise test at

week 1, 4, and 7 of a high school track season. There were significant

increases in circulating cortisol levels in response to each of the

graded exercise tests to max. However, there were no changes in

resting cortisol levels over the 7-week time period (177). A separate

study compared the effects of 30 minutes of treadmill exercise at

80% of VO2max in postmenopausal women on and off of hormone

replacement therapy (HRT) (250). Results revealed that the

strenuous exercise increased cortisol levels in both groups, but

women on HRT had significantly higher cortisol responses than

those not on HRT (195).

In addition to exercise at higher intensities, mental stress with

lower exercise intensities has been shown to increase circulating

cortisol levels (250). However, lower intensity exercise without

mental stress has been shown to not increase circulating cortisol

levels (250, 252). Similarly, treadmill running by male and female

10K runners for 30 min at 80% heart rate maximum was shown to

not increase circulating cortisol levels (20). A study on effects of 3

sets of 4 resistance exercises (bench press, lat-pull, leg extension,

and leg curl) at a 10-repetition maximum load (a moderate

intensity) , revealed no change in circulating cortisol

concentrations in young men (253). Another study was designed

to compare the effect of acute psychological stress and moderate as

well as vigorous exercise on intense HPA responses and working

memory performance. Salivary cortisol concentrations were

increased similarly by vigorous exercise and by psychological

stress, but not by moderate exercise (254).
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The effects of exercise training on circulating cortisol were

analyzed in a recent systematic review (114). The results

suggested there was not a consensus on whether exercise training

changed resting circulating cortisol levels. Another recent study

examined the effects of training on resting cortisol levels. The

investigators examined the effects of six types of training for six

weeks on resting cortisol levels. The training groups were endurance

running, endurance/interval running, resistance training, explosive

training, speed-endurance 50-meter running, and speed-endurance

training. Results from the study revealed that the endurance

training groups and strength training programs reduced resting

cortisol levels (255).

In the brain, cortisol can bind to receptors and subsequently

inhibit expression of a variety of specific genes (256). It has been

shown that activation of the glucocorticoid receptor (GR) results in

an increase in the expression of serum- and glucocorticoid-

inducible kinase 1 (SGK1) in human stem cells and neurons of

rodents (257, 258) and that SGK1 mediates a cortisol-induced

reduction in neurogenesis (259). Furthermore, a separate study

revealed that GC signaling promotes apoptosis in NPCs and

immature hippocampal neurons (260). Although there is evidence

of a negative effect of cortisol on neurogenesis, it should also be kept

in mind that only approximately 10% of circulating cortisol is able
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to cross the blood-brain barrier (261). Nonetheless, a recent study

examined the effects of rigorous resistance exercise in military

trained power-lifting subjects on salivary cortisol, memory, and

learning ability. After completing a strenuous resistance exercise

protocol, the subjects’ salivary cortisol levels had significantly

increased and importantly, their learning ability and memory was

reduced (249).

Collectively, these findings suggest that low and moderate

training intensities will not acutely affect circulating cortisol

levels, but high intensity exercise can increase circulating cortisol

and potentially result in an inhibitory effect on neurogenesis.

However, there is evidence that endurance training and strength

training of moderate intensities could reduce resting cortisol levels,

thereby conferring a positive effect on neurogenesis.
Discussion

In summary, different forms of exercise increase circulating

levels of a broad range of hormones. Numerous investigations have

revealed important roles for these endocrine factors in the

stimulation of neurogenesis (see Figure 1), and substantial

evidence indicates that exercise-induced changes in these factors
FIGURE 1

Schematic representing the effects of exercise on circulating hormones that regulate neurogenesis. Different forms of exercise may stimulate the
release of brain-derived neurotrophic factor (BDNF) from vascular endothelial cells, platelets, skeletal muscle, or the brain. Exercise may also trigger
the secretion of the myokine irisin from skeletal muscle, promote release of testosterone and estradiol from testes or ovaries, stimulate release of
vascular endothelial growth factor (VEGF) from platelets, signal adrenal glands to release DHEA and cortisol, stimulate the kidneys to release
erythropoietin (EPO), and induce secretion of growth hormone from the pituitary gland. Circulating growth hormone stimulates production and
release of insulin-like-growth factor-1 (IGF-1) from the liver. Collectively, increased circulating levels of BDNF, GH, IGF-1, EPO, estrogen,
testosterone, DHEA, irisin, and VEGF are associated with increased hippocampal neurogenesis (green), while elevated circulating cortisol is
associated with decreased neurogenesis (red).
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can positively affect the maintenance and improvement of cognitive

function. There can be differences in circulating levels of the

aforementioned hormones with variation in exercise mode,

duration, and intensity, as well as effects of age, training status,

and gender. Future studies are needed to evaluate combinatorial

signaling between these endocrine factors, as well as identify the

most effective training methods to increase these circulating

hormones to promote neurogenesis in patients with traumatic

brain injury or neurogenerative disease. These data will be

important for recommending exercise regimens that will

effectively increase neurogenesis. Additionally, more data may

facilitate the development of effective procedures for infusion of

hormones to treat patients with neurodegeneration.
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226. Dziembowska I, Wójcik M, Bukowski J, Żekanowska E. Physical training increases
erythroferrone levels in men. Biol (Basel) (2021) 10(11):1215. doi: 10.3390/
BIOLOGY10111215

227. Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR,
et al. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic
brain diseases: The role of erythropoietin receptor. Neural Regener Res (2017) 12:1381–
9. doi: 10.4103/1673-5374.215240
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