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Identification of fibroblast-
related genes based on single-
cell and machine learning to
predict the prognosis and
endocrine metabolism of
pancreatic cancer

Yinghua Xu1, Xionghuan Chen2,3, Nan Liu1, Zhong Chu1

and Qiang Wang1*

1Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang
University School of Medicine, Hangzhou, China, 2Department of General Surgery, Sir Run Run Shaw
Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3Department of Trauma Surgery,
Tiantai People’s Hospital of Zhejiang Province, Taizhou, China
Background: Single-cell sequencing technology has become an indispensable

tool in tumor mechanism and heterogeneity studies. Pancreatic

adenocarcinoma (PAAD) lacks early specific symptoms, and comprehensive

bioinformatics analysis for PAAD contributes to the developmental mechanisms.

Methods: We performed dimensionality reduction analysis on the single-cell

sequencing data GSE165399 of PAAD to obtain the specific cell clusters. We then

obtained cell cluster-associated gene modules by weighted co-expression

network analysis and identified tumorigenesis-associated cell clusters and

gene modules in PAAD by trajectory analysis. Tumor-associated genes of

PAAD were intersected with cell cluster marker genes and within the signature

module to obtain genes associated with PAAD occurrence to construct a

prognostic risk assessment tool by the COX model. The performance of the

model was assessed by the Kaplan–Meier (K-M) curve and the receiver operating

characteristic (ROC) curve. The score of endocrine pathways was assessed by

ssGSEA analysis.

Results: The PAAD single-cell dataset GSE165399 was filtered and downscaled,

and finally, 17 cell subgroups were filtered and 17 cell clusters were labeled.

WGCNA analysis revealed that the brown module was most associated with

tumorigenesis. Among them, the brownmodule was significantly associated with

C11 and C14 cell clusters. C11 and C14 cell clusters belonged to fibroblast and

circulating fetal cells, respectively, and trajectory analysis showed low

heterogeneity for fibroblast and extremely high heterogeneity for circulating

fetal cells. Next, through differential analysis, we found that genes within the C11

cluster were highly associated with tumorigenesis. Finally, we constructed the

RiskScore system, and K-M curves and ROC curves revealed that RiskScore

possessed objective clinical prognostic potential and demonstrated consistent
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robustness in multiple datasets. The low-risk group presented a higher endocrine

metabolism and lower immune infiltrate state.

Conclusion: We identified prognostic models consisting of APOL1, BHLHE40,

CLMP, GNG12, LOX, LY6E, MYL12B, RND3, SOX4, and RiskScore showed

promising clinical value. RiskScore possibly carries a credible clinical

prognostic potential for PAAD.
KEYWORDS

single-cell sequencing, pancreatic adenocarcinoma, tumorigenesis, RiskScore,
prognosis, endocrine metabolism
Introduction

Although pancreatic adenocarcinoma (PAAD) is a relatively

low-incidence cancer, it is a highly lethal tumor (1). The deficiency

of specific early symptoms of PAAD and the fact that the majority

of patients are experiencing advanced progression or organ

metastases contribute to PAAD being a high-mortality cancer (2).

Frustratingly, radiotherapy, as well as chemotherapy, were not

effective options in the treatment of PAAD, and surgical resection

was currently the best option for most patients, but the prognosis

was graded poorly, with an overall 5-year survival (OS) rate of less

than 10% (3–5). Several studies have shown that prognosis in a

variety of cancers, including PAAD, can be predicted using

carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic

antigen (CEA) (6, 7). However, they lack specificity and

sensitivity for PAAD (8). To address the clinical pain point that

PAAD prognosis was difficult to assess, it was imperative to develop

effective prognostic tools to achieve patient prognostic risk

assessment as well as personalized and precise treatment.

The pancreas has two functions: endocrine and exocrine. The

exocrine glands of the pancreas are composed of acinar cells and duct

cells. Previous studies have believed that pancreatic ductal

adenocarcinoma (PDAC) originates from ductal cells because of

tumor histological similarity to ductal morphology (9). On the other

hand, pancreatic endocrine tumors are caused by endocrine cells (10).

With the emergence of single-cell RNA sequencing (scRNA-Seq)

technology, exploring deeper molecular mechanisms of life from

cellular genetic material, functional heterogeneity, and the

identification of specific cell subtypes emerged as mainstream
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research directions (11, 12). scRNA-seq maps the gene expression

patterns of each cell and decodes its intercellular signaling network.

This unbiased characterization provides clear insights into the entire

tumor ecosystem, such as the mechanisms of intra- and intertumor

heterogeneity and the tumor microenvironment (13). Tumors lead to

an individualized prognosis and variable therapeutic responses due to

their heterogeneity, and single-cell technologies showed powerful

functions in revealing the molecular mechanisms of cancer through

the precise analysis of specific cells or cell clusters (14–16). For example,

Wang et al. developed a lung cancer artificial intelligence detector using

scRNA-Seq data from early lung cancer, which showed great specificity

in the early detection of lung cancer and large-scale early screening of

high-risk populations (17). Li et al. identified proinvasive cancer-

associated fibroblast subtypes in patients with poor prognosis for

gastric cancer, and inhibition of these cell subsets contributed to

creating an activated immune tumor microenvironment (TME) (18).

These studies demonstrated the ability to integrate scRNA-Seq data to

deepen insights into cancer.

Fibroblast growth in pancreatic cancer (PDAC) tumors is

known as a tumor suppressor (19, 20). Cancer-associated

fibroblasts (CAFs) are a collective term for these cells. CAFs may

play a role in the development and progression of PDAC and the

response to treatment (21, 22). CAFs are an important stromal

component, secreting growth factors, inflammation mediators, and

extracellular matrix (ECM) proteins that facilitate tumor growth,

resistance to therapy, and immune rejection (23).

Machine learning is a branch of artificial intelligence that focuses

on making predictions by using mathematical algorithms to identify

patterns in data. Deep learning is a branch of machine learning that

focuses on making predictions using multi-layered neural network

algorithms inspired by the neural structure of the brain. In contrast to

other machine learning methods, such as logistic regression, deep

learning’s neural network architecture enables models to scale

exponentially as the amount and dimension of data grow (24).

Machine learning algorithms to help with cancer detection

(identifying the presence of cancer) and diagnosis (characterizing

cancer) have become increasingly common (25, 26). In this study, we

integrated scRNA-Seq data from three different samples from the

Gene Expression Omnibus (GEO) database to identify cell clusters

associated with PAAD occurrence. RNA-Seq data from PAAD
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samples and normal samples from the Cancer Genome Atlas

(TCGA) and Genotype-Tissue Expression (GTEx) databases were

subsequently identified by weighted gene correlation network

analysis (WGCNA), which identified cellular clusters associated

with gene modules, and we screened prognostic genes associated

with PAAD occurrence by the univariate COX model and the least

absolute shrinkage and selection operator (LASSO) COX model to

construct a prognostic risk assessment system for PAAD.
Materials and methods

Data acquisition

The scRNA-Seq data (registration number: GSE165399) were

downloaded from the GEO (https://www.ncbi.nlm.nih.gov/geo/)

database, containing three samples, and the sample information is

presented in Table 1. Four PAAD patient sequencing datasets were also

downloaded (registration numbers: GSE28735, tumor samples: 42;

GSE57495, tumor samples: 63; GSE62452, tumor samples: 64; and

GSE85916, tumor samples: 79). RNA-Seq data (TCGA-PAAD, tumor

samples: 177) from the PAAD sequencing project were downloaded

from TCGA database (https://portal.gdc.cancer.gov/), as well as clinical

information for the 177 samples. Normal pancreatic samples were

downloaded from the GTEx (https://www.gtexportal.org/home/)

database. Finally, RNA-seq data from the IGGC-AU sequencing

project were downloaded from the University of California Santa

Cruz (UCSC Xena, https://xena.ucsc.edu/).
scRNA-Seq data pre-processing

The scRNA-Seq data of the GSE165399 cohort samples were

processed utilizing the Seurat package (27). First, the genes that

were expressed in all three cells were screened, and the number of

genes expressed in each cell was greater than 250. The

PercentageFeatureSet function was employed to calculate the

percentage of mitochondria and rRNA and to ensure that each

cell expressed more than 500 and less than 7,000 genes with less

than 30% mitochondrial content. Also, the number of UMI in each

cell was ensured to be no less than 500.
scRNA-Seq data clustering and
dimension reduction

Initially, the samples were merged by the merge function in the

Seurat package, and the merged data were normalized by log
Frontiers in Endocrinology 03
normalization. High-variability genes were then detected by the

FindVariableFeatures function (based on the variance stabilization

transformation (vst) to identify variable features). All genes were

scaled with the ScaleData function and subjected to principal

component analysis (PCA) with the RunPCA function. We then

performed cell clustering analysis (set resolution = 0.3) by selecting

dim = 40 and identifying specific cell clusters in PAAD by the

FindNeighbors and FindClusters functions. Next, with the top 40

principal components selected, we operated the UMAP program to

further reduce the dimensionality. Finally, we screened marker

genes in cell clusters by |logfold change (FC)| = 0.35 and Minpct

= 0.3 (minimum expression ratio of differential genes) via the

FindAllMarkers function.
RNA-Seq data processing

RNA-Seq data were processed on the SangerBox website, a

comprehensive online bioinformatics analysis website (28). Samples

without follow-up information were removed from the TCGA-

PAAD cohort, FPKM data were transformed into TPM data, and

normal pancreatic samples from the UCSC Xena were subsequently

merged, and the merged cohort was recorded as TCGA _GTEx-

PAAD (tumor: 177, normal: 167, gene number: 24210). Normal

samples, samples with missing follow-up information in the

GSE28735, GSE57495, GSE62452, and GSE85916 cohorts

were excluded.
Annotation of cell clusters

The cell marker genes for human cells were selected from the

official cell marker website (http://biocc.hrbmu.edu.cn/CellMarker/)

for the pancreas, pancreatic acinar tissue, peripheral blood, and blood

corresponding tissues. The enricher function in the clusterProfiler

package (29) was provided for cell cluster annotation.
Monocle trajectory analysis

Monocle (version 2.18.0) is used to infer the developmental

trajectory of subpopulations of cells. Cells were isolated from the

Seurat object and transferred into the SingleCellExperiment format

(follow the official tutorial for trajectory analysis: http://cole-

trapnell-lab.github.io/monocle-release/docs/#constructing-single-

cell-trajectories). The Monocle object is built from the

SingleCellExperiment format using the new cell dataset function

in Monocle.
TABLE 1 Clinical information for samples in the GSE165399 cohort.

Sample ID Sample tissues Age Gender

GSM5032771 Intraductal papillary mucinous neoplasm 74 Male

GSM5032772 Pancreatic adenosquamous carcinoma 59 Male

GSM5032773 normal pancreas sample 50 Male
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PAAD-related cell cluster
abundance analysis

Based on marker genes in cell clusters, we computed the relative

abundance of cell subpopulations in tumor and normal tissues in

the TCGA_GTEx-PAAD cohort using the CIBERSORT

method (30).
WGCNA analysis

To identify key genes for tumorigenesis, we performed WGCNA

analysis on samples in the TCGA_GTEx-PAAD cohort. Cluster

analysis was first performed on 177 tumor samples and 167 normal

samples to further calculate the Pearson’s correlation between each

gene, followed by constructing co-expression networks and forming

gene modules using the WGCNA package (31). Subsequently, the

Pearson’s correlation analysis was performed with each gene module

using the first principal component (ME) of the cell subpopulation to

identify the key gene modules for PAAD occurrence. The Monocle3

package was also performed to analyze cellular pseudo-temporal

trajectories (32).
Enrichment analysis

To explore the biological functions as well as signaling pathways

involved in genes within the key modules of PAAD occurrence, we

performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) functional enrichment analyses using the

clusterProfiler package at p< 0.05 and FDR< 0.05 as thresholds to

screen the most significantly enriched molecular functions and

signaling pathways.
Cell communication analysis

In multicellular organisms, the basic vital activities of life

depend on cell–cell interactions as a contribution to the

coordination of their behavior. The communication between cells

relies mainly on multisubunit protein complexes. Based on this, we

used the cell chart package (33) to analyze the number of interacting

ligands between all cell subpopulations as well as changes in the

strength of the interaction.
Screening for PAAD-generating genes

Differential analysis was conducted via the limma package (34)

to obtain tumor-associated differentially expressed genes (DEGs) in

tumor and normal tissues in the TCGA_GTEx-PAAD cohort,

which were subsequently intersected with cellular subpopulations

associated with PAAD occurrence, and genes within the signature

module were taken to obtain key genes for PAAD occurrence.
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Prognostic model construction, evaluation,
and validation

Univariate COX models were generated for the expression

matrix of tumor samples from the TCGA-PAAD cohort in

combination with patient survival status and survival time to

identify genes affecting PAAD survival (p< 0.01). Models with a

large number of genes were not conducive to clinical test

manipulation, so we constructed LASSO COX models based on

the above genes employing the glmnet package (35, 36) and

removed genes with high similarity in the models by introducing

the penalty parameter lambda in 10-fold crossvalidation. The

resulting genes were the PAAD prognostic signature genes. Based

on the regression coefficients in the LASSO COX model and the

expression levels of individual genes, we constructed the RiskScore

for the PAAD prognostic risk assessment tool, which was calculated

by the following equation.

RiskScore =o bi  *Exp i

where b was the regression coefficient normalized by the Z-

score for each gene in the LASSO COX model, and Exp represented

the gene expression data.

The RiskScore of tumor samples in the TCGA-PAAD,

GSE28735, GSE57495, GSE62452, GSE85916, and IGGC-AU

cohorts was determined according to the formula, and the high

RiskScore group and low RiskScore group were classified based on

RiskScore = 0 as the threshold. Kaplan–Meier (K-M) survival curves

were plotted to assess the prognostic differences between the two

groups, and receiver operating characteristic curve (ROC) was

developed to assess the performance of RiskScore in predicting

PAAD prognosis.
Potential associations between RiskScore
and clinical features

Patients in the TCGA-PAAD cohort were grouped according to

clinical features, and the RiskScore of patients in each subgroup was

counted. The Wilcox test was conducted to calculate the statistical

difference between the two groups, and the Kruskal–Wallis test was

conducted to calculate the statistical difference among the four

groups. P< 0.05 was considered to be significantly distinct.
Gene set enrichment analysis

To explore the biological pathways that existed differently

between the high RiskScore and low RiskScore groups, single

sample gene set enrichment analysis (ssGSEA) was performed on

the high RiskScore samples and low RiskScore samples in the

TCGA-PAAD cohort, and the ssGSEA scores of pathways were

analyzed for the Pearson’s correlation with RiskScore, and pathways

with r > 0.5 were considered potentially regulated pathways

by RiskScore.
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Endocrine metabolism analysis

The KEGG website provided 34 secretory genes. Genes in

SECRETORY_PATHWAY were obtained from the GSEA website

(https://www.gsea-msigdb.org/gsea/index.jsp) to calculate the score

using ssGSEA.
Statistical analysis

This study was performed using R software (version 4.1.1) for

data analysis. For all statistical analyses, bilateral p< 0.05 was

considered statistically significant.
Results

Dimensionality reduction and clustering of
scRNA-Seq data

Initially, the scRNA-Seq data were filtered to retain the genes

that were expressed in GSM5032771, GSM5032772, and

GSM5032773 (Supplementary Figures S1, S2). The filtered data

were combined, and the highly variable genes in the samples were

filtered by the FindVariableFeatures function. The volcano figure

showed the highly variable genes in the samples and marked the top

20 highly labeled genes (Supplementary Figure S3). All genes were

scaled using the ScaleData function, and PCA downscaling was

performed to find the anchor points (Supplementary Figure S4). By

cluster analysis, we obtained 17 subgroups and showed their

distribution characteristics in the sample (Figure 1A), and we

further selected the top 40 principal components to further

downscale by UMAP to obtain 17 cell clusters (Figure 1B). We

used the FindAllMarkers function to screen marker genes in 17

clusters by |logFC| = 0.35, Minpct = 0.3 (minimum expression

proportion of difference genes) with corrected p< 0.05, and

Figure 1C demonstrates the top five marker gene expression

levels in 17 cell clusters.
Annotation of 17 cell clusters

The marker genes of the human pancreas, pancreatic acinar

tissue, peripheral blood, and blood tissues were annotated by the

enricher function of the clusterProfiler package for 17 cell clusters.

The annotation information of each cell cluster is shown in Table 2.

We found the presence of multiple small clusters in four cell

subgroups, including B cell with two clusters, C4 and C10; cancer

cell with two clusters, C8 and C15; CD1C–CD141-dendritic cell

with three clusters, C0, C1, and C9; and fibroblast with C2 and C11

clusters. Furthermore, we analyzed the differential expression of

marker genes in each cell cluster, and we found that C0 specifically

expressed CLEC4E, C1 specifically expressed MRC1, C2

subpopulation specifically expressed GAS1, C4 specifically

expressed FCMR, C8 specifically expressed DEFB1, C9 specifically

expressed MTND1P23, C10 specifically expressed TCL1A, C11
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specifically expressed the HSPB6 gene, and C15 specifically

expressed RGS5 (Figure 2A). In addition, we found higher

abundances of C0, C1, C2, C4, C6, C8, C9, C10, C11, C13, C14,

and C15 in tumor tissues (Figure 2B).
PAAD-related gene module identification

To identify tumor-associated gene modules in PAAD, we

performed a WGCNA analysis. After the samples were clustered

to construct a scale-free network, we found that the co-expression

network conformed to the scale-free network at the soft threshold b
= 7, when the scale-free R2 was 0.85 (Figures 3A–C). A total of six

gene modules were generated, among which the brown module

(gene number: 4811) was highly correlated with the C11 (r = 0.8, p =

5e−79) and C14 (r = 0.86, p = 8e−104) cluster (Figure 3D). To

explore the biological functions of genes within the brown module,

we performed GO and KEGG enrichment analyses. We found that

these genes were mainly involved in biological processes like

angiogenesis and blood vessel morphogenesis; they may also be

involved in extracellular matrix and extracellular matrix that

contains collagen, adherens junctions between cells and their

substrates, and focal adhesion sites; they are also closely related to

SMAD binding, extracellular matrix structural constituents, and cell

adhesion molecule-binding functions (Figures 4A–C). We also

revealed that these genes are actively involved in signaling

pathways such as focal adhesion and regulation of the actin

cytoskeleton (Figure 4D). Our results suggested that genes within

the brown module were intimately associated with intercellular

signaling transitions.
Trajectory analysis of critical cell cluster

The WCGNA analysis revealed a significant correlation

between genes within the brown module and tumorigenesis, while

the module was highly correlated with the C11 and C14 clusters.

The two clusters belong to fibroblast and circulating fetal cells,

respectively, where fibroblast cells are characterized by two clusters,

C11 and C2. We suggested that the two clusters might be critical

clusters for tumorigenesis. We then performed cell trajectory

analysis of the critical cluster by Monocle. From the cell

differentiation trajectory, C11 and C2, which were also fibroblast

cells, showed the same differentiation trend, basically at the tail end

of the state 1 branch (Figures 5A, B), while the heterogeneity of

circulating fetal cell cells was extremely high (Figure 5C).
Cell communication analysis

To better investigate how the C11 cluster communicates with other

cell clusters, we performed a cellular communication analysis.

Figure 6A shows the interactions and intensity changes between 17

cell clusters, and the results indicate a high correlation between cells.

Subsequently, we extracted the ligand–receptor information of each

subpopulation to communicate with each other, and we found that
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C11 and C14 influenced another cluster through some ligand

receptors, and the C11 subpopulation influenced other cell cluster by

acting on cell surface receptors through LAMC1 (Figure 6B). In

addition, we also found some novel pairing relationships, such as

LAMA4-CD44 and FN1-SDC4, and these results suggested that the

C11 subpopulation played a great role in the development of PAAD.
Tumorigenesis gene screening

Differential analysis of tumor samples and normal samples in

TCGA_GTEx-PAAD identified 3,864 DEGs in tumor tissues, of

which 2,008 upregulated DEGs and 1,856 downregulated DEGs

were identified (Figure 7A). Furthermore, Venn diagrams were

drawn to identify overlapping genes in DEGs, brown module genes,

and marker genes in C11 and C14 cell clusters. The C11 cluster,

DEGS, and brown module genes contained 107 overlapping genes
B

C

A

FIGURE 1

UMAP downscaling analysis of scRNA data. (A) Distribution of cell subpopulations in GSM5032771, GSM5032772, and GSM5032773 samples. (B)
Distribution of 17 cell clusters. (C) Heatmap of top 50 gene expression in 17 cell clusters.
TABLE 2 Annotation information for 17 cell clusters.

Seraut_cluster Cell_type

C0 CD1C-CD141- dendritic cell

C1 CD1C-CD141- dendritic cell

C2 Fibroblast

C3 Plasmacytoid dendritic cell

C4 B cell

C5 T cell

C6 Epithelial cell

C7 CD1C+_B dendritic cell

C8 Cancer cell

C9 CD1C-CD141- dendritic cell

C10 B cell

C11 Fibroblast

C12 Endothelial cell

C13 CD141+CLEC9A+ dendritic cell

C14 Circulating fetal cell

(Continued)
TABLE 2 Continued

Seraut_cluster Cell_type

C15 Cancer cell

C16 Basophil
frontiersin.org

https://doi.org/10.3389/fendo.2023.1201755
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2023.1201755
(Figures 7B, C), while the C14 cluster, DEGs, and brown module

genes contained one overlapping gene (Figures 7D, E). Our results

indicated that the overlapping genes were all highly expressed in

tumor tissues. Only one overlapping gene was present in marker

genes in the C14 cluster; therefore, we concluded that genes in the

C11 cluster might be pivotal genes in PAAD tumorigenesis.
PAAD clinical prognostic model

The univariate COX model found 24 prognostic genes that were

significantly associated with PAAD prognosis. It was well known that

multigene models were unfavorable for clinical detection, so we

employed the LASSO COX model to compress the number of genes

in the model and remove the genes with high similarity. Based on 10-

fold crossvalidation to select the best penalty parameter lambda, we

found that the model was optimal at lambda = 0.0269, so we selected

nine genes (APOL, BHLHE40, CLMP, GNG12, LOX, LY6E, MYL12B,

RND3, SOX4) at lambda = 0.0269 as the target genes of the next

procedure (Figures 8A, B). Based on the regression coefficients and

gene expression levels, we constructed a clinical prognosis assessment
Frontiers in Endocrinology 07
system for PAAD patients with RiskScore = 0.128 * APOL1 + 0.153 *

BHLHE40 − 0.552 * CLMP − 0.363 * GNG12 + 0.528 * LOX − 0.202 *

LY6E − 0.202 * MYL12B + 0.051 * RND3 + 1.003 * SOX4. Patients

were classified into the high RiskScore group (N = 108) and low

RiskScore group (N = 68) by RiskScore Z-score normalized to 0 as the

grouping threshold for the sample. We identified that patients in the

high RiskScore group had a worse prognosis and a higher death rate in

the TCGA-PAAD cohort (Figures 8C, D). The AUC values for

RiskScore to predict 1-, 3-, and 5-year survival in PAAD were 0.67,

0.76, and 0.77, respectively (Figure 8E).
Validation of RiskScore

To better assess the robustness of RiskScore, the prognostic

value of RiskScore was evaluated in the external datasets GSE28735,

GSE57495, GSE62452, GSE85916, and ICGC-AU. We found that

the OS of high RiskScore in the five datasets was significantly worse

than that of the low-risk group (p< 0.05), and the 1-, 3-, and 5-year

survival rates of RiskScore-predicting PAAD were all above

0.6 (Figure 9).
B

A

FIGURE 2

(A) Violin plot of expression of characteristic genes in cell clusters. (B) Boxplot of the abundance of 17 cell clusters in tumor and normal tissues in
the TCGA_GTEx-PAAD cohort. ***p<0.001, ****p<0.0001.
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FIGURE 3

WGCNA analysis. (A) Sample clustering map. (B) Soft threshold b selection in a scale-free network. (C) Gene modules. (D) Correlation heatmap.
B

C D

A

FIGURE 4

Brown module gene function enrichment analysis. (A) Biological process. (B) Cellular component. (C) Molecular function. (D) KEGG.
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Association between RiskScore and clinical
features of PAAD

Clinical features, as traditional prognostic elements, were

associated with the survival rate of cancer patients. In this study,

we counted the distribution of RiskScore in patients with different

clinical feature subgroups. We found a significant difference

between RiskScore and T stage, N stage, and stages I–IV (p<

0.05), and the overall trend of increasing RiskScore with

increasing stage. There was no significant difference between

RiskScore and gender, M, stage, and age (Figure 10).
Gene set enrichment analysis

To further investigate the relationship between RiskScore and

biological function in different samples, ssGSEA enrichment analysis

was performed for patients in the high and low RiskScore groups in

the TCGA-PAAD cohort. Also, the Pearson’s correlation analysis was

performed between the ssGSEA score of each pathway and RiskScore;

a total of 48 KEGG pathways were significantly correlated with

RiskScore (correlation ≥ 0.5), among which six KEGG pathways

were significantly negatively correlated with RiskScore, containing
Frontiers in Endocrinology 09
KEGG_RNA_ POLYMERASE, KEGG_PARKINSONS_DISEASE,

KEGG_OXIDATIVE_PHOSPHORYLATION, KEGG_CARDIAC_

MUSCLE_CONTRACTION, KEGG_GLYCOSYLPHOSP

HATIDYLINOSITOL_GPI_ANCHOR_BIOSYNTHESIS, and

KEGG_PROTEIN_EXPORT. RiskScore was strongly and positively

correlated with 42 KEGG pathways (Figure 11A). Subsequent cluster

analysis of the samples according to each KEGG pathway revealed

that KEGG_BASAL_TRANSCRIPTION_FACTORS and KEGG_

PROGESTERONE_MEDIATED_OOCYTE_MATURATION

pathways increased with higher RiskScore scores (Figure 11B).
Immune microenvironment analysis

To clarify the relationship between RiskScore and patients’

immune microenvironment, we first used ESTIMATE to evaluate

immune infiltration. The high-risk group had a higher StromalScore

and ESTIMATEScore (Figure 12A). CIBERSORT analysis showed

that the low-risk group had significantly enriched T_cells_CD8,

NK_cells_activated, and B_cells_naive, and the high-risk group had

significantly enriched Macrophages_M2 (Figure 12B). MCP-counter,

TIMER, and EPIC analyses suggested that the high-risk group had

higher immune infiltration (Figures 12C–E).
B

C

A

FIGURE 5

Cell trajectory analysis. (A) Pseudo-time measurement of developmental time. (B) Two cell subpopulations could differentiate into three branches.
(C) Differentiation trajectory of cell clusters.
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Endocrine metabolism analysis

The 13 of 34 endocrine-related gene expressions differed in the

high- and low-risk groups (Figure 13A). The low RiskScore group

had a higher secretory pathway score. In addition, a negative

phenomenon was observed between the secretory pathway score

and the RiskScore (Figure 13B). Seven genes from the prognosis

model were negatively correlated with the secretory pathway

score (Figure 13C).
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Construction of nomogram

Univariate and multivariate regression analyses showed that age

and RiskScore were independent prognostic factors (Figures 14A,

B). We next combined age and RiskScore to build a nomogram,

which could predict the prognosis of pancreatic cancer patients

(Figure 14C). The nomogram shows that the 1- and 3-year

prognosis lines are close to the 45° standard line, indicating good

predictive performance (Figure 14D). The decision curve analysis
B

A

FIGURE 6

(A) Graph of changes in the number of receptors and ligands as well as intensity in cellular communication of 17 cell clusters. (B) Bubble diagram of
receptors and ligands of C11 and C14 cell clusters with other cell clusters.
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(DCA) was employed to further confirm the clinical effectiveness of

the nomogram, followed by RiskScore and age (Figure 14E).
Discussion

In this study, we integrated PAAD scRNA-Seq data as well as

RNA-Seq data to construct a promising prognostic tool (RiskScore)

using genes associated with PAAD tumorigenesis in fibroblast and

validated the generalizability of RiskScore with multiple datasets.

We also explored the correlation between KEGG pathways

significantly associated with RiskScore and clinical features.

Recent years have demonstrated that scRNA-Seq sequencing

technology displays powerful advantages in probing the mechanism

of tumorigenesis. Firstly, we identified 17 cell clusters with specific

marker expression in intraductal papillary mucinous neoplasm,

pancreatic adenosquamous carcinoma, and normal pancreas

samples. In our study, we indicated that the C11 subpopulation

belongs to fibroblast at the stage of tumor development. CAFs were

the most abundant components of the tumor microenvironment

and were heterogeneous, playing a pro- or anticancer role in

different individual settings (23, 37). CAFs positively influenced

cancer progression in tumors by mimicking or dominating the

extracellular matrix (ECM) and thus remodeling the ECM

structure. For one, the remodeled ECM structure served as a

physical barrier for the infiltration of immune cells with killing

functions, enhancing tumor killing, and for another, the ECM

served as a structural scaffold for the interaction between tumor

cells and stromal cells in the TME, promoting cardiac angiogenesis

to regulate tumor metastasis (38). In this study, we also identified

C11 subpopulation-related gene modules mainly associated with
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components or biological processes such as intercellular

information exchange. Thus, it was the close communication

between CAFs and tumor cells that might be responsible for the

development of PAAD.

In this study, we also found that the C11 cluster specifically

expresses HSPB6, which is currently focused on bladder urothelial

carcinoma (BLCA). High HSPB6 expression was the critical factor

for BLCA cell migration, and elevated HSPB6 expression inhibited

BLCA cell migration (39). In contrast, the results of cell

communication analysis demonstrated that the C11 cluster could

be influenced by other cells by interacting with cell surface receptors

via LAMC1. LAMC1 secretion was associated with the formation of

inflammatory CAFs in esophageal squamous cell carcinoma, and

upregulation of LAMC1 expression promoted CXCL1 secretion,

which stimulated inflammatory CAFs via CXCR2-pSTAT3 and

thus promoted tumor progression (40). Trajectory analysis

showed consistent differentiation trends between the C11 and C2

clusters in fibroblasts, but C2 was not a tumorigenesis-associated

cell cluster, and the distinction was that the specifically

characterized genes were different, whereas the mechanism of

HSPB6 in PAAD was unknown and its function in fibroblast was

unclear. Our findings provided a new potential mechanism by

which the C11 cluster-specific expression of HSPB6 may promote

PAAD development.

We constructed the RiskScore tool to attempt to assess the

prognosis of PAAD patients. We calculated the RiskScore based on

the formula, and PAAD patients were divided into a high RiskScore

group and a low RiskScore group. The results indicated that the

RiskScore demonstrated a good prognostic value, and patients in

the high RiskScore group had a worse prognosis. This result was

validated in all five external datasets. We also performed ssGSEA
B C

D E

A

FIGURE 7

Screening of genes related to PAAD occurrence. (A) Volcano plot of DEGs between tumor and normal tissues in TCGA_GTEx-PAAD cohort. (B, C)
Wayne plots of genes within C11 cell clusters, up- and downregulated DEGs, and brown modules. (D, E) Wayne plots of genes within C14 cell
clusters, up- and downregulated DEGs, and brown modules.
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analysis on samples from the high and low RiskScore groups, and

basal transcription factors and progesterone-mediated oocyte

maturation pathways were the characteristic pathways in the high

RiskScore group. Moreover, RiskScore is negatively correlated with

endocrine pathways, and the high-risk group had an enhanced

immune infiltration status.

RiskScore consisted of APOL1, BHLHE40, CLMP, GNG12,

LOX, LY6E, MYL12B, RND3, and SOX4, all of which were
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PAAD prognosis-associated genes. APOL1 was observed to be a

critical enzyme in lipid functioning and metabolic processes and

was found to be aberrantly highly expressed in hepatocellular

carcinoma, small-cell lung cancer, and bladder cancer (41–44).

Recent studies indicated that APOL1 exhibited oncogenic effects

in PAAD, inhibiting PAAD cell apoptosis and promoting tumor cell

proliferation through activation of the NOTCH1 signaling pathway

(45), which was the first study reporting APOL1 function in PAAD.
B

C D

E

A

FIGURE 8

LASSO COX model construction. (A) Trajectory plot of independent variables with lambda. (B) The confidence interval of lambda. (C) Scatter plot of
RiskScore distribution, survival status, and nine-gene expression heatmap of patients in TCGA-PAAD cohort. (D) ROC curves. (E) K-M curves of
patients in high and low RiskScore groups.
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Overexpression of BHLHE40 caused the differentiation of tumor-

associated neutrophils into a protumor subpopulation (TAN-1) and

enhanced tumor immune suppression (46). CLMP was the central

immune-related gene in colon cancer, associated with the

inflammatory response, KRAS signaling pathway, and T-cell
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infiltration (47). Upregulation of pro-oncogenic MiR-106b-5p

expression influenced survival outcomes in invasive breast cancer

via suppression of GNG12 (48). LOX family genes were remodeling

agents of hypoxia-induced ECM and were also pivotal inducers of

chemotherapeutic drug resistance (49). The remaining genes were
FIGURE 9

K-M curves as well as ROC curves for patients in the high and low RiskScore groups in the GSE28735, GSE57495, GSE62452, and GSE85916, ICGC-
AU cohorts.
B C

D E F

A

FIGURE 10

Distribution of RiskScore in subgroups of clinical features. (A) Gender. (B) T stage. (C) M stage. (D) N stage. (E) Stage. (F) Age.
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A

FIGURE 11

KEGG pathways affected by RiskScore. (A) Heatmap of clustering between 48 KEGG pathways and RiskScore. (B) Heatmap of KEGG pathways with
changes in RiskScore.
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FIGURE 12

Immune microenvironment analysis. (A) ESTIMATE analysis. (B) CIBERSORT analysis shows a difference of 22 immune cells between high and low
groups. (C) Using MCP-counter, we found 10 immune cell differences between high and low groups. (D) Using TIMER, six immune cell differences
were found between high and low groups. (E) Using EPIC analysis, we found eight immune cell differences between high and low groups. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001.
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also found to positively influence cancer progression (50–53).

CLMP, GNG12, LOX, LY6E, MYL12B, and SOX4 were reported

for the first time as prognostic signature genes for PAAD, and the

mechanisms of how they regulate PAAD occurrence deserve

further investigation.
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Our study defined the critical cell cluster during PAAD genesis,

which might promote tumor progression through frequent

communication with tumor cells. In addition, we constructed a

robust prognostic tool that demonstrated good robustness in

predicting PAAD prognosis. However, this study was a
B

C

A

FIGURE 13

Endocrine metabolism analysis. (A) Difference of 34 endocrine-related genes between high and low group. (B) The difference in endocrine pathway
scores between high and low groups. (C) The correlation analysis between genes in the prognosis model and the endocrine pathway score. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001.
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comprehensive bioinformatic analysis conducted with public

databases, and the molecular mechanisms of the C11 cluster and

PAAD prognostic genes still remain to be further confirmed by

relevant experiments as well as clinical trials.
Conclusion

In conclusion, we identified the C11 cluster in fibroblasts that

specifically expressed HSPB6 as the essential cluster for PAAD

development and constructed a nine-gene prognostic model

through tumor-associated PAAD prognostic genes in the C11

subpopulation. RiskScore might carry a credible clinical

prognostic potential for PAAD.
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Gene quality control map in the sample before filtering.

SUPPLEMENTARY FIGURE 2

Gene quality control plot in the sample after filtering.
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FIGURE 14

Construction of a nomogram. (A, B) Univariate and multivariate Cox regression analyses. (C) Construction of nomogram using age and RiskScore. (D)
Calibration curve analysis. (E) Decision curve analysis (DCA).
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SUPPLEMENTARY FIGURE 3

Distribution of high variant genes and non-high variant genes, the left panel
showed the distribution of high variant genes and the right panel showed the

distribution of non-high variant genes.
Frontiers in Endocrinology 17
SUPPLEMENTARY FIGURE 4

PCA downscaling to find anchor points The left figure showed the anchor
points in GSM5032771, GSM5032772, GSM5032773, and the right figure

showed all the principal components in PCA analysis.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet (2016) 388
(10039):73–85. doi: 10.1016/S0140-6736(16)00141-0

3. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet (2020) 395
(10242):2008–20. doi: 10.1016/S0140-6736(20)30974-0

4. Yamasaki A, Yanai K, Onishi H. Hypoxia and pancreatic ductal adenocarcinoma.
Cancer Lett (2020) 484:9–15. doi: 10.1016/j.canlet.2020.04.018

5. Pasqualetti F, Sainato A, Morganti R, Laliscia C, Vasile E, Gonnelli A, et al.
Adjuvant radiotherapy in patients with pancreatic adenocarcinoma. Is it still appealing
in clinical trials? A meta-analysis and review of the literature. Anticancer Res (2021) 41
(10):4697–704. doi: 10.21873/anticanres.15283

6. Stojkovic Lalosevic M, Stankovic S, Stojkovic M, Markovic V, Dimitrijevic I,
Lalosevic J, et al. Can preoperative CEA and CA19-9 serum concentrations suggest
metastatic disease in colorectal cancer patients? Hellenic J Nucl Med (2017) 20(1):41–5.
doi: 10.1967/s002449910505

7. Zhou G, Liu X, Wang X, Jin D, Chen Y, Li G, et al. Combination of preoperative
CEA and CA19-9 improves prediction outcomes in patients with resectable pancreatic
adenocarcinoma: results from a large follow-up cohort. OncoTargets Ther (2017)
10:1199–206. doi: 10.2147/OTT.S116136

8. Zhu L, Xue HD, LiuW,Wang X, Sui X, Wang Q, et al. Enhancing pancreatic mass
with normal serum CA19-9: key MDCT features to characterize pancreatic
neuroendocrine tumours from its mimics. La Radiologia medica (2017) 122(5):337–
44. doi: 10.1007/s11547-017-0734-x

9. Storz P. Acinar cell plasticity and development of pancreatic ductal
adenocarcinoma. Nat Rev Gastroenterol hepatol (2017) 14(5):296–304. doi: 10.1038/
nrgastro.2017.12

10. Asa SL. Pancreatic endocrine tumors.Modern Pathol (2011) 24 Suppl 2:S66–77.
doi: 10.1038/modpathol.2010.127

11. Navin NE. The first five years of single-cell cancer genomics and beyond.
Genome Res (2015) 25(10):1499–507. doi: 10.1101/gr.191098.115

12. Tanay A, Regev A. Scaling single-cell genomics from phenomenology to
mechanism. Nature (2017) 541(7637):331–8. doi: 10.1038/nature21350

13. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with
single-cell sequencing. Nat Rev Cancer (2017) 17(9):557–69. doi: 10.1038/nrc.2017.58

14. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-cell RNA-seq
highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal
adenocarcinoma. Cell Res (2019) 29(9):725–38. doi: 10.1038/s41422-019-0195-y

15. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al.
Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals
tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol (2020) 38
(3):333–42. doi: 10.1038/s41587-019-0392-8

16. Lu J, Chen Y, Zhang X, Guo J, Xu K, Li L. A novel prognostic model based on
single-cell RNA sequencing data for hepatocellular carcinoma. Cancer Cell Int (2022)
22(1):38. doi: 10.1186/s12935-022-02469-2

17. Wang G, Qiu M, Xing X, Zhou J, Yao H, Li M, et al. Lung cancer scRNA-seq and
lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med
(2022) 14(630):eabk2756. doi: 10.1126/scitranslmed.abk2756

18. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, et al. Single-cell RNA sequencing
reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor
clinical outcomes in patients with gastric cancer. Theranostics (2022) 12(2):620–38.
doi: 10.7150/thno.60540

19. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of
cancer-associated fibroblasts. Nat Rev Clin Oncol (2021) 18(12):792–804. doi: 10.1038/
s41571-021-00546-5

20. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins,
functions and translational impact. Dis Models Mech (2018) 11(4):dmm029447. doi:
10.1242/dmm.029447

21. Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on
therapeutic targeting strategies. Nat Rev Gastroenterol hepatol (2020) 17(8):487–505.
doi: 10.1038/s41575-020-0300-1

22. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al.
A framework for advancing our understanding of cancer-associated fibroblasts. Nat
Rev Cancer (2020) 20(3):174–86. doi: 10.1038/s41568-019-0238-1
23. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer
(2016) 16(9):582–98. doi: 10.1038/nrc.2016.73

24. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N.
Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med
(2021) 13(1):152. doi: 10.1186/s13073-021-00968-x

25. Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients:
Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.
Cell (2023) 186(8):1772–91. doi: 10.1016/j.cell.2023.01.035

26. Tharwat M, Sakr NA, El-Sappagh S, Soliman H, Kwak KS, Elmogy M. Colon
cancer diagnosis based on machine learning and deep learning: modalities and analysis
techniques. Sensors (Basel Switzerland) (2022) 22(23):9250. doi: 10.3390/s22239250

27. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly
parallel genome-wide expression profiling of individual cells using nanoliter droplets.
Cell (2015) 161(5):1202–14. doi: 10.1016/j.cell.2015.05.002

28. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: A
comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta
(2022) 1(3):e36. doi: 10.1002/imt2.36

29. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb) (2021) 2(3):100141.
doi: 10.1016/j.xinn.2021.100141

30. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

31. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

32. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell
transcriptional landscape of mammalian organogenesis. Nature (2019) 566(7745):496–
502. doi: 10.1038/s41586-019-0969-x

33. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al.
Inference and analysis of cell-cell communication using CellChat. Nat Commun
(2021) 12(1):1088. doi: 10.1038/s41467-021-21246-9

34. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

35. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Software (2010) 33(1):1–22. doi: 10.18637/
jss.v033.i01

36. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for cox’s
proportional hazards model via coordinate descent. J Stat Software (2011) 39(5):1–13.
doi: 10.18637/jss.v039.i05

37. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma
in cancer. Nat Rev Cancer (2004) 4(11):839–49. doi: 10.1038/nrc1477

38. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP promotes
immunosuppression by cancer-associated fibroblasts in the tumor microenvironment
via STAT3-CCL2 signaling. Cancer Res (2016) 76(14):4124–35. doi: 10.1158/0008-
5472.CAN-15-2973

39. Chen S, Huang H, Yao J, Pan L, Ma H. Heat shock protein B6 potently increases
non-small cell lung cancer growth. Mol Med Rep (2014) 10(2):677–82. doi: 10.3892/
mmr.2014.2240

40. Fang L, Che Y, Zhang C, Huang J, Lei Y, Lu Z, et al. LAMC1 upregulation via
TGFbeta induces inflammatory cancer-associated fibroblasts in esophageal squamous
cell carcinoma via NF-kappaB-CXCL1-STAT3. Mol Oncol (2021) 15(11):3125–46. doi:
10.1002/1878-0261.13053

41. Thomson R, Genovese G, Canon C, Kovacsics D, Higgins MK, Carrington M,
et al. Evolution of the primate trypanolytic factor APOL1. Proc Natl Acad Sci USA
(2014) 111(20):E2130–9. doi: 10.1073/pnas.1400699111

42. Shi J, Yang H, Duan X, Li L, Sun L, Li Q, et al. Apolipoproteins as differentiating
and predictive markers for assessing clinical outcomes in patients with small cell lung
cancer. Yonsei Med J (2016) 57(3):549–56. doi: 10.3349/ymj.2016.57.3.549

43. Bharali D, Banerjee BD, Bharadwaj M, Husain SA, Kar P. Expression analysis of
apolipoproteins AI & AIV in hepatocellular carcinoma: A protein-based hepatocellular
carcinoma-associated study. Indian J Med Res (2018) 147(4):361–8. doi: 10.4103/
ijmr.IJMR_1358_16

44. Ma XL, Gao XH, Gong ZJ, Wu J, Tian L, Zhang CY, et al. Apolipoprotein A1: a
novel serum biomarker for predicting the prognosis of hepatocellular carcinoma after
curative resection. Oncotarget (2016) 7(43):70654–68. doi: 10.18632/oncotarget.12203
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/S0140-6736(16)00141-0
https://doi.org/10.1016/S0140-6736(20)30974-0
https://doi.org/10.1016/j.canlet.2020.04.018
https://doi.org/10.21873/anticanres.15283
https://doi.org/10.1967/s002449910505
https://doi.org/10.2147/OTT.S116136
https://doi.org/10.1007/s11547-017-0734-x
https://doi.org/10.1038/nrgastro.2017.12
https://doi.org/10.1038/nrgastro.2017.12
https://doi.org/10.1038/modpathol.2010.127
https://doi.org/10.1101/gr.191098.115
https://doi.org/10.1038/nature21350
https://doi.org/10.1038/nrc.2017.58
https://doi.org/10.1038/s41422-019-0195-y
https://doi.org/10.1038/s41587-019-0392-8
https://doi.org/10.1186/s12935-022-02469-2
https://doi.org/10.1126/scitranslmed.abk2756
https://doi.org/10.7150/thno.60540
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1242/dmm.029447
https://doi.org/10.1038/s41575-020-0300-1
https://doi.org/10.1038/s41568-019-0238-1
https://doi.org/10.1038/nrc.2016.73
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.3390/s22239250
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1002/imt2.36
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1038/nrc1477
https://doi.org/10.1158/0008-5472.CAN-15-2973
https://doi.org/10.1158/0008-5472.CAN-15-2973
https://doi.org/10.3892/mmr.2014.2240
https://doi.org/10.3892/mmr.2014.2240
https://doi.org/10.1002/1878-0261.13053
https://doi.org/10.1073/pnas.1400699111
https://doi.org/10.3349/ymj.2016.57.3.549
https://doi.org/10.4103/ijmr.IJMR_1358_16
https://doi.org/10.4103/ijmr.IJMR_1358_16
https://doi.org/10.18632/oncotarget.12203
https://doi.org/10.3389/fendo.2023.1201755
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2023.1201755
45. Lin J, Xu Z, Xie J, Deng X, Jiang L, Chen H, et al. Oncogene APOL1
promotes proliferation and inhibits apoptosis via activating NOTCH1 signaling
pathway in pancreatic cancer. Cell Death Dis (2021) 12(8):760. doi: 10.1038/
s41419-021-03985-1

46. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, et al. Single-cell RNA-seq
analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated
glycolysis in pancreatic tumour microenvironment. Gut (2022) 72(5):958-71. doi:
10.1136/gutjnl-2021-326070

47. Wang X, Duanmu J, Fu X, Li T, Jiang Q. Analyzing and validating the prognostic
value and mechanism of colon cancer immune microenvironment. J Transl Med (2020)
18(1):324. doi: 10.1186/s12967-020-02491-w

48. Farre PL, Duca RB, Massillo C, Dalton GN, Grana KD, Gardner K, et al.
MiR-106b-5p: A master regulator of potential biomarkers for breast cancer
aggressiveness and prognosis. Int J Mol Sci (2021) 22(20):11135. doi: 10.3390/
ijms222011135
Frontiers in Endocrinology 18
49. Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE, et al. Targeting
lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast
cancer. Nat Commun (2020) 11(1):2416. doi: 10.1038/s41467-020-16199-4

50. AlHossiny M, Luo L, Frazier WR, Steiner N, Gusev Y, Kallakury B, et al. Ly6E/K
signaling to TGFbeta promotes breast cancer progression, immune escape, and drug
resistance. Cancer Res (2016) 76(11):3376–86. doi: 10.1158/0008-5472.CAN-15-2654

51. Dabrowska M, Skoneczny M, Rode W. Functional gene expression profile
underlying methotrexate-induced senescence in human colon cancer cells. Tumour
Biol (2011) 32(5):965–76. doi: 10.1007/s13277-011-0198-x

52. WuN, Zheng F, Li N, Han Y, Xiong XQ,Wang JJ, et al. RND3 attenuates oxidative
stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1
signaling. Redox Biol (2021) 48:102204. doi: 10.1016/j.redox.2021.102204

53. Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, et al. An
NK-like CAR T cell transition in CAR T cell dysfunction. Cell (2021) 184(25):6081–100
e26. doi: 10.1016/j.cell.2021.11.016
frontiersin.org

https://doi.org/10.1038/s41419-021-03985-1
https://doi.org/10.1038/s41419-021-03985-1
https://doi.org/10.1136/gutjnl-2021-326070
https://doi.org/10.1186/s12967-020-02491-w
https://doi.org/10.3390/ijms222011135
https://doi.org/10.3390/ijms222011135
https://doi.org/10.1038/s41467-020-16199-4
https://doi.org/10.1158/0008-5472.CAN-15-2654
https://doi.org/10.1007/s13277-011-0198-x
https://doi.org/10.1016/j.redox.2021.102204
https://doi.org/10.1016/j.cell.2021.11.016
https://doi.org/10.3389/fendo.2023.1201755
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Identification of fibroblast-related genes based on single-cell and machine learning to predict the prognosis and endocrine metabolism of pancreatic cancer
	Introduction
	Materials and methods
	Data acquisition
	scRNA-Seq data pre-processing
	scRNA-Seq data clustering and dimension reduction
	RNA-Seq data processing
	Annotation of cell clusters
	Monocle trajectory analysis
	PAAD-related cell cluster abundance analysis
	WGCNA analysis
	Enrichment analysis
	Cell communication analysis
	Screening for PAAD-generating genes
	Prognostic model construction, evaluation, and validation
	Potential associations between RiskScore and clinical features
	Gene set enrichment analysis
	Endocrine metabolism analysis
	Statistical analysis

	Results
	Dimensionality reduction and clustering of scRNA-Seq data
	Annotation of 17 cell clusters
	PAAD-related gene module identification
	Trajectory analysis of critical cell cluster
	Cell communication analysis
	Tumorigenesis gene screening
	PAAD clinical prognostic model
	Validation of RiskScore
	Association between RiskScore and clinical features of PAAD
	Gene set enrichment analysis
	Immune microenvironment analysis
	Endocrine metabolism analysis
	Construction of nomogram

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


