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A nomogram based on radiomics
intermuscular adipose analysis to
indicate arteriosclerosis in
patients with newly diagnosed
type 2 diabetes

Cong He, Dong Xie, Lin-feng Fu, Jin-na Yu, Fang-ye Wu,
Yong-gang Qiu and Hong-wei Xu*

Department of Radiology, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
Objective: Early identifying arteriosclerosis in newly diagnosed type 2 diabetes

(T2D) patients could contribute to choosing proper subjects for early prevention.

Here, we aimed to investigate whether radiomic intermuscular adipose tissue

(IMAT) analysis could be used as a novel marker to indicate arteriosclerosis in

newly diagnosed T2D patients.

Methods: A total of 549 patients with newly diagnosed T2D were included in this

study. The clinical information of the patients was recorded and the carotid

plaque burden was used to indicate arteriosclerosis. Three models were

constructed to evaluate the risk of arteriosclerosis: a clinical model, a

radiomics model (a model based on IMAT analysis proceeded on chest CT

images), and a clinical-radiomics combined model (a model that integrated

clinical-radiological features). The performance of the three models were

compared using the area under the curve (AUC) and DeLong test. Nomograms

were constructed to indicate arteriosclerosis presence and severity. Calibration

curves and decision curves were plotted to evaluate the clinical benefit of using

the optimal model.

Results: The AUC for indicating arteriosclerosis of the clinical-radiomics

combined model was higher than that of the clinical model [0.934 (0.909,

0.959) vs. 0.687 (0.634, 0.730), P < 0.001 in the training set, 0.933 (0.898,

0.969) vs. 0.721 (0.642, 0.799), P < 0.001 in the validation set]. Similar indicative

efficacies were found between the clinical-radiomics combined model and

radiomics model (P = 0.5694). The AUC for indicating the severity of

arteriosclerosis of the combined clinical-radiomics model was higher than that

of both the clinical model and radiomics model [0.824 (0.765, 0.882) vs. 0.755

(0.683, 0.826) and 0.734 (0.663, 0.805), P < 0.001 in the training set, 0.717 (0.604,

0.830) vs. 0.620 (0.490, 0.750) and 0.698 (0.582, 0.814), P < 0.001 in the

validation set, respectively]. The decision curve showed that the clinical-

radiomics combined model and radiomics model indicated a better

performance than the clinical model in indicating arteriosclerosis. However, in

indicating severe arteriosclerosis, the clinical-radiomics combined model had

higher efficacy than the other two models.
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Conclusion: Radiomics IMAT analysis could be a novel marker for indicating

arteriosclerosis in patients with newly diagnosed T2D. The constructed

nomograms provide a quantitative and intuitive way to assess the risk of

arteriosclerosis, which may help clinicians comprehensively analyse radiomics

characteristics and clinical risk factors more confidently.
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Introduction

Diabetes is one of the major conditions that endangers human

health worldwide (1). Evidence has confirmed that cardiovascular

and cerebrovascular accidents are the major outcomes of

individuals with diabetes, whose pathological changes are

characterized by arteriosclerosis (2). Even in the state of newly

diagnosed diabetes, the risk of arteriosclerosis is present (3).

Evaluating the severity of arteriosclerosis can predict the risk of

cardio-cerebral vascular events, such as stroke, myocardial

infarction, and amputation, in patients with both newly

diagnosed and known diabetes (4).

It has been reported that before the onset of T2D, insulin

resistance (IR) is generally present and acts as an independent risk

factor for the development of arteriosclerosis (5). Several indicators

can reflect IR, such as the hyperinsulinaemic euglycaemic clamp

(HEC), insulin resistance index (HOMA-IR), triglyceride-glucose

index (TyG), triglyceride/high-density lipoprotein cholesterol (TG/

HDL-C), visceral fat index (VAI) (6–8). The HEC is the gold

standard for IR measurement. However, it is time-consuming and

requires frequent blood collection, which limits its clinical

application. Other blood examination indicators, such as HOMA-

IR, TyG, and TG/HDL-C, may have limited sensitivity and

specificity (9).

Intermuscular adipose tissue (IMAT) is a kind of distinct adipose

that accumulates within the skeletal muscle and the content of IMAT

has been shown to be related to IR in recent studies (10–12). Using

imagingmodalities, suchasCTandMRI,noninvasivequantificationof

IMAT can be performed for diabetes management (11, 13). However,

in vivo quantitative analysis of IMAT relies on image segmentation

techniques or thresholding. It is operator-dependent and may lack

accuracy and robustness (14, 15). Radiomics is an emerging approach

that makes quantitative assessment of medical features extracted from

a region of interest possible by mathematical-statistical algorithms

(16). It has been used to explore and model the association between

features and survival or malignancy prediction (17, 18). However, the

relationship between radiomics intermuscular adipose analysis and

arteriosclerosis in patients with newly diagnosed type 2 diabetes (T2D)

is scarce to date.

Therefore, our study aimed to investigate the association of

radiomic features for IMAT analysis with arteriosclerosis in newly

diagnosed T2D patients. Moreover, we developed nomogram
02
prediction models based on radiomics IMAT assessment and

clinical risk factors to indicate arteriosclerosis and compared

whether the integration of these methods enhances the

indication performance.
Materials and methods

Study participants in the study

This study was approved by the Ethics Committee of Shaoxing

Second Hospital. The data were anonymous, so informed consent

was waived. From January 2018 to January 2021, data from 4327

hospitalized patients with abnormal blood glucose levels were

retrospectively analysed. After reviewing clinical information, a

total of 549 patients with newly diagnosed T2D were included in

the study. The inclusion criteria were as follows: 1) fasting plasma

glucose (FPG) ≥ 7.0 mmol/l, 2-hour postprandial glucose (2hPG) ≥

11.1 mmol/l, and/or glycated haemoglobin (HbA1c) ≥ 6.5% (19); 2)

abnormal blood glucose duration ≤ six months; and 3) age between

40 and 70 years old. The exclusion criteria were as follows: 1)

history of antidiabetic drug use; 2) history of lipid-lowering

treatment; 3) history of arteriosclerotic cardiovascular disease or

severe renal dysfunction; 4) history of malignancy; and 5) lack of

carotid ultrasonography or chest CT examination. Arteriosclerotic

cardiovascular disease includes stroke, transient ischemic attack,

coronary heart disease, heart failure, and arterial occlusion (3). We

randomly divided the patients into a training set and a validation set

at a ratio of 7:3. The details of patient selection are presented

in Figure 1.
Data collection

Data on sex, age, height, weight, waist circumference, tobacco

use, alcohol use and history of hypertension were collected. Body

mass index (BMI) was calculated as weight (kg) divided by the

squared value of height (m2). Hypertension was defined as blood

pressure (BP) ≥140/90 mmHg on two different occasions or a

history of antihypertensive treatment.

Clinical laboratory test data, such as triglycerides (TGs), total

cholesterol (TC), triglycerides/high-density lipoprotein cholesterol
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(TG/HDL-C), FPG, and HbA1c, were also recorded. The TyG index

was calculated by the equation log [(fasting TG (mg/dl) × FPG (mg/

dl)/2] (20).
Assessment of arteriosclerosis

The extent of arteriosclerosis in the participants was assessed by

carotid ultrasonography according to the literature (3). Briefly, for

each participant, the unilateral carotid artery was divided into the

common carotid region, internal carotid region, external carotid

region, and bifurcation carotid region. The presence of plaques in

each region was scored as 1 (single plaque), 2 (multiple plaques), or

3 (stenosis). The plaque score (PS) was calculated by summing the

scores of both carotid arteries. Based on the PS, the severity of

arteriosclerosis was classified into no plaque burden (PS = 0), low

plaque burden (PS < 3), and high plaque burden (PS ≥ 3). The

ultrasound images were independently reviewed by two experienced

sonographers who had no knowledge of the clinical data. Any

discrepancies were resolved by consensus.
Radiomics IMAT analysis

Radiomics IMAT analysis was proceeded on chest CT images

obtained by using a 64-row or 16-row multidetector CT scanner

(SOMATOM Definition AS, Siemens Medical Solutions, and

BrightSpeed, GE Healthcare). The following CT parameters were

applied: rotation time, 500 milliseconds; voltage, 120 kVp;

automatic exposure control, and 2.5 mm reconstructed

section thickness.
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The acquired CT images were then imported into ITK-SNAP

software (www.itksnap.org) to delineate the regions of interest

(ROIs) of IMAT in the section above the aortic arch by two

independent experienced radiologists who had no knowledge of

the arteriosclerosis degree (13). To ensure the consistency of the

data, the same delineate criterion was applied, and another expert

was responsible for conforming the segmentation. After image

segmentation, Z score normalization was applied to standardize

the CT images. To assess the reproducibility of image segmentation,

two months later, 50 patients were randomly selected, and the

IMAT ROIs were delineated again by radiologists to build a

resegmentation set. Then, intraobserver and interobserver

repeatability were evaluated by using intraclass and interclass

correlation coefficients (ICCs).

After the image segmentation, the radiomics features of IMAT

were extracted with the pyradiomic platform (https://

keyan.deepwise.com) (21). In the preprocessing stage, Z score

normalization was used to process the images with a

normalization scale of 100, and the B-spline interpolation

sampling method was used to resample CT images to the same

resolution. Eight kinds of filters (wavelet, Laplacian of Gaussian,

square, square root, logarithm, exponential, gradient transform, and

local binary pattern transform) were applied to preprocess the CT

images. In total, 1,316 radiomics features of IMAT were extracted

from the ROIs of each CT image: 252 first-order features, 14 shape

features, 336 greyscale co-occurrence matrix (GLCM), 224 grey-

level size zone matrix (GLSZM), 224 grey-level run length matrix

(GLRLM), 196 grey-level distance-zone matrix (GLDM), and 70

neighbourhood grey-tone difference matrix (NGTDM).

Least absolute shrinkage and selection operator (LASSO)

regression was used to select the extracted radiomic features of

IMAT that were highly correlated with arteriosclerosis. First, 260

features with unique values were excluded. Pearson correlation

analysis was used to estimate the correlation between the

remaining features. Features with a correlation coefficient under

0.90 were excluded. After dimensionality reduction of features, the

144 features were included in subsequent modelling.
Model construction and validation

Both clinical data and radiomics features were applied for

model construction in indicating arteriosclerosis in patients with

newly diagnosed T2D. In terms of clinical elements, univariate and

multivariate logistic regression were conducted to explore the

relationship between clinical elements and the carotid plaque

burden, which represented arteriosclerosis. Then, clinical

elements with P < 0.05 in multivariate analysis were included to

establish model 1. With regard to the radiomics model, the L1-

based method was used for IMAT radiomics feature selection. By

summing the included features weighted by their coefficients, a

radiomic score (Rad-score) formula (model 2) could be constructed.

A combined clinical-radiomics model (model 3) was developed by

integrating the clinical elements and the radiomics signature and

presented in the form of a nomogram.
FIGURE 1

Inclusion and exclusion criteria of our study.
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A confusion matrix was used to quantify the performances of

model 1, model 2, and model 3. Furthermore, receiver operating

characteristic (ROC) curves were generated to quantify the clinical

usefulness of the three models. Calibration curves were plotted to

determine the discrimination ability of the radiomic-clinical

nomogram for the training and validation sets. The usefulness of

the radiomic-clinical nomogram was assessed by the net benefits in

different threshold probabilities by decision curve analysis (DCA).

Figure 2 presents the flowchart of the study.
Statistical analysis

All statistical analyses were performed with SPSS (version 26.0),

MedCalc (vision 19.5.6), and R software (version 4.0.2). Normality

was evaluated by the Kolmogorov-Smirnov test. Data with a

nonnormal distribution were expressed as medians (interquartile

ranges) for continuous variables and as percentages for categorical

variables. Group differences were evaluated by the Wilcoxon rank

sum test for continuous variables and by the chi-square test for

categorical variables. Pearson’s chi-squared test was used to identify

the difference between the training and validation sets. The

performance of the clinical model, radiomics model, and

combined clinical-radiomics model was quantified by the area

under the curve (AUC) with 95% confidence intervals (95% CIs).

The DeLong test was employed to determine whether significant

differences existed in the AUC values of the three models. We also

calculated the ICCs to evaluate the agreement of extracted

radiomics features by two radiologists. Kappa test analyses were

used to determine the intra- and interobserver agreement. P values

≤ 0.05 were considered statistically significant.
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Results

Clinical characteristics of the patients

The baseline characteristics of the patients with or without

plaque burden are compared in Table 1. Patients with plaque

burden were older, more likely to be male, had more

hypertension, and were more likely to be current smokers (57.00

[52.00-63.00] vs. 52.00 [46.00-58.00)] years, P < 0.001; 70.60% vs.

61.80%, P =0.029; 51.70% vs. 36.80%, P < 0.001; 49.80% vs. 37.10%,

P =0.003, respectively). However, there were no differences in the

physical examination results (such as BMI and waist circumference)

and laboratory findings (such as TGs, TC, FPG, and the TyG index)

between the groups.
Clinical elements: Model 1

In terms of clinical elements, age and smoking history were

independent risk factors associated with carotid plaque burden in

patients with newly diagnosed diabetes, while age, smoking history,

and TyG index were independent risk factors associated with high

carotid plaque burden (PS ≥ 3) in patients with newly diagnosed

diabetes. The results of the logistic regression analysis are shown

in Table 2.

A logistic regression classifier was established according to the

selected clinical characteristics. In all subjects included in the study,

the AUC of the training set was 0.687 (95% CI: 0.634-0.730), the

accuracy rate was 0.656, the sensitivity was 0.617, and the specificity

was 0.694. The AUC of the validation set was 0.721 (95% CI: 0.642-

0.799), the accuracy rate was 0.685, the sensitivity was 0.691, and
FIGURE 2

Flowchart of the development and evaluation of the clinical model, radiomics model, and clinical-radiomics combined model. LR, linear regression;
ROI, regions of interest; GLCM, co-occurrence matrix; GLSZM, grey-level size zone matrix; GLRLM, grey-level run length matrix; GLDM, grey-level
distance-zone matrix; NGTDM, neighbourhood grey-tone difference matrix.
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the specificity was 0.679. In subjects with a high plaque burden, the

AUC of the training set was 0.755 (95% CI: 0.683-0.826),

the accuracy rate was 0.697, the sensitivity was 0.629, and the

specificity was 0.737. The AUC of the validation set was 0.620 (95%

CI: 0.490-0.750), the accuracy rate was 0.654, the sensitivity was

0.633, and the specificity was 0.667.
Radiomics signature: Model 2

ICCs that represented the intraobserver and interobserver

consistency of the feature extraction were calculated. A total of

1270 stable features with ICCs greater than 0.75 were retained for

subsequent analysis. After applying the LASSO algorithm in the

training set, ten features associated with the present of

arteriosclerosis and ten features associated with the severity of

arteriosclerosis were selected from the extracted features. These

twenty features included eight first-order features and twelve

texture features, which can be seen in Table 3 and Supplementary

Figure S1. Based on the selected features, the linear regression (LR)

algorithm was used to construct the radiomics model and to

calculate the Rad-score (Supplementary Appendix S1).
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For all subjects included in the study, the AUC of the training

set was 0.932 (0.907-0.957), the accuracy rate was 0.862, the

sensitivity was 0.872, and the specificity was 0.852. The AUC of

the validation set was 0.927 (0.890-0.964), the accuracy rate was

0.842, the sensitivity was 0.840, and the specificity was 0.845. In

subjects with a high plaque burden, the AUC of the training set was

0.734 (0.663-0.805), the accuracy rate was 0.670, the sensitivity was

0.771, and the specificity was 0.610. The AUC of the validation set

was 0.698 (0.582-0.814), the accuracy rate was 0.642, the sensitivity

was 0.567, and the specificity was 0.686.
Clinical-radiomics combined model:
Model 3

Nomograms including clinical factors and Rad-score are shown

in Figure 3. The formulas to assess the risk probability for

atherosclerosis are available in Supplementary Appendix S2. The

performances of the three models are presented by a confusion

matrix. The false-positive and false-negative rates in model 3 were

lower than model 1 in both the training sets and validation sets

(Figure 4, Supplementary Table S1). In all subjects included in the
TABLE 1 Baseline characteristics of all subjects (n=549).

Without plaque burden (n=280) With plaque burden
(n=269) P-value

Age (years) 52.00 (46.00-58.00) 57.00 (52.00-63.00) <0.001*

Men (n, %) 173 (61.80) 190 (70.60) 0.029*

BMI (kg/m2) 24.80 (22.68-26.60) 24.50 (22.44-27.10) 0.700

Waist circumference (cm) 88.00 (83.00-95.00) 89.00 (81.00-94.00) 0.581

SBP (mmHg) 129.00 (118.00-140.00) 136.00 (123.00-148.00) <0.001*

DBP (mmHg) 83.00 (76.00-90.00) 84.00 (76.00-90.00) 0.556

Hypertension (n, %) 103 (36.80) 139 (51.70) <0.001*

Current smoking (n, %) 104 (37.10) 134 (49.80) 0.003*

Alcohol consumption (n, %) 90 (32.10) 108 (40.10) 0.051

Total cholesterol (mmol/L) 4.80 (4.04-5.72) 4.73 (4.06-5.54) 0.599

Triglyceride (mmol/L) 1.56 (1.14-2.44) 1.55 (1.07-2.20) 0.216

LDL cholesterol (mmol/L) 3.12 (2.52-3.82) 3.14 (2.54-3.75) 0.762

HDL cholesterol (mmol/L) 1.08 (0.93-1.32) 1.09 (0.93-1.29) 0.724

Hs-CRP (mg/L) 1.58 (0.87-3.36) 1.87 (0.93-3.48) 0.267

Fasting blood glucose (mmol/L) 11.36 (9.05-13.89) 11.36 (9.26-10.05) 0.834

TyG index 9.60 (9.12-10.04) 9.57 (9.20-9.91) 0.408

Fasting C-peptide (pmol/L) 465.95 (331.26-626.25) 466.00 (344.00-614.75) 0.484

Fasting insulin (pmol/L) 34.44 (22.39-48.07) 33.37 (23.22-49.50) 0.742

HbA1c (%) 10.90 (9.50-12.50) 11.00 (9.20-12.40) 0.663
Data are presented as median (P25-P75) or number (%).
TyG, triglyceride-glucose; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; hs-CRP, high
sensitivity C-reactive protein; HbA1c, haemoglobin.
Both * symbol and bold values provided in Table 1 indicate significant differences between the two groups (P < 0.05).
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study, the AUC of model 3 was higher than that of model 1 [0.934

(0.909, 0.959) vs. 0.687 (0.634, 0.730), P < 0.001 in the training set,

0.933 (0.898, 0.969) vs. 0.721 (0.642, 0.799), P < 0.001 in the

validation set]. Similar indicative efficacy was found between

model 3 and model 2 (P = 0.5694). In subjects with high plaque

burden, the AUC of model 3 was higher than that of both model 1
Frontiers in Endocrinology 06
and model 2 [0.824 (0.765, 0.882) vs. 0.755 (0.683, 0.826) and 0.734

(0.663, 0.805), P < 0.001 in the training set, 0.717 (0.604, 0.830) vs.

0.620 (0.490, 0.750) and 0.698 (0.582, 0.814), P < 0.001 in the

validation set, respectively]. Table 4 lists the AUC, accuracy,

sensitivity and specificity of the three models. The comparison of

the ROC curves of the three models is presented in Figure 5.
TABLE 2 Univariate and multivariate logistic regression analysis of the clinical elements for the patients with plaque burden.

Variables

Patients with plaque burden Patients with high plaque burden

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR (95% CI) P-
value OR (95% CI) P-

value OR (95% CI) P-
value OR (95% CI) P-

value

Age 1.0711.042-1.101) 0.000
1.065 (1.035-

1.096)
0.000

1.081 (1.037-
1.128)

0.000
1.111 (1.060-
1.165)

0.000

Gender (female vs. male)
1.260 (0.817-

1.943)
0.296

1.880 (0.946-
3.736)

0.071

Smoking history (yes vs. no)
1.756 (1.171-

2.635)
0.006

1.978 (1.285-
3.044)

0.002
2.040 (1.118-
3.723)

0.020
2.323 (1.193-
4.523)

0.013

Drinking history (yes vs. no)
1.338 (0.882-

2.029)
0.171

0.898 (0.493-
1.633)

0.724

Hypertension history (yes vs.
no)

1.720 (1.146-
2.583)

0.009 1.18 (0.737-1.888) 0.491
1.811 (0.989-
3.315)

0.054

SBP (mmHg)
1.019 (1.008-

1.031)
0.001

1.017 (1.004-
1.030)

0.010
1.009 (0.994-
1.025)

0.252

DBP (mmHg)
1.000 (0.982-

1.017)
0.978

1.002 (0.978-
1.027)

0.869

BMI (kg/m2)
2.603 (0.914-

1.010)
0.120

0.968 (0.891-
1.053)

0.452

Waist circumference (cm)
0.989 (0.969-

1.009)
0.261

1.003 (0.975-
1.032)

0.846

Total cholesterol (mmol/L)
0.972 (0.840-

1.125)
0.704

1.116 (0.901-
1.381)

0.315

Triglyceride (mmol/L)
0.938 (0.836-

1.053)
0.279

1.248 (1.002-
1.556)

0.048
0.682 (0.303-
1.535)

0.355

HDL cholesterol (mmol/L)
0.860 (0.588-

1.257)
0.435

0.463 (0.166-
1.296)

0.143

LDL cholesterol (mmol/L)
0.983 (0.921-

1.049)
0.600

1.201 (0.865-
1.666)

0.274

Fasting blood glucose (mmol/
L)

0.988 (0.932-
1.048)

0.686
1.039 (0.951-
1.135)

0.395

Fasting C-peptide (pmol/L)
1.000 (1.000-

1.001)
0.409

1.000 (0.998-
1.001)

0.673

Fasting insulin (pmol/L)
0.999 (0.995-

1.003)
0.527

0.994 (0.982-
1.006)

0.312

HbA1c (%)
0.967 (0.885-

1.058)
0.465

1.059 (0.940-
1.193)

0.344

TyG index
0.852 (0.627-

1.157)
0.305

2.167 (1.273-
3.688)

0.004
3.798 (1.409-
10.239)

0.008

Hs-CRP (mg/L)
0.947 (0.768-

1.169)
0.615

0.996 (0.978-
1.015)

0.688
fron
TyG, triglyceride-glucose; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; hs-CRP, high
sensitivity C-reactive protein; HbA1c, haemoglobin; OR, odd ratio; CI, confidence interval.
Bold values provided in Table 2 indicate P < 0.05.
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The performance of the nomogram

The calibration curve along with the H-L test demonstrated

good consistency between the observed carotid plaque burden and

indicated arteriosclerosis in both the training and validation sets

(Figures 3C–F). DCA showed that model 3 and model 2 had better

performance than model 1 for all subjects included in the study in

both training set and validation set, as shown in Figure 6. However,

for subjects with a high plaque burden, model 3 had higher efficacy

than the other two models in the training set and showed no

significant differences in the validation set.
Discussion

In this study, we used radiomics intermuscular adipose analysis

as a novel marker to assess arteriosclerosis in patients with newly

diagnosed T2D. A radiomics model relating to arteriosclerosis was

established by extracting features from medical images and

choosing the effective characteristics. A clinical-radiomics

combined model was developed by combining the Rad-score with
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clinical risk factors. Nomograms were then constructed to indicate

plaque presence and severity in our study population. The results

showed that the combined model improved the accuracy of

arteriosclerosis indication both in diagnostic performance and

clinical net benefit compared with the model using only clinical

risk factors or radiomics features.

Since the risk of arteriosclerosis is present in the state of newly

diagnosed T2D, it is critical to choose the subjects at stake for early

prevention (22). Multiple studies have revealed that IR is a predictor

of arteriosclerosis and could be used to assess the risk of

arteriosclerosis in patients with diabetes (23). However, research

on the early stage of arteriosclerosis in newly diagnosed T2D is

limited (3). TG/HDL-C, TyG, and visceral adiposity index are

commonly used as markers for IR identification (24). In our

study, no significant differences could be found in either TG/

HDL-C or TyG between the patients with or without plaque

burden. This may be due to the fact that abnormalities in

laboratory tests are less pronounced in the population of newly

diagnosed T2D. The diagnostic efficacy of the clinical model

constructed by tradit ional r isk factors in indicat ing

arteriosclerosis in patients with newly diagnosed T2D may be
TABLE 3 Radiomics features extracted from chest CT image that were significantly relevant with the present of arteriosclerosis and the severity of
arteriosclerosis.

No. Radiomics features based on chest CT Coefficients Relative to max

Significantly relevant with the present of arteriosclerosis

1 wavelet-HL_glszm_LowGrayLevelZoneEmphasis 0.8349 1

2 wavelet-LH_gldm_LargeDependenceHighGrayLevelEmphasis 0.6438 0.7712

3 wavelet-HH_firstorder_Skewness 0.5016 0.6008

4 square_firstorder_RobustMeanAbsoluteDeviation 0.3553 0.4255

5 wavelet-HH_glrlm_LongRunLowGrayLevelEmphasis 0.3379 0.4048

6 wavelet-HL_glszm_SmallAreaLowGrayLevelEmphasis 0.2434 0.2915

7 wavelet-HL_gldm_SmallDependenceHighGrayLevelEmphasis -0.4936 -0.5913

8 wavelet-LL_firstorder_Skewness -0.5673 -0.6795

9 lbp-3D-k_glrlm_RunLengthNonUniformity -0.6227 -0.7458

10 exponential_glrlm_GrayLevelNonUniformity -0.7649 -0.9161

Significantly relevant with the severity of arteriosclerosis

1 wavelet-HL_glrlm_HighGrayLevelRunEmphasis 0.3176 0.5121

2 wavelet-HL_firstorder_Skewness 0.3161 0.5096

3 wavelet-HH_glszm_GrayLevelNonUniformity 0.262 0.4225

4 wavelet-HH_glszm_LowGrayLevelZoneEmphasis 0.2403 0.3874

5 wavelet-HH_glszm_SmallAreaLowGrayLevelEmphasis 0.2116 0.3412

6 gradient_firstorder_Kurtosis -0.1933 -0.3116

7 square_firstorder_Range -0.2177 -0.351

8 wavelet-HL_glcm_JointEnergy -0.2254 -0.3635

9 lbp-3D-k_firstorder_Variance -0.4229 -0.6818

10 wavelet-HH_firstorder_Median -0.6202 -1
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limited. To support this viewpoint, another clinical model was

constructed in patients with a high carotid plaque burden, and it

was found that the TyG index was associated with a higher level of

arteriosclerosis. This result indicated that the efficiency of

serological markers is more significant in indicating

arteriosclerosis extension rather than early arteriosclerosis, which

was in agreement with published reports (25, 26). Besides, in our

clinical model, only age and smoking history were independent risk

factors associated with arteriosclerosis in patients with newly

diagnosed diabetes. It may be attributed to clinical stage of our

population. Most of the patients included in our analysis were

found to have dysglycaemia accidentally during asymptomatic

physical examination. In general, the diagnostic efficacy of the

clinical model was better in indicating a high level of

arteriosclerosis than in indicating the existence of arteriosclerosis

in patients with newly diagnosed T2D (0.755 [0.683, 0.826)] vs.

0.687 [0.634, 0.730], P < 0.001). Serological measures may be less

sensitive, and better indicators are needed.
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Our use of radiomics to quantify IMAT is a strength of the

current research. IMAT is a type of adipose tissue depot located

beneath the fascia and within the muscles (10). It is understudied

due to the limited accessibility in the past. With the increasing

development of imaging techniques, noninvasive quantification of

IMAT has been used in research and healthcare settings (13, 27–

29). Tuttle et al. used magnetic resonance imaging to measure

IMAT volume in patients with T2D. They found that IMAT volume

was correlated with glycated haemoglobin levels and were

associated with IR (30). Pishgar et al. used CT to quantify the

IMAT area in patients with chronic obstructive pulmonary disease

and found that the IMAT area was negatively correlated with lung

function (13). Nevertheless, quantifying IMAT by traditional

imaging methods is somewhat difficult (11). In our study, we

used radiomics to extract texture features that were unrecognized

by the naked eye for further quantitative analyses. By applying

LASSO and linear regression algorithm, eight first-order features

that represented the intensity and distribution of pixels in the ROIs,
D

A

B
E

F

C

FIGURE 3

Model construction and evaluation. Nomograms of the combined model to indicate plaque presence (A) and plaque severity (B). Calibration curves
of the nomogram indicating plaque presence for the training set (C) and the validation set (D). Calibration curves of the nomogram indicating plaque
severity for the training set (E) and the validation set (F). The x-axes represent the probability of plaque presence or severity evaluated by the
combined models, and the y-axes represent the actual rate of plaque presence or severity. The diagonal dotted lines represent perfect predictions
by ideal models, while the solid lines represent the discrimination abilities of the nomograms, of which closer fits to the diagonal dotted lines
represent better evaluations.
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FIGURE 4

Confusion matrixes of the three models. Model 1, clinical model; Model 2, radiomics model; Model 3, clinical-radiomics combined model. The x-
axes represent the predicted labels, and the y-axes represent the actual labels. Four quadrants clockwise from the upper left hand refer to true
negatives, false positives, false negatives, and true positives, respectively. The false-positive and false-negative rates in model 3 were lower than
model 1 in both the training sets and validation sets.
TABLE 4 The area under curve, accuracy, sensitivity, specificity, negative predictive value, and positive predictive value of the three models.

Model AUC (95% CI) Sensitivity Specificity ACC NPV PPV

Patients with or without plaque burden

Training set (n=384)

Model 1 0.687(0.634-0.730) 0.617 0.694 0.656 0.654 0.659

Model 2 0.932(0.907-0.957) 0.872 0.852 0.862 0.874 0.850

Model 3 0.934(0.909-0.959) 0.872 0.883 0.934 0.878 0.877

Validation set (n=165)

Model 1 0.721(0.642-0.799) 0.691 0.679 0.685 0.695 0.675

Model 2 0.927(0.890-0.964) 0.840 0.845 0.842 0.845 0.840

Model 3 0.933(0.898-0.969) 0.815 0.845 0.830 0.826 0.835

Patients with low or high plaque burden

Training set (n=188)

Model 1 0.755(0.683-0.826) 0.629 0.737 0.697 0.770 0.587

Model 2 0.734(0.663-0.805) 0.771 0.610 0.670 0.540 0.818

Model 3 0.824(0.765-0.882) 0.686 0.771 0.739 0.805 0.640

(Continued)
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and twelve texture features that represents the heterogeneity

between ROIs, were selected. Although Chen et al. (31) previously

reported that morphological features were associated with the

degree of the diseases, no morphological features were proven to

be associated with arteriosclerosis in our study. The reason may be

attributed to the fact that it is the relative value of IMAT rather than

the absolute value that is meaningful, which was accordant with

previous researches about IMAT analysis (13, 29). Besides, texture

features such as GLSZM and GLDM, and wavelet features obtained

by wavelet decomposition of the original image, could represent

tiny differences in the imaging characteristics in CT images (32, 33).

Thus, radiomics IMAT analysis may reflect the internal

heterogeneity of the ROIs more accurately.
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Three models were constructed to evaluate the risk of

arteriosclerosis in our study. By combining radiomics features and

clinical risk factors together, we found that the diagnostic performance

and clinical net benefit of the combined model in arteriosclerosis

indication innewly diagnosedT2Dwere improved inboth the training

set andvalidation set.The combinedmodel leads toan improvement in

not only sensitivity (from 0.617 to 0.827 in the training set and from

0.691 to 0.815 in the validation set) but also specificity (from 0.656 to

0.934 in the training set and from 0.685 to 0.830 in the validation set).

This result canbeexplainedby the fact that combinedmodel integrated

the clinical information and both macro and micro structure

characteristics, which could help in further improving the diagnostic

efficiency (34). The combined model seems to present excellent value
D
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C

FIGURE 5

The receiver operating characteristic (ROC) curves of the three models. Model 1, clinical model; Model 2, radiomics model; Model 3, clinical-
radiomics combined model. In all subjects included in the study, model 3 demonstrated better indicative efficacy than model 1 and similar to model
2, with an AUC of 0.934 in the training set (A) and an AUC of 0.933 in the validation set (B). In subjects with high plaque burden, model 3
demonstrated the best indicative efficacy than the other two models, with an AUC of 0.824 in the training set (C) and an AUC of 0.717 in the
validation set (D).
TABLE 4 Continued

Model AUC (95% CI) Sensitivity Specificity ACC NPV PPV

Validation set (n=81)

Model 1 0.620(0.490-0.750) 0.633 0.667 0.654 0.756 0.528

Model 2 0.698(0.582-0.814) 0.567 0.686 0.642 0.729 0.515

Model 3 0.717(0.604-0.830) 0.633 0.686 0.667 0.761 0.543
AUC, area under curve; CI, confidence interval; ACC, accuracy; NPV, negative predictive value; PPV, positive predictive value. Model 1, clinical model; Model 2, radiomics model; Model 3,
clinical-radiomics combined model.
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for indicating the presence of plaque burden. However, it is worth

noting that in indicating low or high plaque burden, the performance

of the combined model increased only slightly, with an AUC

improvement from 0.755 to 0.824 in the training set and from 0.620

to 0.717 in the validation set. The reasonmay be attributable to the fact

that in thepopulationwith ahigh level of arteriosclerosis, the indicative

value of clinical indicators improved while the role of imaging became

less sensitive.

Finally, the nomogram forecast models were applied in clinical

practice. The nomogram forecast models are charts with scales that

contain varieties of disease risk elements. They can predict the

probability of clinical outcomes by using a risk score, which is

simpler and easier to understand (35). As seen in our results, the

Rad-score was more important in indicating the presence of

arteriosclerosis. In indicating a high level of arteriosclerosis, the

TyG index held a more prominent position. The nomograms of the

combined model offered a more user-friendly way for physicians to

identify the risk of arteriosclerosis and could be a convenient

method of arteriosclerosis indication in clinical work.
Limitations

There are several limitations in the current study. First, the

study was conducted retrospectively at a single centre. However, the

performance of the models was validated through randomization.

To provide better evidence for clinical application, multicentre

validation with a larger sample size may be necessary. Second,

carotid plaque burden evaluated by ultrasound examination was

applied as the marker of arteriosclerosis, which may not be as

accurate as the pathologic biopsy in representing arteriosclerosis.
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However, it has been reported that the prevalence of carotid artery

plaques could well reflect the overall severity of arteriosclerosis in the

vasculature (36). Third, radiomics features were only extracted from a

single section but not the whole body. Quantitative analysis of IMAT

within the whole body is indeed more precise but more time-

consuming and has a higher requirement for equipment. Fourth, the

efficacy of IMAT analysis in indicating arteriosclerosis in subjects

without T2DM was not conducted in the current study. Our results

imply that the radiomics IMATanalysis derived from the sectionabove

the aortic arch could be a novel marker to assess the degree of

arteriosclerosis, which may provide a more convenient way to

evaluate early arteriosclerosis in patients with newly diagnosed T2D.

Finally, in the process of radiomics feature recognition, two

radiologists took several times to manually delineated the borders of

the pectoralis major muscle. Future studies could improve efficiency

and accuracy by using efficient automatic segmentation.
Conclusions

Radiomics intermuscular adipose analysis could indicate the

present and severity of arteriosclerosis, providing a novel marker for

the assessment of arteriosclerosis in patients with newly diagnosed

T2D. Though radiomic analysis, features about intensity and

distribution of pixels as well as features about texture were selected

for the quantification.The clinical-radiomics combinedmodel showed

great performance and high sensitivity in indicating arteriosclerosis.

Moreover, the constructed nomograms could provide a quantitative

and intuitiveway to indicate arteriosclerosis,whichmayhelp clinicians

comprehensively analyse radiomics characteristics and clinical risk

factors more confidently.
D
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FIGURE 6

Decision curves analysis for the three models. Model 1, clinical model; Model 2, radiomics model; Model 3, clinical-radiomics combined model. The
x-axes represent the threshold probability, and the y- axes represent the net benefit. For all subjects included in the study, model 3 and model 2 had
better performance than model 1 in both the training set (A) and the validation set (B). However, for subjects with high plaque burden, model 3 had
higher efficacy than the other two models in the training set (C) and no significant differences in the validation set (D).
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