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Exploring the role of
macrophages in the progression
from atypical hyperplasia to
endometrial carcinoma through
single-cell transcriptomics and
bulk transcriptomics analysis

Xiaolei Song †, Re Na †, Nianghai Peng,
Wenming Cao* and Yan Ke*

Department of Gynecology, Shenzhen Hospital of Integrated Traditional Chinese and Western
Medicine, Shenzhen, China
Introduction: In this study, we aimed to identify key genes in endometrial cancer

by conducting single-cell analysis of macrophages.

Methods: We sourced clinical data from the TCGA database as well as

supplementary datasets GSE201926 and GSE173682. Using bulk-seq data of

atypical endometrial hyperplasia and endometrial cancer, we pinpointed key

differentially expressed genes. Single-cell RNA sequencing was utilized for

further gene expression analysis. Cluster analysis was conducted on TCGA

tumor data, identifying two distinct subtypes. Statistical methods employed

included LASSO regression for diagnostic modeling and various clustering

algorithms for subtype identification.

Results: We found that subtype B was closely related to cellular metabolism. A

diagnostic model was established using LASSO regression and was based on the

genes CDH18, H19, PAGE2B, PXDN, and THRB. This model effectively

differentiated the prognosis of cervical cancer. We also constructed a

prognosis model and a column chart based on these key genes.

Discussion: Through CIBERSORT analysis, CDH18 and PAGE2B were found to be

strongly associated with macrophage M0. We propose that these genes

influence the transformation from atypical endometrial hyperplasia to

endometrial cancer by affecting macrophage M0. In conclusion, these key

genes may serve as therapeutic targets for endometrial cancer. A new

endometrial cancer risk prognosis model and column chart have been

constructed based on these genes, offering a reliable direction for future

cervical cancer treatment.

KEYWORDS
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1 Introduction

Atypical endometrial hyperplasia is a condition characterized

by abnormal growth of the endometrium, specifically the glands.

Pathologists observe cellular atypia in biopsy samples, which is a

precursor to endometrial glandular carcinoma. The difference

between atypical hyperplasia (benign growth) and non-atypical

hyperplasia is the presence of cellular atypia. Endometrial

hyperplasia is closely related to uterine tumors, with atypical

adenoma and atypical hyperplasia being associated in 5.5% of

patients, while atypical adenoma and endometrial carcinoma

(UCEC) are associated in 5.9% of patients (1). Regarding

treatment, for women with atypical endometrial hyperplasia or

early-stage endometrial cancer, fertility-sparing treatment options

include oral progestins or intrauterine devices, which have been

extensively studied. These approaches are also recommended in the

National Comprehensive Cancer Network (NCCN) guidelines for

fertility-sparing treatment of endometrial cancer (2). However, the

mechanism by which it progresses to endometrial carcinoma is not

yet clear.

Endometrial carcinoma is a malignant tumor that occurs within

the epithelium of the endometrium, and its incidence and disease-

related mortality rates are gradually increasing worldwide (3). This

type of cancer primarily affects postmenopausal women, with an

average age of onset of 60 years old, and the likelihood of developing

this disease is lower in women under 45 years old. Compared to

Caucasian women, African-American women have a higher

incidence and greater risk of death from this disease. Studies have

found that the following factors are associated with an increased

risk of endometrial carcinoma: nulliparity, late natural menopause

(after age 55), estrogen-only hormone replacement therapy,

hormonal therapy with tamoxifen for the treatment of breast

cancer, and a family history of endometrial or colorectal cancer

(4). The primary treatment for endometrial carcinoma is total

hysterectomy with bilateral salpingo-oophorectomy. Radiation

therapy and chemotherapy may also play a role in the treatment

process (5). For women with highly malignant tumors, radiation

therapy may be recommended after surgery. However, the problem

of early diagnosis and poor treatment efficacy still exists, and there

is a critical need to identify the oncogenic mechanisms and targets

for precise treatment. Single-cell transcriptome sequencing

(scRNA-seq) is an emerging sequencing technology that analyzes

gene expression levels in individual cells within tissues, allowing for

the study of cellular heterogeneity, differentiation of cell types and

subtypes, identification of cell type-specific genes, and the discovery

of cell dynamic processes. It has played a significant role in the

study of cells and diseases (6).

In recent studies, single-cell transcriptomics have been

successfully applied to investigate the development of endometrial

cancer. For instance, one study utilized single-cell transcriptomics

to analyze the function of macrophages in endometrial cancer,

revealing their crucial role in the progression and metastasis of the

tumor. Another study (reference: https://doi.org/10.3390/

ijms23031237) disclosed the heterogeneity of macrophages in

endometrial cancer, suggesting them as potential new targets for

future treatments. These findings provide the background for our
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research, in which we aim to explore the role of macrophages in the

transformation of atypical hyperplasia to endometrial cancer by

analyzing single-cell and bulk transcriptomics data. Macrophages

play an important role in endometrial cancer research.

Macrophages are phagocytic cells of the innate immune system,

including neutrophils, monocytes, and macrophages, which

comprise approximately 25% of the immune environment in the

endometrium. However, the phenotype and function of

endometrial macrophages in health and disease are not fully

defined, and studies have found that they are spatially and

temporally regulated in tissue (7). There is a close relationship

between macrophages and cancer. Macrophages are innate immune

cells that play a critical role in tissue homeostasis, clearance of

excess cells, and inflammation response to infection. Tumor-

associated macrophages (TAMs) are key regulatory factors in the

tumor microenvironment, and their complex interactions with the

immune system and cancer are closely related. Studies have shown

that in many cases, TAMs promote tumor progression rather than

restrict tumor growth, which negatively impacts treatment response

(8). In the early stages of tumor development, macrophages induce

a pro-tumorigenic inflammatory environment that promotes tumor

growth. As the tumor progresses to malignancy, macrophages

induce angiogenesis, facilitate tumor cell migration and invasion,

and suppress anti-tumor immunity. Macrophages are a key factor

in unlocking the door to tumor cell escape, making it particularly

important to study their involvement in the development of

endometrial carcinoma.
2 Materials and methods

2.1 Data collection

Clinical information of endometrial cancer patients was

collected from The Cancer Genome Atlas (TCGA) database

(https://cancergenome.nih.gov/) (9), which included a total of 177

tumor samples and 24 normal samples. The information included

in the study were gender, age, and stage. The GSE201926 dataset

was downloaded from the Gene Expression Omnibus (GEO)

database (10), which included 4 endometrial cancer samples and

8 atypical hyperplasia samples. scRNA-seq data was also

downloaded from the GSE173682 dataset, which included

samples from both diseases. Finally, copy number variation

(CNV) data, somatic mutation data, and corresponding

clinicopathological information of endometrial cancer were

re t r i eved f rom the Cancer Genome At l a s (h t tps : / /

portal.gdc.cancer) (11).
2.2 Single-cell analysis

Further analysis was performed on the single-cell (12) dataset

GSE173682, which included 2 endometrial cancer samples. For each

batch of cells, we calculated the number of genes expressed by each

cell. Genes with expression levels lower than 0.1% of the cell count

were excluded from the study. The batch of cells did not contain
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mitochondrial genes. Ultimately, all cells in the dataset met quality

control standards. Principal component analysis (PCA) (13)was

performed using the Seurat package (14) (version 3.2.2) in R

software (version 4.0.2), along with JackStraw and PCEIbowPlot

(15) functions, to select important principal components (PCs).

Seurat’s FindAllMarkers function was used to identify specific genes

for each cell subgroup. The RunUMAP (16) function was then used

for cell clustering and visual analysis using UMAP. Marker genes

were subsequently annotated using the singleR package (17) and

corrected using CellMarker based on their characteristics. The

Seurat package (version 3.2.3) and DoubletFinder package (18)

(version 2.0.3) were used in R (version 3.6.3) to filter cells and genes.

Only cells that met the following quality control standards were

retained for further data analysis: (i) the number of detected genes

was less than two and a half times the average number of expressed

genes in cells from the same sample; (ii) mitochondrial gene

expression was less than 20% of the total count in a cell; and (iii)

DoubletFinder’s standard workflow was used to remove doublets.

The samples were merged into one object, and Harmony software

package (19)(version 1.0) was used for unsupervised clustering after

filtering cells. Genes were retained only when expressed in at least

10 cells. Differentiated expression genes (DEG) in each cluster were

identified using the Seurat function FindMarkers, and only the

macrophage clusters were annotated. The data was divided into

macrophage clusters and non-macrophage clusters.
2.3 GEO differential analysis and
identification of key genes

We then performed differential analysis on the endometrial

hyperplasia group and endometrial cancer group in the GSE201926

dataset using the limma package (20), with a screening criterion of

p<0.05. Key genes related to macrophages were screened from the

single-cell dataset, with screening criteria of min.pct of 0.05 and

logfc.threshold of 0.05. The intersection of these two gene sets was

obtained as the key genes for subsequent analysis.
2.4 Consensus clustering analysis of
key genes

Following the identification of key genes from the previous step,

all genes were found to be expressed in TCGA. The LASSO (21)

algorithm was used to evaluate the prognostic value of these key

genes. Based on the LASSO regression results, immune cells that

were correlated with prognosis were selected for further validation

through survival analysis. The “network” package was used to

construct a gene network for the key genes. ConsensusClusterPlus

R package (22) was used for unsupervised clustering analysis to

generate different clustering subtypes based on the expression of

apoptosis macrophage genes using the K-Means algorithm (23).

After clustering, the sample size of each cluster was not small. The

clustering had high intra-cluster similarity and low inter-cluster
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similarity. Gene Set Variation Analysis (GSVA) was performed on

gene sets compiled from MSigDB (24) (C2.Cp.ke.v7.2) to discover

biological differences between molecular subtypes. The tumor

microenvironment of each subtype was also analyzed.
2.5 Development of prognosis model

Using the identified key genes, uterine endometrial cancer

patients were divided into two subgroups (high-risk and low-

risk). The TCGA data was randomly divided into train and test

sets in a 7:3 ratio. To avoid the influence of random allocation bias

on the stability of subsequent modeling, all samples were returned

to the random allocation 200 times, and the samples were grouped

and sampled in a 1:1 ratio according to the training and validation

sets. Based on the median risk score of the train set, all samples were

divided into high-risk and low-risk subgroups, and survival analysis

and ROC (25) curve were performed on both groups. The PCA

(principal component analysis) and t-SNE (t-distributed stochastic

neighbor embedding) analyses were also performed using the

“ggplot2” R package (26).
2.6 Development of prediction nomogram

Using the risk score and clinical features of uterine endometrial

cancer patients, a prediction nomogram was created using the

“nomoR” package (27). Each variable had a score, and the total

score was obtained by adding up the scores for each sample. A

calibration plot was used to depict the predicted values of survival

events at 1, 3, and 5 years compared to the virtual observed values.

Time-dependent ROC curves were used to evaluate the nomogram

for 1-, 3-, and 5-year survival rates.
2.7 Immune cell infiltration correlation
analysis and drug sensitivity analysis

The CIBERSORT algorithm (28) was then used to estimate the

proportions of immune cell infiltration for each uterine endometrial

cancer sample, using cell-specific gene features to distinguish 22

immune cell groups. The “PERM” parameter was set to 1000 and

the cutoff value was set to p < 0.05. In addition, the proportion of

each immune cell in the sample was calculated, and a bar graph was

used to display this information. The “pheatmap” package (29) was

used to create a heatmap of the 22 immune cells, and the “vioplot”

package was used to display their abundance. The “corrplot”

package was used to create a correlation heatmap to visualize the

correlation between the 22 different immune cells. Furthermore, the

correlation between immune cell levels and key genes was also

analyzed. The “pRRophetic” package (30) was used to predict the

sensitivity of uterine endometrial cancer to certain drugs, and

boxplots of the inhibitory effect of drugs on cancer cells were

drawn using the “ggboxplot()” and “ggplot2” packages.
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2.8 Tumor mutation analysis

In our study, in addition to the samples previously described, we

also selected 504 tumor mutation samples from The Cancer

Genome Atlas (TCGA) database for analysis. Among these 504

samples, 82 had mutations. Tumor mutation analysis is based on

sequencing data from tumor and normal samples, identifying

mutation events that occur specifically in tumor samples by

comparing the differences between the two samples. Generally,

tumor mutation analysis includes various analyses such as single

nucleotide variations (SNV), small fragment insertions/deletions

(indel), and copy number variations (CNV). We used the SNV and

CNV data of endometrial cancer and the R package maftools for

analysis. Maftools is an R package (31) specifically designed for

analyzing mutation annotation format (MAF) files, which can help

users obtain various biological information and analysis results

from MAF files and visualize these results. The plotCNA() function

was used to generate a CNV spectrum plot, which shows the copy

number variation of genes. The CNV spectrum plot provides

information on the position, gene, and copy number of the copy

number variation. This separate set of samples was selected to

enhance the statistical power and provide a more extensive

understanding of the mutation landscape in endometrial cancer,

enabling a deeper insight into the genetic alterations that drive

the disease.
3 Results

3.1 Analysis of differentially
expressed genes

We performed differential analysis on the standardized

GSE201926 dataset and obtained 2250 differentially expressed

genes. The distribution of the standardized data is shown in

Figure 1D. We visualized the differentially expressed genes using

a volcano plot (Figure 1A) and a heat map (Figure 1B), and

performed GSEA enrichment analysis on the differentially

expressed genes. Figure 1C shows the enriched pathways for

downregulated genes, including Biosynthesis of cofactors,

Hepatocellular carcinoma, and Morphine addiction. Figure 1E

shows the enriched pathways for upregulated genes, including

Aminoacyl-tRNA biosynthesis, Biosynthesis of unsaturated fatty

acids, and Steroid biosynthesis.
3.2 Single-cell analysis results

We performed further analysis on the single-cell dataset

(GSE201926)and used PCA to reduce the high-dimensional data

to low-dimensional data, which was then visualized (Figures 2A, B).

We used the FeaturePlot function to annotate the data and visualize

the macrophages using three marker genes (CD163, CD14, and

CSF1R), as shown in Figures 2D (tSNE) and 2E (UMAP). We then

filtered the macrophage data and obtained 1559 genes. We

intersected the differentially expressed genes and macrophage-
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related factors and obtained 9 key genes for further analysis,

including GINS3, PRMT2, MERTK, WWP2, NEK6, NACC1,

NR1H3, ATP2A2, and TM4SF19. These 9 genes were visualized

using a Venn diagram (Figure 2C).
3.3 Cluster analysis

Further, we employed a consensus clustering algorithm to

categorize TCGA cancer patients based on the expression profile

of the aforementioned 9 key genes. According to our findings, k=2

was identified as the optimal clustering variable to divide the dataset

into Cluster A and Cluster B (Figure 3A). Based on survival analysis,

these clusters could distinguish prognostic status well with p=0.033

(Figure 3B). According to immune infiltration results, differences

were found between these two clusters across multiple immune cells

(Figure 3C), such as CD4 T cells, MDSC cells, and Monocyte cells.

We also conducted GSEA enrichment analysis (Figure 3D) and

found that Cluster B was more enriched in multiple pathways than

Cluster A, such as KEGG_BUTANOATE_METABOLISM and

KEGG_TERPENOID_BACKBONE_B IOSYNTHES I S .

Additionally, a correlation heatmap was drawn based on these 9 key

genes (Figure 3E). In an analysis focusing on the direct immune

microenvironment, we observed distinct differences in immune

scores between the two clusters, labeled as Cluster A and Cluster

B. The variations were statistically significant, with a p-value of

0.043, suggesting that the immune response in these two clusters is

notably different (Figure 3F).
3.4 Mutation analysis

We plotted waterfall diagrams for the top 20 mutated genes in

the tumor (Figure 4A) and for the 9 selected genes (Figure 4B).

Among the 504 samples which from TCGA SNV database, 82 had

mutations, resulting in a mutation rate of 16.27%. The highest

mutation rate was for ATP2A2 (6%), followed by MERTK and

WWP2 (5%). We also plotted the distribution of these genes on the

chromosomes (Figures 4C, D) and found that the GAIN of

TM4SF19 was significantly higher than the LOSS. We further

analyzed the immune infiltration in the tumor using TCGA data

and found that the macrophages (M0) were significantly present,

indicating a potential role in the tumor environment. In the

immune infiltration analysis conducted on TCGA transcriptome

data, we utilized blue to represent normal samples and yellow for

tumor samples. We observed significant differences in multiple

immune cell types between the normal and disease groups. Notably,

distinct variations were found in B cells native, T cells follicular

helper, and Monocytes among others (Figure 4E).
3.5 Modeling analysis

Then we performed differential analysis between the two

clusters and selected using TCGA cancer database, which

differentially expressed genes with logfc>1 and p-value<0.05.
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A B

D

E

C

FIGURE 1

Differential gene analysis. (A) Volcano plot showing differentially expressed genes. (B) Heatmap showing differentially expressed genes. (C) GSEA
enrichment of downregulated genes in the gene set with the highest enrichment score. (D) Box plot showing data normalization. (E) GSEA
enrichment of upregulated genes in the gene set with the highest enrichment score.
A B

D E

C

FIGURE 2

Single-cell analysis. (A) PCA dimension reduction plot of the data. (B) Data feature plot showing the number of genes detected per single cell
(“nfeature”), frequency (“ncount”), and percentage (“percent”). (C) Venn diagram showing the intersection of differentially expressed genes and
macrophage-related genes. (D) Annotation results of single-cell data based on tSNE. (E) Annotation results of single-cell data based on UMAP.
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Then, we conducted a multivariate Cox analysis to further screen

the genes with p<0.05, and obtained 65 key genes. These genes were

used for lasso analysis to construct the model, as shown in Figure

5A, which displays how the coefficients of each feature change at

different penalty strengths. By adjusting the value of lambda, the

complexity of the model can be controlled to better fit the data.

When lambda approaches 0, all the coefficients of the features are

non-zero, indicating the highest complexity of the model. When

lambda increases, some feature coefficients become zero, which

means that these features are considered irrelevant or unimportant,

making the model simpler. Figure 5B shows that at a certain lambda

value, the performance of the model will reach its best level, and the

value of Partial Likelihood Deviance will be minimized. Therefore,

this figure can be used to select the appropriate lambda value to

obtain the best performance of the Lasso model. Feature selection is

performed using lasso regression (Least Absolute Shrinkage and

Selection Operator), applied to the COX proportional hazard model

for survival analysis. Cross-validation is employed to select the

appropriate lambda value (i.e., regularization parameter), allowing

the model to achieve optimal performance. Key genes screened out

from the lasso regression are used to build a COX proportional

hazard model. Based on the median of the risk scores, patients are

classified into two groups: high-risk and low-risk. We randomly

divided the TCGA data into a train group and a test group at a ratio

of 7:3, and constructed a risk model using lasso screening with 5

genes, namely CDH18, H19, PAGE2B, PXDN, and THRB. The

survival curves of the total group, train group, and test group are
Frontiers in Endocrinology 06
shown in Figures 5C–E, with p<0.05. The corresponding ROC

curves are displayed in Figures 5F–G, with the ROC curves of the

total group at 1, 3, and 5 years being 0.987, 0.924, and 0.956,

respectively; the ROC curves of the train group being 0.970, 0.817,

and 0.789, respectively; and the ROC curves of the test group being

0.958, 0.766, and 0.685, respectively. The volcano plot of differential

analysis between the two clusters is shown in Figure 5I.

A diagnostic model was constructed based on the 5 selected key

genes, and combined with clinical data to classify endometrial

cancer patients into high-risk and low-risk groups using the risk

score formula. Patients with high-risk scores had a higher mortality

rate than those with low-risk scores. The analysis results of the total

group are shown in Figures 6A–C, the train group analysis results

are shown in Figures 6D–F, and the test group analysis results are

shown in Figures 6G–I. According to the constructed model, heat

maps in Figures 6A, D, E show the expression profiles of risk genes

mRNA. Figures 6C, 6I show that the expression of risk type mRNA

was significantly upregulated with the increase of risk score in

endometrial cancer patients.
3.6 Immune correlation analysis

Further utilizing CIBERSORT, we associated the five key genes

(CDH18,H19,PAGE2B,PXDN and THRB) with immune cell

infiltration to explore their correlation with immune cells.

Figure 7A shows the correlation of risk genes with various
A B

D E F

C

FIGURE 3

Clustering analysis based on key genes. (A) Consensus matrix heatmap defining two clusters and related regions. (B) Kaplan-Meier curves of OS for
the two gene subtypes (p<0.05). (C) Abundance of 22 immune cell infiltrations in the two subtypes. The asterisk represents statistical P values (*P <
0.05; **P < 0.01; ***P <0.001). (D) GSVA of biological pathways between different subtypes. The heatmap is used to visualize these biological
processes, with red indicating activated pathways and blue indicating inhibited pathways. (E) Relationship between the two subtypes and clinical
pathological features. (F) Differences in immune scores between the two clusters in the direct immune microenvironment.
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tumors, and we found that CDH18 and PAGE2B are significantly

positively correlated with macrophage M0 cells, with a p-value less

than 0.05. Furthermore, we displayed the correlation maps of these

two key genes with various cells in Figures 7D, E, respectively.

Figure 7B shows the correlation of PAGE2B with macrophage M0

cells with a cor value of 0.27 and a p-value of 0.04, while Figure 7C

shows the correlation of CDH18 with macrophage M0 cells with a

cor value of 0.3 and a p-value of 0.02.

Furthermore, we depicted the correlation between the clustering

subtype and the risk model in Figure 8A. We estimated the OS of

endometrial cancer patients for clinical application based on the

association between the risk score and patient prognosis and created

a column chart containing clinical features (Figure 8B). Overall

Survival is defined as the duration of time from either the date of

diagnosis or the start of treatment for a disease, such as cancer, that

a patient is still alive. Based on this column chart, we estimated the

1-, 3-, and 5-year OS of patients (Figure 8C). Calibration curves

demonstrate the actual observed and predicted parameters

(Figure 8D). Additionally, we compared the predictive accuracy

of the column chart with other clinical variables, and the results

indicated that the column chart has better survival prediction. To

analyze the ability of the risk score to predict potential checkpoint

blockade therapy, we plotted a box plot to show the difference in

immune checkpoint gene expression between the high- and low-

risk groups (Figure 8E).
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3.7 Tumor microenvironment and drug
sensitivity subtype

We evaluated the relationship between immune cell abundance

and prognost ic f ea tures , and ca lcu la ted the Tumor

Microenvironment (TME) score for the two risk groups. Immune

cell infiltration includes various immune cell types, such as T cells, B

cells, natural killer cells, and the previously mentioned macrophages

(M0). We found that the immune score was higher in the low-risk

group (Figure 9A), indicating that tumors in the low-risk group

have more immune cell infiltration, which may signal better

prognosis and treatment response. Additionally, six drugs showed

significant differences in the half-maximal inhibitory concentration

(IC50) values between the high- and low-risk groups (Figures 9B–

H), including AICAR (Aminoimidazole Carboxamide

Ribonucleotide activator), ABT.263 (Bcl-2 family protein

inhibitor), AZD.0530 (Src/Abl inhibitor), A.770041 (Lck

inhibitor), Axitinib (multitargeted tyrosine kinase inhibitor),

AP.24534 (BCR-ABL inhibitor), and A.443654 (Akt inhibitor).
4 Discussion

With a full understanding of endometrial cancer as the most

common gynecologic malignancy, and taking into consideration the
A B

D EC

FIGURE 4

Genetic variation landscape of key genes in endometrial cancer. (A) Waterfall plot of SNV mutations, with the numbers on the right indicating the
mutation frequency of each gene. The bar chart on the right shows the proportion of mutations. The stacked bar chart below shows the proportion
of transformations. The results of the top 20 genes mutated in endometrial cancer are shown. (B) Waterfall plot of SNC mutations showing the
mutation results of selected key genes in endometrial cancer. (C) The positions of CNV in key genes on 23 chromosomes. (D) The frequency of CNV
gains and losses in key genes. The column represents the frequency of changes, with red dots representing gain frequency and green dots
representing loss frequency. (E) Immune infiltration analysis in TCGA transcriptome data, with blue representing normal samples and yellow
representing tumor samples. * represents less than 0.05, ** represents less than 0.01, *** represents less than 0.001.
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FIGURE 5

Modeling analysis results. (A) Lasso regression analysis results. The figure shows the sparsity and predictive performance of the Lasso regression
model at different l values. As the l value increases, the sparsity of the model increases, meaning that there are fewer parameters in the model. (B)
The figure is used to select the optimal regularization coefficient l to obtain a Lasso regression model that balances sparsity and predictive
performance. (C–E). Survival analysis results for the overall data, training group, and test group, respectively. (F–H). Survival analysis results for the
overall data, training group, and test group, respectively. (I) The volcano plot depicts the differential analysis between the two clusters.
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FIGURE 6

Prognosis of risk model in training and testing groups. (A–C). Overall results. (D–F). Results for the training group. (G–I). Results for the testing
group. (B, E, H) show the survival time and survival status between the low-risk group and the high-risk group in the whole group, training group,
and testing group, respectively. (A, D, G) show the expression heatmap of key genes in different risk groups in the whole group, training group, and
testing group, respectively.
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standard treatment approaches outlined in the introduction, our study

focuses on the role of macrophages in endometrial cancer and specific

macrophage genes. We explored how macrophages shield lesions from

immune surveillance while promoting pathological cell growth,
Frontiers in Endocrinology 09
invasion, and metastasis (32), and identified 9 key macrophage

genes, including GINS3, PRMT2, MERTK, WWP2, NEK6, NACC1,

NR1H3, ATP2A2, and TM4SF19, some of which have not been

previously reported in the context of endometrial cancer. In
A B

D E

C

FIGURE 7

Immune-related analysis. (A) Correlation analysis between immune cell infiltration results in the prognostic model and five genes. (B) Correlation
between PAGE2B and M0 macrophages. (C) Correlation between CDH18 and M0 macrophages. (D) Correlation analysis of CDH18 with various cells.
(E) Correlation analysis between PAGE2B and various cells..
A B

D EC

FIGURE 8

Volcano plot and immune analysis. (A) Sankey diagram based on clustering and modeling analysis in bioinformatics. (B) Construction and evaluation of
the Nomogram based on key genes. The Nomogram is used to predict the 1-year, 3-year, and 5-year OS of EC patients. (C) Calibration curve of the
column chart. (D) Kaplan-Meier curve for immune infiltration analysis. (E) The expression distribution of immune-related genes in different risk groups. *
represents less than 0.05, ** represents less than 0.01, *** represents less than 0.001.
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endometriosis and cancer of the endometrium, macrophages can

protect lesions from immune surveillance while promoting

pathological cell growth, invasion, and metastasis (32). The study

also found that the density of CD68-positive macrophages in

endometrial cancer tissue is higher than that in normal endometrial

tissue. It is worth noting thatmacrophages appear to support the role of

estrogen and progesterone in endometrial cancer. Jiang et al. found that

the increase in macrophages in endometrial cancer is associated with a

decrease in progesterone receptor expression (32). In our study, a total

of 9 key macrophage genes were identified, including GINS3, PRMT2,

MERTK, WWP2, NEK6, NACC1, NR1H3, ATP2A2, and TM4SF19.

Previous studies have suggested that GINS3 may play a role in

endometrial cancer (33). MERTK is a promising therapeutic target

on tumor-associatedmacrophages inmost solid cancers, and its ligands

may be attractive molecular targets for treating endometrial cancer. As

multifunctional suppressors of immune cells, they efficiently regulate

phagocytic clearance of apoptotic cells and make the tumor

microenvironment more conducive to tumor growth, which is

consistent with our findings (34). However, there have been no

reports on the involvement of PRMT2, NEK6, NACC1, ATP2A2,

and TM4SF19 in endometrial cancer. On the other hand, it has been

found that loss of Prmt2 function can alter the nuclear accumulation of

NF-kB in stimulated macrophages (35) Furthermore, PRMT2

overexpression can inhibit the formation of RAW 264.7 macrophage

foam cells induced by oxidized low-density lipoprotein (36). It is closely

related to macrophages. On the other hand, our GSEA analysis of

differential genes between atypical hyperplasia and endometrial cancer

showed that the upregulated genes in the gene set with the highest

enrichment score were mainly enriched in metabolic pathways in the

organism, such as aminoacyl-tRNA biosynthesis, biosynthesis of

unsaturated fatty acids, and steroid biosynthesis. At the same time,

when we performed cluster analysis on these nine key genes, we also

found the same conclusion that subtype B patients had better OS, and

these pathways mainly involved various aspects of cellular metabolism,

including the synthesis, degradation, and utilization of glucose, fatty
Frontiers in Endocrinology 10
acids, amino acids, and nucleotides. For example, KEGG_BETA_

ALANINE_METABOLISM, KEGG_VALINE_LEUCINE_AND_

ISOLEUCINE_DEGRADATION,KEGG_BUTANOATE

_METABOLISM,andKEGG_FRUCTOSE_AND_MANNOSE

_METABOLISM are all metabolic pathways, indicating that they are

closely related to metabolism. We believe that these key factors affect

the transition from atypical hyperplasia to endometrial cancer by

influencing metabolic pathways in macrophages. In a related context,

the role of NR1H3, encoding for the LXR-a isoform, in macrophages

has been explored in diffuse large B-cell lymphomas (DLBCL). By

regulating lipid metabolism, NR1H3 controls macrophage polarization

and the inflammatory response, thereby influencing the tumor

microenvironment (TME) (37). In a detailed study, high expression

of the NR1H3 receptor transcript was identified in M1-like pro-

inflammatory macrophages, suggesting a critical role in DLBCL

progression. Remarkably, NR1H3^high patients displayed longer

survival compared to NR1H3^low cases, indicating the gene’s

prognostic potential. This finding prompts future investigations into

its therapeutic applications and provides insights that may extend to

macrophage-mediated development in other cancer types, including

endometrial cancer. We further explored these hypotheses and found

through immune infiltration that in tumor tissues, the M0

macrophages were significantly higher than in normal tissues.

Previous studies have shown that the numbers of M0 and M1

macrophages are higher in cancer tissues than in normal tissues. In

addition, the study found that as the stage of endometrial cancer

increases, the levels of activated M0 and CD8+ T cells decrease, while

the levels of M1 and M2 macrophages increase (38). Comparing our

results with recent findings using similar approaches on the role of

macrophages in the progression of hyperplasias into carcinomas, we

observe intriguing parallels and distinctions. Recent studies highlight

how macrophages can contribute to the progression of hyperplasias

into malignancies by influencing specific pathways and modulating the

immune response within the tumor microenvironment. The insights

gained from these comparisons not only reinforce our understanding
A B D

E F G H

C

FIGURE 9

Tumor microenvironment and drug sensitivity analysis. (A) Box plot showing the expression differences of the tumor microenvironment in different
risk groups. (B–H). Drug sensitivity analysis in different risk groups.
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of the macrophages’ role in endometrial cancer but also provide critical

directions for further exploration. Our identification of key

macrophage genes aligns with other research, expanding our

comprehension of the complex interaction between immune cells

and cancer development (39). Moreover, in the majority of cancer

types, including those of the breast and lung, the presence of M0

macrophages has been consistently linked to a poor prognosis (38).

These observations align with our findings. In further analyses, we

focused on differentially expressed genes within this cluster, selecting

those that displayed the most pronounced changes for subsequent

model analysis. Figures 7B, C demonstrate significant correlations

between two genes, PAGE2B and CDH18, with macrophage M0

cells in endometrial cancer tissues. Specifically, PAGE2B correlates

with macrophage M0 cells with a correlation value (cor) of 0.27 and a

p-value of 0.04, while CDH18 shows a correlation with macrophage

M0 cells with a cor value of 0.3 and a p-value of 0.02. These correlations

suggest that PAGE2B and CDH18 may play essential roles in

macrophage-mediated development of endometrial cancer, possibly

influencing the immune response and tumor microenvironment.

While there is no previous report directly connecting CDH18 with

macrophages, this finding is consistent with studies highlighting the

role of specific genes in macrophage function and their potential

impact on tumor development (39). PAGE2B is a coding unit

associated with tumor-associated antigens. It is a tumor-specific

antigen and is highly expressed in tumor tissues (40).There is no

previous report on the correlation between CDH18 and macrophages.

We speculate that it could be a target gene for therapy, and its influence

on the transition from atypical hyperplasia to endometrial cancer could

be through M0 macrophages. The correlation of CDH18 with

macrophage M0 cells may indicate its significant role in tumor

differentiation and prognosis in endometrial cancer. CDH18, a

member of the cadherin superfamily, is known to be involved in

cell-cell adhesion, cell signaling, and tissue organization. Its correlation

with M0 macrophages in our study could imply a functional

relationship in shaping the tumor microenvironment, influencing

immune responses, and potentially affecting the progression and

differentiation of the tumor. Although there have been limited

studies on CDH18 in the context of endometrial cancer, its

connection with macrophages presents an intriguing direction for

further exploration. Investigating CDH18’s expression, function, and

regulation within the tumor might reveal novel insights into

endometrial cancer differentiation, providing valuable prognostic

information and possibly unveiling new therapeutic targets.

The innovation of our study lies in the combination of the impact

of macrophage-related genes on the transition from atypical

hyperplasia to endometrial cancer. In addition to developing key

gene-related features and heat maps, we have comprehensively

revealed a gene prediction model for endometrial cancer based on

key genes in macrophages and validated it in the TCGA dataset,

providing a promising macrophage-related target for endometrial

cancer patients. These results suggest that the identified key genes

are promising potential targets for the development of treatment

strategies. The limitations of this study include a limited sample size,

a focus on specific cancer subtypes, and certain constraints in the
Frontiers in Endocrinology 11
assumptions made in our analysis. A broader and more diverse sample

would help further validate our findings. However, these results were

obtained from analysis of public databases, and there may not be

significant variations in clinical practice. Therefore, more clinical

patients are needed to confirm our conclusions. Our research results

provide new ideas and directions for improving the clinical

effectiveness of immunotherapy, identifying different endometrial

cancer immune phenotypes, and promoting future precise and

personalized immunotherapy for endometrial cancer patients.
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