
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Kanhaiya Singh,
Purdue University Indianapolis,
United States

REVIEWED BY

Dayoung Oh,
University of Texas Southwestern Medical
Center, United States
Huh Jin Young,
Sogang University, Republic of Korea

*CORRESPONDENCE

Brian D. Hudson

Brian.Hudson@Glasgow.ac.uk

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 30 March 2023

ACCEPTED 13 June 2023

PUBLISHED 06 July 2023

CITATION

Duncan EM, Vita L, Dibnah B and
Hudson BD (2023) Metabolite-sensing
GPCRs controlling interactions between
adipose tissue and inflammation.
Front. Endocrinol. 14:1197102.
doi: 10.3389/fendo.2023.1197102

COPYRIGHT

© 2023 Duncan, Vita, Dibnah and Hudson.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 06 July 2023

DOI 10.3389/fendo.2023.1197102
Metabolite-sensing GPCRs
controlling interactions between
adipose tissue and inflammation

Elaine M. Duncan †, Luca Vita †, Bethany Dibnah
and Brian D. Hudson*

Centre for Translational Pharmacology, University of Glasgow, Glasgow, United Kingdom
Metabolic disorders including obesity, diabetes and non-alcoholic

steatohepatitis are a group of conditions characterised by chronic low-grade

inflammation of metabolic tissues. There is now a growing appreciation that

various metabolites released from adipose tissue serve as key signalling

mediators, influencing this interaction with inflammation. G protein-coupled

receptors (GPCRs) are the largest family of signal transduction proteins and most

historically successful drug targets. The signalling pathways for several key

adipose metabolites are mediated through GPCRs expressed both on the

adipocytes themselves and on infiltrating macrophages. These include three

main groups of GPCRs: the FFA4 receptor, which is activated by long chain free

fatty acids; the HCA2 and HCA3 receptors, activated by hydroxy carboxylic acids;

and the succinate receptor. Understanding the roles these metabolites and their

receptors play in metabolic-immune interactions is critical to establishing how

these GPCRs may be exploited for the treatment of metabolic disorders.

KEYWORDS
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Introduction

Metabolic disorders, including metabolic syndrome, diabetes and non-alcoholic

steatohepatitis (NASH) are a major global health and economic burden, with diabetes

alone affecting an estimated 537 million adults globally (1). These conditions are

characterised by chronic inflammation infiltrating metabolic tissues, resulting in a

disruption to metabolic homeostasis and downstream complications. As obesity is a

pertinent risk factor for many metabolic disorders, understanding the pathophysiology

of these conditions is of utmost importance given its increasing global prevalence.

The relationship between chronic low-grade inflammation and obesity is well

documented. Obesity has been associated with increased macrophage infiltration to

adipose tissue in both mouse (2) and human (3). Release of pro-inflammatory cytokines

by infiltrating macrophages is enhanced in obesity, contributing to impaired insulin

sensitivity (4). The links between inflammation, obesity and insulin resistance have been
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reviewed extensively elsewhere (5, 6); however, many of the exact

mechanisms involved in this interaction are yet to be elucidated.

It is now clear that several metabolic intermediates that are

released from adipose tissue play important roles communicating

with invading immune cells, in particular macrophages. Several of

these metabolites are ligands for G protein-coupled receptors

(GPCRs), and, importantly, some of these GPCRs are expressed

in both adipocytes and the inflammatory cells that invade metabolic

tissues in metabolic disorders (7). GPCRs are the most historically

successful drug targets and understanding how these receptors

control interactions between metabolism and inflammation may

provide new avenues to treat metabolic disorders. Here we identify

three metabolic intermediates: long chain fatty acids, hydroxy

carboxylic acids, and succinate, that are released either directly or

indirectly from adipocytes and signal through GPCRs expressed

both on adipocytes themselves and on invading macrophages. In

this review we discuss the roles the receptors for these metabolites

play controlling interaction between adipocytes and macrophages,

as well as how this may contribute to the development, progression,

and, ultimately, treatment of metabolic disorders.
FFA4 free fatty acid receptor

FFA4, formerly GPR120, is a GPCR activated by long chain

fatty acids and is reported to have an important role in interactions

between metabolism and inflammation. FFA4 is primarily

described as a Gaq coupled GPCR, but reports also link it to

signalling through Gai and Gas, and it strongly engages with b-
arrestin mediated pathways (8–10). There has been significant

interest in FFA4, in part because FFA4-/- mice on a high-fat diet

have increased body weight, accumulation of macrophages in their

adipose, elevated fasting glucose levels and impaired insulin

signalling (11). Furthermore, a deleterious variant of FFA4

(p.R254H/p.R270H) is associated with increased risk of obesity

(11) and elevated fasting glucose (12). These findings have

generated interested in FFA4 as a therapeutic target for the

treatment of inflammatory metabolic disorders.

It is well known that certain long chain fatty acids, in particular

the omega (n)-3 fatty acids, possess anti-inflammatory properties,

with benefits reported in cardiovascular disease, diabetes, cancer,

mental illness and dementia (13). Importantly, the n-3 fatty acids

are known to be agonists of FFA4 (14–16). Early evidence also

indicated many anti-inflammatory properties of dietary n-3 fatty

acids were mediated by FFA4-b-arrestin signalling (17). However,

several later studies have failed to reproduce this finding, suggesting

instead that dietary n-3 fatty acids are protective regardless of FFA4

expression (18, 19). Therefore, although it is clear that n-3 fatty

acids are agonists of this receptor and that dietary n-3 fats provide

health benefits, the extent to which FFA4 contributes to the

beneficial properties of these fatty acids in the diet remains unclear.

FFA4 is highly expressed in adipose tissue, and its expression

increases following in vitro adipogenic differentiation of isolated

primary human or murine 3T3-L1 adipocytes (20). It has been

shown that FFA4 enhances adipogenesis, as its inhibition reduces

lipid accumulation and expression of key adipogenic markers (20–
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22). Interestingly, it has been proposed that in preadipocyte cilia,

FFA4 coupling to Gas to increase ciliar cAMP may be an important

trigger for adipogenesis (10). Adipocytes release long chain fatty acids

through lipolysis, and it is established that fatty acid levels increase in

culture medium during adipogenic differentiation. As these long

chain fatty acids released through lipolysis are known agonists of

FFA4 (16), this perhaps suggests FFA4 functions as part of a positive

autocrine feedback loop reinforcing adipogenic differentiation.

The concept that FFA4 responds to fatty acids released by

lipolysis is supported by the observation that conditioned medium

from adipocytes treated with a b-adrenoceptor agonist to stimulate

lipolysis is sufficient to activate FFA4 receptor signalling in vitro

(23). In adipocytes, FFA4 couples strongly to the Gai pathway to

reduce cAMP levels (23), a signalling pathway that is well known to

inhibit lipolysis (24). Consistent with this, FFA4 has been found to

inhibit lipolysis both in vitro and in vivo (23, 25). These findings

indicate FFA4 is part of a negative feedback loop contributing to the

long-recognised ability of the fatty acids released from adipocytes to

regulate lipolysis (26, 27). FFA4, likely through a Gaq pathway, also

enhances GLUT4-mediated glucose uptake in both primary murine

adipocytes and 3T3-L1 adipocytes (15, 17). To date, no studies have

directly explored whether FFA4 regulation of glucose uptake is

controlled in an autocrine fashion by long chain fatty acids released

from adipocytes; this is clearly an area that needs future attention.

Chronic low-level inflammation of adipose tissue plays an

important role in metabolic syndrome, particularly influencing

the development of insulin resistance (4, 28). In immune cells,

FFA4 is highly expressed in macrophages (17, 29, 30) and has been

recently shown to be expressed in bovine neutrophils where it may

play a role in the production of superoxides (31). In RAW 264.7

macrophages, activation of FFA4 through a b-arrestin pathway

attenuated pro-inflammatory response to LPS, an effect which was

abolished by FFA4-knockdown (17). Furthermore, it has been

reported that FFA4 activation reduces macrophage infiltration of

adipose tissue (32). Supporting this observation, macrophages

displayed chemotaxis toward adipocyte conditioned medium,

which was suppressed by FFA4 agonists (17, 32). No subsequent

studies have investigated FFA4-regulated infiltration of adipose

tissue macrophages, although a role for the receptor in migration

is supported by observations that FFA4 activation attenuated the

motility of alveolar macrophages (33) and migration of monocytes

to atherosclerotic lesions (34). Given that adipocytes release fatty

acids through lipolysis, these findings suggest that FFA4 may have

an important paracrine signalling role between adipocytes and

infiltrating macrophages. Although to date no studies have

directly explored this, it will be important to establish if

macrophage chemotaxis toward adipocyte conditioned medium is

suppressed when the adipocytes are first exposed to a b-
adrenoceptor agonists to stimulate lipolysis.

A critical question in understanding FFA4 autocrine or

paracrine signalling will be to identify the specific types of fatty

acids that are involved. There is evidence that different FFA4

signalling pathways may be activated by specific long chain fatty

acids, with a particular difference observed between saturated and

unsaturated fatty acids; both classes can activate Gai and Gaq

signalling pathways in vitro, however unsaturated fatty acids can
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also activate the Gas pathway (35). Recent lipidomics data suggests

that unstimulated mouse and human adipocytes typically release

saturated fatty acids (stearic & palmitic acids), with an increase in

unsaturated fatty acid release (linoleic & oleic acids) following b-
adrenoceptor stimulated lipolysis (23). This may therefore indicate

that the fatty acids released through basal adipocyte lipolysis will

produce different FFA4 signalling profiles than the fatty acids

released due to adrenergic stimulated lipolysis. Similarly, it will

also be important to establish whether specific fatty acids from

alternative sources, for example released from macrophages by

phospholipase A2 (PLA2) hydrolysis of phospholipids, have a role

modulating adipocytes/macrophages communications through

FFA4. The main products of PLA2 hydrolysis are poly

unsaturated n-3 and n-6 fatty acids, which are all known to

activate FFA4 (16). Secreted PLA2 is expressed in adipose tissue

macrophages, and the activity of PLA2 protects mice from diet

induced obesity and adipose inflammation (36, 37). However, the

potential for unsaturated fatty acids released by macrophage PLA2

contributing to autocrine or paracrine FFA4 signalling in adipose

has not yet been investigated.

There has also been interest recently in the role of FFA4 in the

progression and treatment of NASH. FFA4 has been suggested to

have a protective role in NASH, as supplementation with omega-3

fatty acids reduces liver inflammation in an FFA4-dependent

manner (38, 39). Furthermore, in an inflammatory mouse model

of NASH, FFA4 appears to be upregulated in white adipose tissue

and reduces the expression of pro-inflammatory IL-6 and TNF-a in

this tissue (40). This may be particularly important therapeutically,

given that FFA4 is also anti-lipolytic and thus may provide benefit

to both the lipotoxity and inflammatory aspects of NASH.

Overall, there is substantial evidence that FFA4 is involved in

the interaction between metabolism and inflammation and likely is

a central player directly mediating communication between

adipocytes and macrophages (Figure 1). However, our current

lack of mechanistic understanding for how FFA4 signalling

operates under physiological and pathophysiological conditions
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needs to be resolved before we can truly establish if this receptor

is a viable target for metabolic disease.
Hydroxyl carboxylic acid receptors

The hydroxy-carboxylic acid (HCA) family of receptors form a

cluster of class A GPCRs, which share significant sequence identity.

The family includes three known receptors, HCA1, HCA2 and

HCA3, formerly known as GPR81, GPR109A and GPR109B

respectively (41). The receptors are activated by various different

hydroxy-carboxylic acid metabolites whose plasma concentrations

vary depending on the metabolic state of the organism, suggesting

the receptors play a role in metabolic homeostasis. The HCA

receptors are all expressed in adipose tissue and respond either

directly or indirectly to metabolites released from adipocytes (42).

In adipocytes all three receptors couple to Gai to mediate anti-

lipolytic effects via inhibition of cAMP (43), while HCA2 in

particular has also been reported to signal through b-arrestins in
some contexts (44) as well as through Gbg subunits specifically in

macrophages (45). Only HCA2 and HCA3 receptors are expressed

on certain immune cells, including macrophages and neutrophils,

suggesting these two receptors may have a role modulating

inflammation in response to metabolic signals released

from adipocytes.

The HCA2 receptor was first described as a receptor for the

nutrient, nicotinic acid, in 2003, with evidence showing nanomolar

affinity for the receptor (46, 47). Nicotinic acid has long been known

to produce an antilipolytic effect in adipose, resulting in decreased

plasma FFA concentrations (48). This effect of nicotinic acid is

abolished in HCA2 knockout mice (46). However, as endogenous

concentrations of nicotinic acid in the body are too low to activate

the receptor, it is unlikely that this is the endogenous ligand of

HCA2 (49). Instead, a second small carboxylic acid with activity at

HCA2 has been identified, the ketone body b-hydroxybutyrate
(BHB) (49). Like nicotinic acid, previous research had
FIGURE 1

FFA4 signalling between adipocytes and macrophages. Saturated and unsaturated fatty acids are released from adipocytes by lipolysis, supplemented
from the diet and may be produced through PLA2-mediated hydrolysis of phospholipids. These fatty acids act as ligands of FFA4 in an autocrine
manner to inhibit lipolysis via Gai signalling, stimulate glucose uptake via a Gaq pathway and stimulate or enhance adipogenesis via Gas signalling.
Fatty acids may also act in a paracrine manner to activate anti-inflammatory pathways in macrophages. Dashed lines represent interactions lacking
direct mechanistic evidence, and thus further investigation is required. Created with BioRender.com.
frontiersin.org
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demonstrated BHB to have anti-lipolytic effects (50–52), which

were found to be dependent on HCA2 (49). Critically, despite the

fact that BHB only has high micromolar affinity for HCA2 (49),

plasma concentrations of BHB increase to low millimolar levels

during fasting (53–56), suggesting that BHB is a legitimate

endogenous ligand of HCA2. The source of elevated BHB during

fasting, involves first the lipolytic release of FFAs from adipose,

followed by oxidation of these fatty acids in the liver to produce

BHB (57–59). Given the anti-lipolytic effects of HCA2, this suggests

a primary role for the receptor in a negative feedback loop to

regulate lipolytic rate and preserve energy during fasting (60).

Interestingly, a recent study has found that adipocytes also have

the ability to produce and secrete BHB (61), suggesting that HCA2

signalling could also be activated directly through local autocrine or

paracrine signalling in adipose, as well as the more traditional

indirect activation via BHB production in liver.

HCA2 is highly expressed in both human and murine white and

brown adipose tissue, with expression increasing through

adipogenesis of common adipocyte cell models (62, 63). To a

lesser extent the receptor is also expressed in macrophages, with

evidence showing that HCA2 expression is upregulated in the

presence of proinflammatory stimuli, like lipopolysaccharide

(LPS) and TNF-a (64, 65). A similar increase in HCA2 expression

in response to LPS is also observed in cultured adipocyte models in

vitro (66). In contrast, adipocyte HCA2 expression decreases in diet

induced obese mice (66), and expression is decreased in

subcutaneous adipose tissue of obese human subjects (67). These

contrasting in vitro and in vivo findings may suggest that simple

treatment of in vitro adipocytes with pro-inflammatory mediators

does not accurately reproduce the chronic multicellular

inflammatory responses observed in obese adipose (68). This

highlights a need to develop more accurate in vitro approaches to

allow for thorough investigation and to better understand how

inflammation affects HCA2 expression and function.

The HCA3 receptor is closely related to HCA2, sharing 96%

sequence identity. It is the result of a gene duplication that is present

only in human and hominids (69). HCA3 has a very similar

expression pattern to HCA2, being highly expressed in adipocytes,

as well as several immune cells (47, 70). Despite the high level of

similarity, the receptors do not share the same endogenous ligand.

HCA3 is not activated by BHB, but instead by 3-hydroxyoctanoate

(71). Like BHB, 3-hydroxyoctanoate is produced in the liver and

muscles by b-oxidation of fatty acids produced by lipolysis and so

HCA3 also appears to act as a negative feedback modulator of

lipolysis during fasting (72). Like HCA2, addition of LPS has been

found to significantly increase the expression of HCA3 in adipocytes

and macrophages cultured in vitro (63).

Due to the increase in HCA2 and HCA3 expression with LPS

treatment, recent studies have investigated whether these receptors

play a role in modulating proinflammatory cytokine production.

Activation of HCA2 and HCA3 with nicotinic acid and 1-isopropyl-

1H-benzotriazole-5-carboxylic acid (IPBT) respectively, reduced

the production of proinflammatory cytokines in SGBS adipocytes

and THP-1 macrophages exposed to LPS (63). Likewise, HCA2

activation in primary murine macrophages had the same effect (73).

Inflammatory cytokines have a key role in the development of
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metabolic syndrome, disrupting insulin and lipid signalling

pathways (74). In addition, activation of HCA2 also has been

found to suppress signalling responses in macrophages to key

chemoattractant chemokines, CCL2, fMLF and RANTES (45, 75).

Critically, these chemokines have important roles in the

macrophage infiltration of adipose in metabolic disease (76).

Together, this suggest HCA2 and HCA3 may be important

regulators of inflammation in adipose tissue and potential targets

for the treatment of metabolic disorders.

Interestingly HCA2 signalling differs in macrophages and

adipocytes. In macrophages, although the receptor still couples to

Gai, this coupling results in increased intracellular calcium (likely

via activation of Gbg subunits) and is associated with the release of

prostanoids (45). The HCA2 mediated release of prostanoids also

appears to involve b-arrestin-1, as macrophages from b-arrestin-1-/-

mice show reduced activation of cytosolic phospholipase A2, the

first step in prostanoid release, when treated with an HCA2 agonist

(44). Interestingly, prostanoid release from macrophages also seems

to serve as an autocrine regulator for HCA2 signalling, resulting in

an unexpected HCA2 mediated increase in cAMP levels through a

Gai-Gbg pathway (45). To date the importance of this pathway has

been explored only in relation to antiatherosclerotic properties of

HCA2, and so it will be critical to establish what impact this

pathway has on the regulation of adipose inflammation by HCA2.

The HCA receptors play an important role in controlling

metabolic homeostasis through an anti-lipolytic negative feedback

loop, while also playing an immunomodulatory role (Figure 2).

Previously, production of endogenous HCA ligands was thought to

occur exclusively in the liver and muscle, however recent research

suggests that adipocytes are also capable of directly secreting certain

HCA receptor ligands. It will be important for future work to

address what, if any, contribution adipose secreted HCAs have to

overall HCA receptor signalling, and how these receptors contribute

to adipose-immune cell communication.
Succinate receptor

GPR91 was identified in 2001 as an orphan GPCR sequence

located on chromosome 3 with homology to purinergic receptors

(77). Subsequent work demonstrated that GPR91 is activated by the

citric acid cycle intermediate, succinate (78), and the receptor was

subsequently renamed the succinate receptor, but is also commonly

referred to by its gene name, SUCNR1 (79). Initial expression

studies found high levels of SUCNR1 in kidney, liver and spleen

(78), while the receptor has also been found in adipose (80), and in

various immune cells including dendritic cells and macrophages

(81). Since its discovery, SUCNR1 has received significant attention

for its role in the pathophysiology of, and potential treatment for, a

variety of conditions including hypertension, cardiovascular

disease, obesity and insulin resistance, NASH, macular

degeneration and inflammatory bowel diseases (82).

Although succinate is normally found primarily in the

mitochondrial matrix, under conditions of hypoxic and metabolic

stress, succinate dehydrogenase, which converts succinate to

fumarate as part of the citric acid cycle, reverses its function,
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resulting in a build-up of succinate in the mitochondria (83). This

excess succinate is transported out of the mitochondria through a

mitochondrial dicarboxylic acid carrier (84), before ultimately being

released from the cell through solute carrier transporters (85).

Extracellular succinate is then able to bind to and activate

SUCNR1. While this process occurs in many cell types, it may be

particularly important in adipocytes, which become hypoxic with

chronic low-level inflammation in obesity, metabolic syndrome and

diabetes (86).

SUCNR1 is primarily described as a Gai coupled GPCR

inhibiting production of cAMP, while a few studies have also

observed Gaq mediated SUCNR1 signalling (78, 87, 88). With

this in mind, SUCNR1 has been shown to inhibit adipocyte

lipolysis both in vitro and ex vivo in a Gai dependent manner

(80). Subsequent studies have also demonstrated anti-lipolytic

effects of SUCNR1 in vivo (89), and specifically linked these

effects to adipocyte expression of a dicarboxylic acid carrier

responsible for transporting succinate out of mitochondria (84).

Together, these findings support an autocrine signalling pathway

mediated by succinate released from adipocytes to control lipolysis.

Mice lacking SUCNR1 have a variety of disfunctions in their

metabolic phenotype when fed a high fat diet, including:

hyperglycemia, reduced weight gain, and impaired glucose clearance

(89). The fact that these metabolic phenotypes in SUCNR1-/- mice are

only observed with a HFD, suggests a need for metabolic stress and/or

hypoxia in the adipose for SUCNR1 pathways to be active. Indeed,

there is clear evidence that plasma succinate levels are elevated in

human patients with obesity, metabolic syndrome and diabetes (90–

92). Given that each of these conditions is associated with chronic

inflammation of adipose, and that SUCNR1 is also expressed in
Frontiers in Endocrinology 05
immune cells, this implicates SUCNR1 as a potential mediator of

adipocyte-immune cell communication. Providing support for this

possibility, abnormal metabolic phenotypes have been observed in

mice with a myeloid specific SUCNR1 knockout (93), suggesting a key

role of SUCNR1 in macrophages metabolic dysfunction.

While there is now clear evidence that succinate-SUCNR1

signalling plays an important role mediating communication

between adipose tissue and macrophages, it remains controversial

whether SUCNR1 is pro- or anti-inflammatory. Studies in

SUCNR1-/- macrophages have indicated that this receptor mediates

chemotaxis towards succinate released from hypoxic adipocytes (90),

suggesting a pro-inflammatory function. This is consistent with

earlier work reporting a pro-inflammatory role of SUCNR1 in

macrophages in various other inflammatory disorders, including

arthritis (94), arthrosclerosis (95), and inflammatory gut conditions

(96, 97). In contrast, others have reported pro-inflammatory cytokine

secretion to be enhanced in SUCNR1-/- macrophages (98), and

adipose tissue inflammation to be exacerbated in myeloid cell

specific SUCNR1 knockout mice fed a high fat diet (93), suggesting

an anti-inflammatory role of the receptor. Consistent with this, a

recent transcriptomic study found that succinate, acting through an

SUCNR1-Gaq pathway, hyperpolarized human macrophages toward

the M2 anti-inflammatory phenotype (87). Adding a further layer of

complexity, studies in adipose taken from lean vs obese patients

found that while succinate was anti-inflammatory in the lean adipose,

it enhanced IL-1b and TNF expression in obese adipose (93),

suggesting cell or context dependent SUCNR1 control of

inflammation. Developing a clear understanding of the role of

SUCNR1 in inflammation will be key to establishing whether

agonism or antagonism of the receptor will have therapeutic benefit.
FIGURE 2

HCA receptor signalling between adipocytes and macrophages. During periods of fasting or exercise, there is an increase in lipolysis and
subsequently an increased release of fatty acids from adipocytes. These fatty acids are converted in the liver or muscle (purple box) to Acyl-CoA and
then transported into mitochondria (red box). Beta-oxidation in the mitochondria produces acetyl-CoA, which undergoes ketogenesis, a four-step
process that can produce beta-hydroxybutyrate (BHB). BHB binds to and activates the HCA2 receptor and through Gai signalling, evokes antilipolytic
effects in adipocytes and anti-inflammatory effects in macrophages. The anti-inflammatory effects include a reduction in cytokine production and
suppression of chemokine signalling. Additionally, in macrophages the HCA2 receptor signals via the Gbg subunit and b-arrestin-1 to mediate the
release of prostanoids. Similarly, beta-hydroxyoctanoate is produced via beta-oxidation of fatty acids. However, beta-hydroxyoctanoate is released
as a result of incomplete beta-oxidation. Beta-hydroxyoctanoate binds to and activates the HCA3 receptor on adipocytes and macrophages and
through its Gai evokes anti-inflammatory and antilipolytic effects. Created with BioRender.com.
frontiersin.org
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In addition to the release of succinate from hypoxic adipocytes,

macrophages themselves also directly release succinate in response

to inflammatory signals (99). While there is evidence that succinate

released from macrophages does act in an autocrine fashion

through SUCNR1 to affect inflammatory responses (94), to date it

is not clear whether macrophage released succinate mediates

communication to adipocytes through this receptor. In addition,

circulating succinate levels are utilised and cleared by uncoupling

protein 1 (UCP1) expressed in brown and beige adipose (100, 101),

and genetic disruption of UCP1 leads to SUCNR1 mediated liver

inflammation (100). This raises interesting questions about the

potential use of SUCNR1 in treating liver diseases like NASH,

given that, like many other receptors that inhibit lipolysis in adipose

including both FFA4 and HCA2/3, SUCNR1 actions in adipose have

protective effects on liver lipotoxicity (84). This indicates that like its

control of inflammation more broadly, the potential of SUCNR1 in

treating metabolic and inflammatory mediated liver disease

is complex.

SUCNR1 signalling has an important role in regulating

metabolism and inflammation in the context of metabolic disease

(Figure 3). Succinate, acting through SUCNR1, is an important

mediator of stress signalling to affect immune cell function and

inflammation. However, given the conflicting findings on this

receptor as either pro- or anti-inflammatory, there is a real need

to establish more physiologically relevant approaches to better

understand the role of SUCNR1 and determine if and how we

can target this receptor for the treatment of disease.
Conclusion

Various metabolites released by adipocytes act through either

direct or indirect signalling pathways to activate metabolite-

sensing GPCRs both in adipocytes themselves and in the
Frontiers in Endocrinology 06
immune cells that infiltrate adipose in metabolic disorders.

These receptors play a variety of functional roles, but commonly

both regulate inflammation in immune cells and lipolytic

pathways in adipose. The complex, multicellular nature of these

signalling pathways and networks has made mechanistically

dissecting this signalling quite difficult in vitro, and it will be

critical to develop and establish more robust experimental models

and approaches to achieve this.

Not surprisingly, given the functions of the FFA4, HCA and

SUCNR1 receptors in controlling metabolism and inflammation,

each of these has received interest as a potential target in the

treatment of metabolic disorders including dyslipidaemia, diabetes

and NASH. HCA2 is the most well developed, with its naturally

occurring ligand, niacin, having been widely used clinically to

control dyslipidaemia through a mechanism that is at least partly

mediated by HCA2 (102). However, these clinical studies have also

demonstrated that niacin, also via HCA2, produces an unwanted

flushing effect in skin (103). Efforts to eliminate this side effect led to

the development of a synthetic partial HCA2 agonist, MK-0354 that

maintains lipid lowering effects, but without producing flushing in

animal models (104). These findings led to MK-0354 entering phase

I and II clinical trials, where although it did not produce flushing, it

also did not improve lipid levels following chronic treatment (105).

Despite this failure, medicinal chemistry efforts have continued

around HCA2, but without any yet reaching the clinic (106).

Similarly, FFA4 has received significant attention from both

academic and industrial drug discovery programmes, primarily

focused on developing agonists for type 2 diabetes and/or NASH,

however to date no molecules have entered the clinic (107). While

also receiving some attention as a therapeutic target, the conflicting

data around the benefits of agonism vs antagonism of SUCNR1, as

well as the relatively wide spread expression pattern for SUCNR1 in

multiple tissues and cell types (82) has perhaps led to a somewhat

slower pace of development for this receptor.
FIGURE 3

Succinate Receptor signalling between adipocytes and macrophages. Under conditions of hypoxic or metabolic stress succinate dehydrogenase
reverses function, leading to a build-up of succinate in the mitochondria. When concentrations become elevated, succinate leaves the mitochondria
through a dicarboxylate carrier, before exiting the cell through other solute carriers. Once outside the cell, succinate binds to and activates SUCNR1
on the surface of adipocytes and macrophages to inhibit lipolysis and control inflammation respectively. In macrophages, SUCNR1 has been
reported to have both pro-inflammatory and anti-inflammatory effects. These include mediating chemotaxis towards hypoxic adipose, likely through
Gai activation, as well as hyperpolarisation to the M2 macrophage phenotype through a Gaq mediated pathway. Created with BioRender.com.
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Ultimately, understanding the signalling networks of these

metabolite-sensing GPCRs will help us better understand how

interactions between metabolism and inflammation drive

metabolic disease. Developing this understanding is likely to open

new opportunities for the treatment of a variety of metabolic

disorders, including obesity, diabetes and NASH.
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