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Background: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver

disease that affects approximately one-quarter of the global population and is

becoming increasingly prevalent worldwide. The lack of current noninvasive

tools and efficient treatment is recognized as a significant barrier to the clinical

management of these conditions. Extracellular vesicles (EVs) are nanoscale

vesicles released by various cells and deliver bioactive molecules to target

cells, thereby mediating various processes, including the development of NAFLD.

Scope of review: There is still a long way to actualize the application of EVs in

NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD

and highlight their prospects for clinical application as a novel noninvasive

diagnostic tool as well as a promising therapy for NAFLD, owing to their

unique physiochemical characteristics. We summarize the literatures on the

mechanisms by which EVs act as mediators of intercellular communication by

regulating metabolism, insulin resistance, inflammation, immune response,

intestinal microecology, and fibrosis in NAFLD. We also discuss future

challenges that must be resolved to improve the therapeutic potential of EVs.

Major conclusions: The levels and contents of EVs change dynamically at different

stages of diseases and this phenomenon may be exploited for establishing

sensitive stage-specific markers. EVs also have high application potential as drug

delivery systems with low immunogenicity and high biocompatibility and can be

easily engineered. Research on the mechanisms and clinical applications of EVs in

NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and

treatment is expected to grow with technological progress.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) has become the most

common chronic liver disorder affecting approximately 25% of the

global adult population, which prevalence varies from 13.5%

in Africa to 31.8% in the Middle East (1), causing a growing

global burden of liver diseases (2). NAFLD encompasses a

disease continuum from nonalcoholic fatty liver (NAFL) to

nonalcoholic steatohepatitis (NASH), which is characterized by

necroinflammation and faster fibrosis progression than NAFL (3).

Patients with NAFLD are prone to developing cirrhosis and

hepatocellular carcinoma (HCC), making NAFLD the most

rapidly growing cause of liver transplantation in HCC patients,

with an 11.8-fold increase during 2002-2016 (4, 5). NAFLD has

become the most rapidly growing contributor to liver mortality and

morbidity (6). Drugs such as glucagon-like peptide-1 (GLP-1)

agonists, pioglitazone, and sodium-dependent glucose transporter

2 (SGLT2) inhibitors are currently available for the treatment of

obesity and type 2 diabetes mellitus(T2DM), but there is currently

no FDA-approved drug therapy for NASH (3). A healthy lifestyle

and weight management remain central to the prevention and

treatment of NAFLD (7).

The pathophysiology of NASH is multifactorial, involving

genetic and epigenetic factors, insulin resistance (IR), adipose-

derived hormones, over-nutrition, and microbiome-related factors

that are not well understood, and several studies have reported that

extracellular vesicles (EVs) play a significant role in the

development of NAFLD (3, 8, 9). EVs act as intercellular

mediators and participate in metabolic regulation, inflammatory

and immune responses, intestinal microecological balance, and

fibrotic processes. Therefore, understanding the mechanism of

EVs is of great significance for improving the diagnosis and

treatment of NAFLD. In this review, we summarize the roles of

EVs in NAFLD and highlight their utility as diagnostic and

therapeutic tools in NAFLD.

2 The characteristic of
extracellular vesicles

An EV is a membranous vesicle derived from the cellular

membrane systems of living cells with lipid bilayer membranes

(10). EVs were first observed in plasma in 1967 (11). Since then, it

has been established that EVs can be isolated from a variety of body

fluids (12–16) and be released by almost all types of cells (17–20).

Various proteins, lipids, DNA, RNA, and metabolic products,

which have been proven to regulate gene expression and signaling

pathways in cells, can function as cargo for EVs (21, 22). The

biosynthesis of EVs may be regulated by EV cargoes bind trafficking

effectors, which enrich cargoes in endosomal and plasma

membrane patches, and cause the endosomal membrane to bud

into the lumen of the endosome, leading to the formation of

intraluminal vesicles as early endosomes mature into late

endosomal multivesicular body (23). Depending on their source,

size, and function, EVs can be divided into three types—exosomes,

microvesicles, and apoptotic bodies (Figure 1) (24, 25). Exosomes
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are the smallest EVs with a diameter of 40-120 nm and are formed

due to exocytosis. Microvesicles are derived from cellular budding

and have a larger size of 50-1000 nm. Both exosomes and

microvesicles play a role in intercellular communication.

Apoptotic bodies are always derived from dead cells and are the

largest of EVs with a size of 500-2000 nm. Different surface

modifications of EVs, such as exosomes, can make it have

different functions, so as to achieve targeted drug delivery and in

vivo imaging and tracking. Specific membrane proteins

functionalized on the surface of exosomes, such as tetraspanins

proteins (CD63, CD81, CD9), lactadherin, lysosome-associated

membrane protein-2B, and glycosyl phosphatidylinositol, as well

as different surface modification strategies such as genetic

engineering, interact with the receptor system of target cells,

which is involved in the regulation of physiological functions of

various organ systems (26).
3 The role of EVs in NAFLD

EVs contain specific molecules on their surface that can induce

signal transduction in specific cells by recognizing target cells and

binding to cell-specific receptors or fusing with the target cell

membrane and transferring the cargo into their cytoplasm to

regulate the physiological activities of cells (Figure 2) (21). Based

on different cell sources, EVs participate not only in normal

physiological processes but also in disease processes (27–29).

Consequently, EVs have potential application value as diagnostic

biomarkers (30). In the liver, EVs not only play an important role in

mediating signal transduction in liver cells but also affect metabolic

pathways in liver cells associated with apoptosis of hepatocytes,

inflammation, liver fibrosis, and the development of NAFLD

(Table 1) (55, 56).
3.1 Glucose and lipid metabolism

Patients with NAFLD often have glucose and lipid metabolic

disorders, which have been proven to be regulated by EVs and are

associated with multiple pathways (57–59). Some research report

that obese individuals have higher levels of circulating EVs than

normal-weight individuals (60, 61). While, the role of EVs in

regulating the glucose and lipid metabolism is multifarious. The

possible mechanism may be the diversity of contents carried by

exosomes, including non-coding RNAs and cytokines, which play

biological functions.

A recent report indicated that adipocyte-derived EVs may

induce hepatitis and cirrhosis by regulating adipose tissue

homeostasis, interfering with normal signaling pathways, and

causing metabolic dysfunction (22). EVs play a significant role in

lipid redistribution in metabolic organs such as the liver, adipose

tissues, and muscles under lipid overload. The study found that EVs

levels increased in response to acute lipid overload and these EVs

containing let-7e-5p fuse with adipocytes to promote adipocyte

regeneration by upregulating the let-7E-5p-PGC1a axis (31). In a

relatively hypoxic environment, the secretion of EVs derived from
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3T3-L1 adipocytes increased. Proteomic analysis revealed 231

protein components in these EVs, including a variety of lipogenic

enzymes such as fatty acid synthase (FASN), 6-phosphate-glucose

dehydrogenase (G6PD), and acetyl-CoA carboxylase (ACC), which

promote fat synthesis and increase adipocyte load (32). Adipocyte-

derived EVs act as adipocytokines that regulate the secretion of

cytokines from adjoining cells in response to a variety of stimuli.

They activate macrophages and promote the synthesis and release

of macrophage colony-stimulating factor, interleukin-6 (IL-6), and

tumor necrosis factor-a (TNF-a), which aggravate IR, destroy

gluconeogenesis in liver tissue and promote liver inflammation by

adjusting the release of macrophage migration inhibitory factor

(MIF), macrophage chemoattractant protein-1 (MCP-1) and IL-6

(62). EVs isolated from human adipose-derived stem cells (HASCs)

generated during beige adipogenic differentiation can differentiate

HASCs into beige and brown adipocytes. EVs derived from beige/

brown adipocytes have beneficial effects on the browning of the

white adipose tissue (22, 34). A study by Thomou et al. (63) showed

that circulating EVs isolated from adipose tissue-specific miRNA

knockout mice contain decreased miRNAs, and circulating miRNA

levels are almost completely restored after transplantation of white/

brown adipose tissue. These miRNAs play a role in improving

glucose tolerance and reducing fibroblast growth factor 21(Fgf21)

mRNA in hepatocytes. Another study showed that EVs containing

let-7b-5p activated TGF-b-let-7b-5p signaling pathway in
Frontiers in Endocrinology 03
hepatocytes, reducing mitochondrial oxidative phosphorylation

and suppressing white-to-beige fat conversion, that promoted

high-fat diet (HFD)-induced steatosis and obesity (64). In

summary, EVs can regulate glucose and lipid metabolism and

NAFLD development by regulating gene expression or cell-

specific signaling pathways. By blocking specific signaling

pathways in or receptors on target cells, we can modulate the

effects of EV cargo. The findings of the studies discussed above may

provide new insights for the research and development of novel

drugs in the future.
3.2 Insulin resistance

IR is closely related to liver steatosis and can also predict the

development of NAFLD (65). Recent studies have revealed that EVs

are easily internalized by cells and cause functional changes in

specific tissues, regulating insulin signaling in other tissues (35).

Adipocyte-derived exosomes can cause IR. The first study that

identified the role of adipocyte-EVs in IR was performed in a mice

model of obesity (37). EVs released by adipocytes can activate

macrophages, which can induce IR through toll-like receptor 4/TIR

domain-containing adaptor protein inducing interferon-b (TLR4/

TRIF) pathways (37). Dang et al. (36) proposed that IR in obese

individuals is highly correlated with the low expression of miR-141-
FIGURE 1

Exosomes are the smallest EVs with a diameter of 40-120 nm and are formed due to exocytosis. Microvesicles are derived from cellular budding and
have a larger size of 50-1000 nm. Apoptotic bodies are always derived from dead cells and are the largest of EVs with a size of 500-2000 nm.
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FIGURE 2

EVs regulate glucose and lipid metabolism, fibrosis, intestinal microecology, inflammation, immune response, insulin resistance and other processes
by recognizing target cells and binding to cell-specific receptors or fusion with the target cell membrane to achieve substance transport and induce
intracellular signal transduction, thus, participate in the pathophysiological process of non-alcoholic fatty liver disease.
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3p in exosomes secreted by adipose tissues. EVs released by adipose

tissue from obese mouse models can mediate crosstalk between

adipose tissues and macrophages. Additionally, some studies have

suggested that insulin sensitivity is related to macrophages that

reside within adipose tissue (ATMs). Another study on ATMs

found that miR-155 in exosomes released by ATMs was

overexpressed in an obese mouse model (66). And it is reported

that miR-29a was overexpressed in exosomes derived from ATMs

in obese mouse models (38). miR-155 and miR-29a are key

mediators s in the peroxisome proliferation-activated receptor-g
(PPAR-g) and PPAR-d signaling pathways, respectively. Both

PPAR-g and PPAR-d have been identified as targets of miRNAs

that regulate IR (39). The studies suggest that ATMs can impair

insulin sensitivity by secreting exosomes containing specific

miRNAs, leading to the inhibition of glucose uptake and directly

affecting the insulin levels in an organism. Anja Fuchs et al. (67)

found that systemic IR in people with obesity and NAFLD is

associated with increased plasma PAI-1 concentrations and both

plasma and subcutaneous abdominal adipose tissue derived
Frontiers in Endocrinology 04
exosomes. In addition, gut microbial-derived EVs can also

influence glucose metabolism by regulating IR (68). It was found

that fecal-derived EVs induced IR and poor glucose tolerance in

high-fat diet (HFD)-fed mice compared to conventional diet-fed

mice (69). In summary, EVs have been implicated in the

development of IR and understanding the molecular mechanisms

by which they confer IR may be effective in the prevention or

treatment of NAFLD.
3.3 Immune response

The persistent inflammatory response is an important cause of

the transition from simple fatty liver disease to severe liver injury,

such as steatohepatitis and cirrhosis, which is related to the immune

response (70). Immune regulation, including innate and adaptive

immunity, is crucial to the pathogenesis of NAFLD. Innate immune

cells in the liver include Kupffer cells, dendritic cells, natural killer

(NK) cells, innate lymphoid cells, invariant NKT cells, and mucosal-
frontiersin.org
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TABLE 1 Mechanisms of development of nonalcoholic fatty liver disease related to extracellular vesicles.

Source
of EVs

Mechanism Pathophysiological
progress

Reference

Glucose and lipid

Glucose
metabolism

Lipid
metabolism

Hepatocytes EVs containing let-7e-5p enhances adipocyte lipid deposition through Pgc1a. ↑ Yue Zhao, etal.
(31)

Adipocytes Hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis
(FASN, G6PD, ACC)

↑ Soichi Sano,
etal. (32)

Body fluids Obesity-associated exosomal miRNAs (miR-192 and miR-122) induce glucose intolerance and
dyslipidemia

↑ ↑ Carlos Castaño
etal. (33)

HASCs Secreted EVs during stem cell differentiation into white adipocytes or beige adipocytes can promote
cell reprogramming.

↓ Youn Jae Jung,
etal. (34)

IR

Insulin
sensitivity

IR

Plasma IR increases the secretion of EVs, which are preferentially internalized by leukocytes, and alters
leukocyte function.

↑ David W
Freeman, etal.
(35)

adipose
tissue

Exosomes released from obesity adipose tissue containing less miR-141-3p inhibit the insulin
sensitivity and glucose uptake.

↑ Shi-Ying Dang,
etal. (36)

adipose
tissue

The ob-EVs mediate the induction of TNF-a and IL-6 in macrophages and IR through the TLR4/
TRIF pathway

↑ Zhong-bin
Deng, etal. (37)

ATMs Exosomes from ATMs in obese mice containing miR-155 cause glucose tolerance and IR by targeting
PPARg.

↑ Wei Ying, etal.
(38)

Skeletal
muscles

Exosomes from skeletal muscles of IUGR containing miR-29a induce IR though PPARd/PGC-
1a−dependent signals.

↑ Yuehua Zhou,
etal. (39)

Immune response

Anti-
inflammation

Pro-
inflammation

Hepatocytes Lipotoxic hepatocyte-derived EVs are enriched with active ITGb1, which promotes monocyte
adhesion and liver inflammation in murine NASH.

↑ Qianqian Guo,
etal. (40)

Hepatocytes Lipids-induce-released hepatocyte EVs activate an inflammatory phenotype in macrophages by
stimulating DR5.

↑ Petra Hirsova,
etal. (41)

Hepatocytes Cholesterol-induced lysosomal dysfunction increases the release of exosome containing miR-122-5p
from hepatocytes, resulting in M1 polarization and macrophage-induced inflammation.

↑ Zhibo Zhao,
etal. (42)

Hepatocytes Steatotic hepatocyte-derived EVs promote endothelial inflammation and facilitate atherogenesis by
miR-1 delivery, KLF4 suppression and NF-kB activation

↑ Fangjie Jiang,
etal (43).

Neutrophils miR-223-enriched EVs derived from neutrophils acted to inhibit hepatic inflammation and fibrosis ↑ Yong He, etal
(44)

Hepatocytes MLK3 mediates the release of CXCL10-laden EVs from lipotoxic hepatocytes, which induce
macrophage chemotaxis

↑ Samar H
Ibrahim, etal.
(45)

Intestinal microecology

remission aggravate

Bacteria LPS and palmitate induce the expression of TLR4 and NF-kB to promote NASH. ↑ Torfay
Sharifnia, etal.
(46)

(Continued)
F
rontiers in End
ocrinology 05
 frontiersin.org

https://doi.org/10.3389/fendo.2023.1196831
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2023.1196831
associated invariant T cells, which form the first line of defense

against invading organisms and environmental challenges. The

hepatic innate immune response plays a prominent role in the

progression of liver disease; therefore, it is an important driving

force in NAFLD (71). Increasing evidence suggests the role of

lymphocyte-mediated adaptive immunity as a factor promoting

liver inflammation, including the role of B cells and CD4+T and

CD8+T cells in sustaining NASH progression (72).

3.3.1 Innate immunity
Patients with NAFLD show increased levels of EVs derived

from macrophages and NK cells. The levels of EVs derived from

immune cells can be used to assess the extent of chronic liver

disease, which is related to the enhancement of innate immune

function during the development of NAFLD (73). EVs promote

pathological angiogenesis and fibrosis in NASH by transporting a

variety of mediators including growth factors, hedgehog molecules,

proteins, and miRNAs (74). A study by Pover et al. (54) showed that

under saturated lipotoxicity, the caspase8-caspase3-ROCK1

pathway in hepatocytes is activated, releasing EVs containing a

large amount of Vanin-1, which can reinforce the internalization of

EVs, initiate the migration of endothelial cells (ECs), and promote

the generation of new small blood vessels, resulting in hepatocyte
Frontiers in Endocrinology 06
inflammation. Lemoinne et al. (53) showed that EVs carrying

vascular endothelial growth factor A (VEGF-A) can be released

by activated portal myofibroblasts and bind to VEGF-A receptors

on vascular EC to promote vascular ECs and ductal hyperplasia.

Vascular ECs co-cultured with steatotic hepatocytes or treated with

steatotic hepatocyte-derived EVs decreased Kruppel-like factor 4

release, which activated the intracellular NF-kB pathway and

significantly increased pro-inflammatory factor release (43).

Lipotoxic liver cells can release EVs that contain various

macrophage chemokines and active mediators. Protein mass

spectrometry of EVs showed that EVs contain many damage-

associated molecular patterns, which can activate the

inflammatory response in mammals (75). Lipid molecules can

promote NAFLD by activating cytokines in hepatocytes. To

activate the death receptor 5 (DR5) of hepatocytes through non-

ligand-dependent pathways, the secretion of EVs in hepatocytes

increase. TNF-related apoptosis-inducing ligand (TRAIL) on the

surface of the EVs activates DR5-RIP1-NF-kB signaling pathway in

macrophages to increase the secretion of IL-1b and IL-6 (41), which

aggravates inflammation in hepatocytes. EVs carrying miR-122-5p

secreted by hepatocytes can stimulate the secretion of pro-

inflammatory factors and polarize hepatic macrophages into the

M1 phenotype (42). Studies also have reported that EVs can
TABLE 1 Continued

Source
of EVs

Mechanism Pathophysiological
progress

Reference

Bacteria LPS can promote the decrease of plasma adiponectin, the increase of plasma leptin levels, and greater
expression of FAS and SREBP-1c mRNA in the liver

↑ Shinya
Fukunishi, etal.
(47)

Bacteria The loss of functional LBP protected against early stages of NAFLD development, in part due to the
protective effect of TLR-4–MyD88-dependent iNOS activation.

↑ Cheng Jun Jin,
etal. (48)

Liver fibrosis

Anti- fibrosis Pro-fibrosis

EC EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-
dependent exosome adherence and dynamin-dependent exosome internalization

↑ Ruisi Wang,
etal. (49)

HSCs Cellular or exosomal Twist1 drives miR-214 expression and suppresses CCN2 production and
downstream fibrogenic signaling through transcriptional activation of the DNM3os E-box

↑ Li Chen, etal.
(50)

HLSC HLSC-derived EVs attenuate liver fibrosis and inflammation ↑ Stefania Bruno,
etal. (51)

Hepatocytes Lipotoxic hepatocyte-derived EVs containing miR128-3p inhibit PPAR-g to activate HSCs. ↑ Davide Povero,
etal. (52)

PMFs PMFs released VEGFA-containing microparticles, which activated VEGF receptor 2 in ECs and
largely mediated their proangiogenic effect.

↑ Sara Lemoinne,
etal. (53)

Hepatocytes Exosomes secreted by hepatocytes exposed to FFA contribute to angiogenesis and liver damage in
steatohepatitis requiring VNN1-dependent internalization

↑ Davide Povero,
etal. (54)
IR, insulin resistance; IUGR, intrauterine growth retardation; EVs, extracellular vesicles; FASN, fatty acid synthase; G6PD, 6-phosphate-glucose dehydrogenase; ACC, 1.acetyl-CoA carboxylase;
HASCs, human adipose-derived stem cells; TNF-a, tumor necrosis factor-a; IL-6, interleukin-6; TLR4/TRIF, toll-like receptor 4/TIR domain-containing adaptor protein inducing interferon;
ATMs, adipose tissue macrophages; PPARg, peroxisome proliferator−activated receptor g; PPARd, peroxisome proliferator−activated receptor d; PGC-1a, proliferator-activated receptor-g
coactivator-1a; PMFs, portal myofibroblasts; VEGF, vascular endothelial growth factor; ECs, endothelial cells; VNN1, Vanin-1; ITGb1, integrin b1; DR5, death receptor 5; KLF4, Kruppel like
factor 4; NF-kB, Nuclear Factor-kB; HSCs, hepatic stellate cells; HLSC, human liver stem cells; MLK3, mixed lineage kinase 3; CXCL10, (C-X-C motif) ligand 10; SK1, sphingosine kinase 1; FN,
fibronectin; LBP, lipopolysaccharide-binding protein; iNOS, inducible nitric oxide synthase.
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mediated the macrophages, which is supposed to play an important

role in the regulation of fibrosis (76, 77). Several studies have

demonstrated that NAFLD are associated with exosomes derived

from or transferred to macrophages (78). For example, exosomal

miRNA-411-5p derived from M2 macrophages plays an inhibitory

role in HSCs activation during NASH progression by inhibiting its

target gene CAMSAP1 (79). Furthermore, the exosomes released by

lipotoxic hepatocytes can be ingested by macrophages, resulting in

activation of M1 macrophages and hepatic inflammation by

regulating the Rictor/Akt/FoxO1 signaling pathway (80).

Hepatocyte-derived EVs can also promote monocyte adhesion via

an integrin b1-dependent mechanism to induce an inflammatory

response (40). Besides, under the inflammation or mechanical

stimulation, the hepatic stellate cells (HSCs) activated and

participate in the formation of liver fibrosis through the

proliferation and secretion of the extracellular matrix. One

possible mechanism for this transformation is through the

upregulation and release of miR128-3p by EVs under lipotoxicity

caused by increased free fatty acids in hepatocytes (64). These

hepatocyte-derived EVs are internalized by HSCs and inhibit

PPAR-g in quiescent HSCs to facilitate phenotypic conversion

(52). When HSCs were exposed to miR128-3p-deficient EVs, a

higher PPAR-g level and reduced proliferation and migration were

observed. EVs containing connective tissue growth factor or

miR214 promote the phenotypic transformation of activated

HSCs (81). This is a possible mechanism of the translation from

NAFLD to liver fibrosis and NASH. However, some studies suggest

that EVs derived from hepatocytes can significantly downregulate

the expression of genes related to fibrosis and have anti-

inflammatory and anti-fibrotic effects. Neutrophil-derived miR-

223 with high apolipoprotein E expression can be taken up by

hepatocytes to limit the progression of steatosis to NASH (44).

Fibrosis-related genes were significantly downregulated in immune-

deficient NASH mice (methionine-choline-deficient diet-induced)

that were treated with human hepatocyte-derived EVs (51). EVs

from human liver stem cells are believed to slow down the

symptoms of fibrosis and inflammation by regulating gene

expression in liver cells. Therefore, the role of EVs in innate

immunity appears to be dynamic and must be further investigated.

3.3.2 Adaptive immunity
The current concept is that innate immunity represents a key

element in development of NAFLD, however, adaptive immunity is

increasingly being recognized as an additional factor of NAFLD

(72). NASH is characterized by increased levels of liver and

circulating IFN-g-producing CD4+ T cells (82). CD4+ T cells can

differentiate into T helper 17 cells that release IL-17. IL-17 can

promote M1-type macrophage polarization and exacerbate the liver

inflammatory response to accelerate NAFLD progression (83).

Mice lacking CD8+ T cells and NKT cells are protected from

steatosis and NASH when fed with a choline-deficient HFD,

which is associated with reduced production of LIGHT by
Frontiers in Endocrinology 07
CD8+T cells and NKT cells (84). Adaptive immunity and innate

immunity are not completely independent, and there is an interplay

between the two. Sun et al. (85) showed that OX40 was a key

regulator of intrahepatic innate and adaptive immunity and

mediated two-way signals and promotes both pro-inflammatory

monocytes and macrophages, as well as T cell function, resulting in

the development of NASH. By promoting NK cell activation,

lymphocytes stimulate the secretion of IL-15 and IL-18 by

macrophages, thereby modulat ing the progression of

steatohepatitis and fibrogenesis (86). In conclusion, adaptive

immune responses are crucial in the progression of NAFLD. EVs

have been proven to be key factors in mediating adaptive immune

responses by playing roles in antigen presentation, T-cell activation,

T-cell polarization to regulatory T-cells, and immune suppression

(87). Therefore, EVs play a role in NAFLD through the modulation

of adaptive immunity.
3.4 Inflammation

Recently, many studies have found that EV levels significantly

increase in NASH mice models (54, 75). HFD promotes the release

of EVs, and the number of EVs increases in a time-dependent

manner (88). MiR-1 in hepatocyte-derived EVs is an important

factor in the promotion of endothelial inflammation. EVs aggravate

not only endothelial inflammation but also atherosclerosis by

delivering miR-1, which induces the inhibition of Kruppel like

factor 4 (KLF4) and activation of the NF-kB pathway (43). In

addition to promoting inflammation in endothelial cells, EVs also

mediate inflammation through macrophages. Several studies have

shown that the aggregation of Kupffer cells is closely related to

hepatocyte-derived EV levels (75, 89–91), suggesting that EVs

mediate the inflammatory response in liver damage by inducing

chemotaxis of macrophages. In lipotoxic hepatocytes, the activated

mixed lineage kinase 3 pathway promotes EV secretion by

upregulating c-Jun N-terminal kinase. The secreted EVs further

mediate chemotaxis of macrophages by releasing C-X-C motif

ligand 10 (CXCL10) via binding to C-X-C receptor-3 (CXCR-3)

and promoting macrophage-associated hepatic inflammation (45).

Garcia-Martinez, et al. (92) found higher levels of Mitochondrial

DNA (mtDNA) in EVs of mice and patients with NASH, with

concurrent increase in hepatocyte-specific marker that activate toll-

like receptor 9 (TLR9). TLR9 can mediate inflammation, thereby

contributing to the transition from simple steatosis to

steatohepatitis. Another study has shown that the mechanism of

released EVs is related to the activation of the DR5 signaling

pathway and the activation of macrophages by TRAIL of the

released EVs to promote a metabolic response (41). Ferrante et al.

(93) analyzed EVs shed by adipocytes from obese people and

confirmed that adipocyte-derived EVs participate in transforming

growth factor (TGF)-b and Wnt/b-catenin signaling pathways

through miRNAs, which promote inflammation and fibrosis. In
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summary, the lipotoxicity in hepatocytes promotes the release of

EVs, and increased EVs mediate the inflammatory response by

enabling intercellular interaction.
3.5 Intestinal microecology

Intestinal microorganisms produce a variety of proteins and bile

acids, participate in bidirectional communication along the

enterohepatic axis, and regulate intestinal microecology. Damage

to gut microflora balance, such as changes in intestinal microflora

composition and intestinal bacterial metabolites, plays an important

role in regulating the development of NAFLD (58). Many bacteria-

derived molecules , including nucleic acids , proteins ,

polysaccharides, and glycolipids, exist in microbe-derived EVs

(21). These EVs not only support the survival of bacteria by

delivering virulence factors and nutrients but also participate in

the regulation of multiple signaling pathways in host cells (94).

They influence NAFLD by regulating glucose and fat metabolism,

immune responses, and redox balance (95).

Bacterial EVs can trigger multiple metabolic cascades and

immune responses (95). Bacteria-derived EVs contain and

transfer lipopolysaccharide (LPS), enter hepatocytes via the biliary

tract, portal vein, and enterohepatic axis, and aggravate NAFLD.

These EVs can induce liver inflammation by activating the TLR4-

TRIF-GBPs signaling pathway (96) or delivering LPS into the

cytosol of host cells to activate caspase-11, which regulates the

immune response (97). Compared to patients with NAFLD,

patients with NASH show a significant increase in LPS and free

fatty acid (FFA), as well as an increase in TLR4 mRNA and

interferon regulatory factor 3 (IRF-3) in the myeloid

differentiation factor 88-independent signaling pathway. In

addition, when using small interfering RNA-mediated TLR4

inhibitors, the inductive effect of LPS on NF-kB was weakened,

suggesting that LPS can affect the TLR4-mediated NF-kB signaling

pathway (46). TLR4 activates downstream signaling pathways that

stimulate the release of cytokines and chemokines, leading to liver

damage (47).

LPS-binding protein (LBP) and CD14 also participate in

recognizing LPS, which is increased in NASH and NAFLD

patients. LBP knockout in mice and subsequent prevention of

LPS and TLR4 binding improved lipid metabolism in mice,

protecting them from developing NAFLD under HFD conditions

(48), suggesting that LBP is a crucial factor in NAFLD development.

LBP and LPS levels have been shown to be associated with the

development of NASH and fibrosis (98). Short RNA (sRNA) from

bacteria-derived EVs can participate in regulating the innate

immune response in host animals (99). Thus, damage to

intestinal microecology can promote NAFLD by regulating

intestinal bacteria-derived EVs containing sRNA or LPS.

As discussed above, gut microbiota-derived EVs may affect

NAFLD through different mechanisms. Therefore, augmentation

of beneficial gut microbes is a potential therapeutic approach.

Previous studies have found that probiotics, prebiotics and other

products can improve the condition of NAFLD patients (100). For
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example, ingestion of Lactobacillus acidophilus La5 and

Bifidobacterium lactis Bb12 improved liver enzyme, serum total

cholesterol, and LDL cholesterol levels in patients with NAFLD

(101). Prebiotics significantly reduced TNF-a, CRP, liver enzymes,

and steatosis in patients (102). Considering the potential benefits of

probiotic transplantation and prebiotics in the treatment of

NAFLD, combined with the role of EVs in NAFLD, we believe

that this will be a direction of great research potential in the future,

but further in-depth research is still needed.
3.6 Liver fibrosis

In addition to promoting inflammation, EV levels can influence

liver fibrosis. Studies have shown that EVs can induce the activation

of HSCs (52, 56, 103) and transmit information between liver cells

and HSCs (104). Many studies have confirmed that HSC activation

and proliferation are closely related to liver fibrosis (105). A study

showed that miR-128-3p in EVs plays a crucial role in HSC

activation, indicating that hepatocyte-derived EVs can mediate

HSC activation through endocytosis (52). Additionally, HSCs can

deliver connective tissue growth factor (CCN2) via the secretion of

EVs. Besides CCN2, Twist1 and miR-214, which comprise the

Twist1-miR-214-CCN2 axis in HSCs, also mediate fibrosis

through delivery by EVs (50). Moreover, the migration of HSCs is

affected by EC-derived EVs containing sphingosine kinase 1 (SK1),

which mediates HSC chemotaxis through the SK1-S1P pathway

(49). Besides, Studies have reported that PTEN has been proved to

play an important role in the fibrosis in kidney (106) and liver (107)

and highly related to exosome. For example, lipotoxic hepatocytes

exosome transplantation aggravated the degree of PTEN-induced

expression of putative protein kinase 1 (PINK1) mediated

mitophagy suppression, steatohepatitis, lipidosis, and fibrosis in

the livers of NAFLD mice with cirrhosis (108). Research have found

that transfer of circDIDO1 mediated by MSC-isolated exosomes

can suppress HSC activation through the miR-141-3p/PTEN/AKT

pathway to suppress the proliferation, reduce pro-fibrotic markers,

and induce apoptosis as well as cell cycle arrest in HSCs (109). The

lipotoxic hepatocyte-derived exosomal miR-1297 could promote

the activation and proliferation of HSCs through the PTEN/PI3K/

AKT signaling pathway, accelerating the progression of NAFLD

(110). In conclusion, as mediators of communication between cells,

EVs play a significant role in the development of liver fibrosis by

interacting with HSCs in different ways, such as by regulating

specific signaling pathways.
4 Applications of EVs in NAFLD

We summarized the ways in which EVs play an important role

in glucose and lipid metabolism, insulin residence, immune

response, inflammation, intestinal microecology, and fibrosis in

NAFLD. Several studies investigating the biological mechanisms of

EVs have addressed their utility in the diagnosis and treatment of

complex pathologies. Owing to the complex cargo and delivery
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functions of EVs, they can be used as part of a multicomponent

diagnostic strategy for disease detection and as a targeting vehicle

for disease therapy (111). Herein, we discuss the potential

diagnostic and therapeutic applications of EVs.
4.1 Diagnostic utility of EVs in NAFLD

There is currently no reliable method to diagnose or stage

NAFLD except via invasive liver biopsy. Some studies have shown

that the components in circulating EVs, such as RNAs and proteins,

provide new evidence for the diagnosis of NAFLD and NASH (112),

suggesting the potential of liquid biopsy as a noninvasive and

accurate approach to diagnose and monitor NAFLD (113, 114).

Therefore, EVs as biomarkers can be measured in body fluids and

may be a promising noninvasive method for diagnosing NAFLD,

overcoming some limitations of surgical biopsy (25, 112). For

example, miR-135a-3p-enriched EVs have been proven to be an

accurate and sensitive biomarker in NAFLD. It has been shown that

the amount of circulating EVs was significantly increased after 8

weeks L-amino acid defined diet, and miRNA-122 and miR-192 are

enriched in circulating EVs in NAFLD (115, 116). Therefore, the EV

levels change at the early stage of NAFLD, and can be traced to

identify the latent development of potential fatty liver disease at an

early stage; this may be valuable for the early diagnosis of NAFLD.

The contents in EVs also change dynamically at different stages

during the progression of NAFLD (25) and can be exploited for

identifying biomarkers for sensitively monitoring the progression of

NAFLD (117). Newman et al. (118) found a stable predictive

performance for total cell-free RNA and EV derived miR-128-3p

in health people, NAFL and NASH patients. Therefore, EV-derived

miRNA biomarkers can robustly distinguish patients with NAFL

and NASH and show the severity of NAFLD.

In addition to NAFLD, EVs have been used as biomarkers in

liquid biopsies for cancer diagnosis, monitoring, and prognosis

(119, 120). The development of engineered EVs as individualized

imaging diagnostic reagents and for facilitating targeted therapy has

been proposed (121). Many exosome sensing technologies

including exosome chips, EV array, and proteomic platforms, are

designed to detect EVs in cancers, and CD26, CD81, and CD10

have been proposed as markers for the detection of hepatic damage

associated with liver cancer (120, 122–124).

In recent years, researchers have also found that the

composition of circulating exosome content in peripheral blood

may be significantly changed in obese patients after bariatric

surgery, and the content of circulating exosomes may be used as

a serological marker to evaluate the prognosis of bariatric surgery

(125–127). For example, it is reported that the microRNA content

of circulating adipocyte-derived exosomes isolated from the

peripheral blood are significantly modified following gastric

bypass bariatric surgery and these changes are correlated to

improvements in IR post-surgery (128).Another study found that

total circulating EVs and hepatocyte-derived EVs are elevated in

NAFLD and decrease following NAFLD resolution due to weight
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loss surgery, which may be new biomarkers for NAFLD resolution

and response to weight loss surgery (129). In conclusion, the

changes in the types and quantities of peripheral exosome

contents may be used as a new indicator to evaluate the efficacy

of preoperative and postoperative bariatric surgery.
4.2 Therapeutic utility of EVs in NAFLD

EVs have potential benefits as key mediators of cell therapy

because of their advantageous features of product stability, immune

tolerability, effectiveness in systemic delivery, and efficacy

enhancement (130).

Currently, many studies have explored the therapeutic

application of EVs (131). These include the use of mesenchymal

stem cell (MSC)-derived EVs in the treatment of SARS-CoV-2-

associated pneumonia (132) and the use of ticagrelor to decrease the

release of procoagulant EVs from activated platelets to treat patients

with myocardial infarction (133). EV-based antitumor and

antibacterial vaccines have shown good safety and tolerance in

patients with advanced melanoma and non-small cell lung cancer

(134). Some EV cargos alleviate NAFLD.

After treatment with MSC exosomes, the levels of blood glucose

and insulin, volume of visceral fat, number of lipid droplets,

ballooning degeneration in liver tissue, and NAFLD activity score

decreased in NASH mice. MSC exosomes can alleviate fatty liver in

NASH mice and promote M2 polarization of macrophages (our

unpublished data). A melanocorticosterone type 4 receptor

knockout NASH mouse model challenged with LPS showed that

treatment with MSC-derived EVs had anti-inflammatory and anti-

fibrotic effects (135). Many studies indicate that the development of

drugs to inhibit the expression of certain genes or signaling

pathways with EVs participation may prevent lipid deposition

and fibrosis (70, 136, 137). For example, the ROCK1 inhibitor

fasudil can effectively block lipotoxicity-induced EV release in

mouse models and prevent NASH progression in vivo (41).

As natural carriers of functional small RNA and proteins, EVs

also have high application potential as drug delivery systems with low

immunogenicity and high biocompatibility for chemotherapy (138,

139). In addition, EVs can be engineered to enhance bioactivity and

targeting ability, avoid undesired and unnecessary cell toxicity, and

enhance therapeutic effects (140). Zhang et al. found that compared

with chemotherapy alone, umbilical cord-derived macrophage

exosomes loaded with cisplatin significantly increased cytotoxicity

in drug-resistant ovarian cancer cells (A2780/DDP and A2780 cells)

(141), and TNF-a-loaded EV-based vehicles enhanced cancer-

targeting under a magnetic field and suppressed tumor growth in

murine melanoma subcutaneous models (142). Studies have also

shown that exosomes loaded with doxorubicin have the same efficacy

as doxorubicin and prevent cardiotoxicity (143). Therefore, EVs are

capable of safe and efficient drug delivery and provide a viable

alternative to conventional drug delivery in NAFLD.

Synthetic exosome mimics have been fabricated as therapeutic

tools for drug delivery and have been reported to have therapeutic
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effects (144). However, most of these studies are in the laboratory

research stage; therefore, it is also necessary to establish reliable

assays to assess the therapeutic potential of EVs and further develop

them into formal potency tests for promoting the clinical

applicability of EVs (145).
5 Limitation

The limitations of this study include three aspects below. Firstly,

most of our research results are from the laboratory, clinical

research data is insufficient. Secondly, current standards of EV

detection methods are not consolidated, so it is necessary to further

test and standardize the detection technology. Thirdly, current

studies are limited to published articles, while ongoing studies are

not included. So, it is supposed to track the updated research results.
6 Conclusion

EVs contain various biological molecules, including proteins,

nucleic acids, and lipids; they play an important role in intercellular

communication in various biological processes, including the

development and progression of diseases such as NAFLD. EVs

participate in different signaling pathways to regulate the initiation

and progression of NAFLD. As natural carriers of biological

molecules, EVs have potential advantages in the treatment of

NAFLD. Circulating EVs have been considered potential

diagnostic and prognostic biomarkers fin NAFLD. Exploring the

precise mechanism of EVs in NAFLD will help us identify new

biomarkers. Research on the mechanisms and clinical applications

of EVs in NAFLD is in its initial phase and the applicability of EVs

in NAFLD diagnosis and treatment is expected to grow with

technological progress.
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