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Introduction: MicroRNAs (miRNAs) are small, non-coding RNAs that play a

critical role in diabetes development. While individual studies investigating the

mechanisms of miRNA in diabetes provide valuable insights, their narrow focus

limits their ability to provide a comprehensive understanding of miRNAs’ role in

diabetes pathogenesis and complications.

Methods: To reduce potential bias from individual studies, we employed a text

mining-based approach to identify the role of miRNAs in diabetes and their

potential as biomarker candidates. Abstracts of publications were tokenized, and

biomedical terms were extracted for topic modeling. Four machine learning

algorithms, including Naïve Bayes, Decision Tree, Random Forest, and Support

Vector Machines (SVM), were employed for diabetes classification. Feature

importance was assessed to construct miRNA-diabetes networks.

Results: Our analysis identified 13 distinct topics of miRNA studies in the context

of diabetes, and miRNAs exhibited a topic-specific pattern. SVM achieved a

promising prediction for diabetes with an accuracy score greater than 60%.

Notably, miR-146 emerged as one of the critical biomarkers for diabetes

prediction, targeting multiple genes and signal pathways implicated in diabetic

inflammation and neuropathy.

Conclusion: This comprehensive approach yields generalizable insights into the

network miRNAs-diabetes network and supports miRNAs’ potential as a

biomarker for diabetes.
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Introduction

Diabetes is a prevalent endocrine disease characterized by

elevated blood glucose levels, which has rapidly grown in incidence

and has become a global health concern (1). The long-term

consequences of diabetes include both microvascular and

macrovascular complications, which pose a severe threat to the

health and well-being of individuals. Among diabetic patients,

microvascular complications such as diabetic kidney disease,

diabetic retinopathy, diabetic neuropathy, and diabetic foot are

prevalent, while macrovascular complications such as

cardiovascular disease can lead to fatal outcomes (2–4). The

substantial impact of diabetes on morbidity, mortality, and quality

of life places a significant burden on healthcare systems worldwide.

microRNAs (miRNAs) are a class of small, non-coding RNAs

that mediate post transcriptional gene silencing (5). These regulatory

molecules have emerged as crucial players in orchestrating cellular

responses to physiological perturbations and disease conditions (6, 7).

Recent research has highlighted the pivotal role of miRNAs in the

pathogenesis of diabetes and its associated complications (8). For

instance, miRNAs have demonstrated indispensable roles in

pancreatic beta cells, regulating their response to metabolic, genetic,

and inflammatory stressors (9–12). This underscores the importance

of miRNAs in diabetes management and emphasizes their potential

as therapeutic targets for the treatment of diabetes.

PubMed is a widely accessible research interface housing an

impressive repository of approximately 35 million medical

publications as of 2021, including a substantial number of studies

investigating various aspects of diabetes. While individual studies

investigating the mechanisms of miRNA in diabetes provide

valuable insights, their narrow focus limits their ability to provide

a comprehensive understanding of miRNAs’ role in diabetes

pathogenesis and complications. To achieve a more complete

understanding of the complex interactions between miRNAs and

diabetes, it is essential to adopt a comprehensive approach that

considers the diverse range of factors involved. By utilizing text

mining techniques to identify miRNA and diabetes-related

literature, we can collect information from multiple studies and

establish a more holistic perspective. This approach enables
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researchers to identify patterns and gaps in the literature and

generate new hypotheses to guide future investigations.

Ultimately, applying this comprehensive approach contributes to

a more profound and thorough understanding of the role of

miRNAs in diabetes and its associated complications.

Method

The strategy was shown in Figure 1.
PubMed corpus

PubMed was utilized to retrieve literature information for

studies investigating miRNAs in the context of diabetes, spanning

the period from January 1, 1993, to March 5, 2023. To assess the

specificity and robustness of our machine learning model in

distinguishing between diabetes-related and non-diabetes-related

studies, miRNA study in diabetes dataset and miRNA study in non-

diabetes dataset (referred to as the negative control) were prepared.

The search criterion employed for the diabetes dataset was

“miRNA” [Title/Abstract] AND “Diabetes” [Title/Abstract], while

for the negative control dataset, it was “miRNA” [Title/Abstract]

NOT “Diabetes” [Title/Abstract]. The following data were collected

for this study: PMID, Publication Date, Publication Type, First

Author, Journal Name, Literature Title, and Literature Abstract.

Specifically, the study focused on specific publication types

including “Case Reports”, “Clinical Study”, “Clinical Trail”,

“Comparative Study”, “English Abstract”, “Evaluation Study”,

“Journal Article”, “Letter”, and “Preprint”, while excluded

“Retraction of Publication”, “Published Erratum”, “Editorial”,

“News”, “Dataset”, “Clinical trial protocol”, “Review”, and

“Systematic review”.
Topic modeling

Topic modeling is a statistical technique used in natural

language processing to uncover hidden patterns and structures
FIGURE 1

Study Design and workflow.
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within a large corpus. The algorithm employed in the current study

for topic modeling is Latent Dirichlet Allocation (LDA), which

assumes that each document in the corpus is a mixture of multiple

topics, and each topic is characterized by a distribution of words

from the abstracts.
Biomedical term tagging

In this text mining study, the focus was placed on literature

titles and abstracts due to the crucial information they contain and

their widespread availability. To tag biomedical terms (including

miRNAs) within the literature, two methods were employed:

PubTator and Regex.

PubTator: PubTator is a web-based biomedical named entity

recognition (NER) system (13) specifically designed for PubMed.

This powerful tool is capable of tagging various entities within

PubMed titles and abstracts, including genes (which include

miRNAs), diseases, species, chemicals, cell lines, and mutations.

The results generated by PubTator are saved in PubTator format,

which can be accessed and read using Python for further analysis

and exploration.

Tagging miRNA: The miRNA tagging process involved

tokenizing the titles and abstracts while preserving hyphenated

words and then vectorized them. Regex was utilized to detect

miRNA from the tokens, taking advantage of the well-defined

and closely followed nomenclature of miRNA. This nomenclature

typically consists of a prefix, such as “miR” (or “miRNA”, “micro-

RNA”, “microRNA”) followed by a unique identifying number,

which is assigned based on sequence order (e.g., “miR-1”), with

exceptions let-7 and lin-4 retaining their names for historical

reasons. Additionally, the name might include one suffix such as

“-a”, “-1”, “-3p”, or “-5p”. It may also include a prefix that denotes

the species, following regular expression was employed to identify

miRNAs from retrieved publication titles and abstracts tokens in

different formats, and both lower and upper case were considered:

[Mm][Ii][Cc]?[Rr][Oo]?[Rr]?[Nn]?[Aa]?-?\d+[a-zA-Z]?-?

[12345]?-?[35]?[Pp]?|[Ll][Ee][Tt]-?\d+[a-zA-Z]?-?[35]?[Pp]?,

which was supported by a pervious study (14), and were further

validated by PubTator gene term labeling. Extracted miRNA from

different literature may represent the same miRNA, due to

differences in naming conventions, e.g., miR-155, microRNA-155,

miR155, miR-155-5p, and others. To ensure accuracy in

downstream analysis, miRNAs in different formats were

converted into a standardized format, disregarding any extensions

such as species prefix, -3p/-5p or genomic suffixes. This approach

allows the focus to be on the core miRNA name. Furthermore, to

avoid introducing bias, each miRNA was only counted once within

an any given literature title/abstract.
Train-test data set splitting and machine
learning analysis

To address the issue of imbalanced data, an equal number of the

diabetes studies were paired with the non-diabetes studies for model
Frontiers in Endocrinology 03
prediction. Four machine learning models were employed, namely

Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), and

Support Vector Machines (SVM). The performance of these models

was evaluated using a receiver operating characteristic (ROC) curve

and the area under the ROC curve (AUC). To evaluate the models

against ground scientific truth, holdout validation was used for

model validation.
Pathway signaling

To explore a comprehensive set of functional annotations of the

hub genes, Kyoto Encyclopedia of Genes and Genomes (KEGG)

signaling pathway analysis was performed with the gene list using

NetworkAnalyst 3.0 (https://www.networkanalyst.ca/). A P-value

of < 0.05 was considered significant.
Results

MiRNAs discovery history in diabetes

A total of 1,818 miRNA studies in the context of diabetes were

retrieved from PubMed, spanning the period from January 1, 1993,

to March 5, 2023 (method). The investigation of miRNA in diabetes

began in 2006, with the initial focus being on two specific miRNAs,

miR-342, miR-191, and miR-510 in 2009 (15). As shown in

Figure 2A, research into miRNAs in diabetes has significantly

increased since 2018 and continues to grow each year.
Topic modeling in miRNA studies
of diabetes

To investigate the frequently discussed themes in miRNA

studies in diabetes research, we performed topic modeling

analysis. After applying the inclusion criteria (method), 1,798

studies were selected for topic modeling. A total of 13 distinct

topics were identified from the miRNA studies in diabetes research

(Figure 2B). Topic 11 emerged as the most significant topic among

13 identified topics, followed by Topic 10, while Topic 7 has the

least publications (Figure 2C). Furthermore, the heatmap indicates

that all the topics showed a great increase post 2018 (Figure 2D).

The top 5 keywords with the highest weights in each of the 13

topics were shown in Figure 2E. Topic 1 was associated with

inflammation and stroke, Topic 2 with metabolism, Topic 3 with

pancreatic islet beta cells, Topic 4 with gene mutation (such as

SNP), Topic 5 with detecting miRNA in serum, Topic 6 with

diabetic kidney disease, Topic 7 with wound healing, Topic 8

with exosomes, Topic 9 with identifying miRNA as a biomarker,

Topic 10 with relationship with other noncoding RNAs (such as

circRNAs), Topic 11 with development, Topic 12 with insulin

resistance, and Topic 13 with diabetic heart disease. Furthermore,

miRNAs were identified for each of topic (Figure 2F), and it was

observed that miRNAs trended to cluster together based on the each

of the topic, such as miR-146 was studied frequently in Topic 1 and

Topic 4, while miR-126 was frequently associated with Topic 5.
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Frequency-distribution of miRNAs
in diabetes

A subset of 552 articles with titles containing individual

miRNAs was used for machine learning classification. In addition,

an equal number of miRNA studies from non-diabetes research

were paired as negative controls for the analysis. Analysis of 552

publications of diabetes studies revealed that the top 20 frequently

referenced miRNAs are miR-146, miR-21, miR-126, miR-29, miR-

375, miR-200, miR-223, miR-34, miR-20, miR-30, miR-122, miR-

15, miR-143, miR-155, miR-1, miR-125, miR-133, miR-17, miR-23,

and miR-27 (Supplementary Figure 1A). Similarly, the top 20

miRNAs from negative control literatures were identified and

presented in Supplementary Figure 1B.

To gain insight into the overall topic discussed in miRNA

studies in both diabetes and non-diabetes research, word clouds
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were generated using the tokens from 1,798 abstracts. As expected,

the most frequently occurring words included “miRNA”,

“expression”, “diabetes”, “patient”, and “type”. In contrast, in the

non-diabetes literatures, the most frequently used words were

“miRNA”, “expression”, and “patient”, which represent general

concept related to miRNAs but not associated with any specific

diseases (Supplementary Figures 1C, D).
Comparison of different machine learning
models predicting diabetes with miRNAs

To evaluate the predictive potential of miRNAs for diabetes, we

utilized four machine learning models (NB, DT, RF, and SVM) as

our methodology. These models were employed to predict diabetes

based on the complete set of identified miRNAs. The dataset was
B

C

D

E FA

FIGURE 2

Topic modeling of miRNAs studies in diabetes. (A) Bar graph showing the miRNA studies in diabetes conducted each year. (B) tSNE plot showing the
distribution of 13 topics of miRNAs studies in diabetes. Each dot represents an individual study, and each color corresponds to the indicated topic.
(C) The bar graph showing the number of publications for each topic. (D) Heatmap showing the distributions for each topic over the years.
(E) Heatmap showing the key topic words for each topic. (F) Heatmap showing the miRNAs studies associated with each topic.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1195145
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1195145
split into training and testing datasets using holdout splitting

methodology. The performance of each model was evaluated, and

the results are presented in Table 1 and Figure 3A. Notably, the

SVM model, specifically with hyperparameters C = 10, gamma =

“scale”, kernel = “sigmoid”, outperformed other models, achieving

an accuracy score of 0.606 and an AUC of 0.64.

Furthermore, we conducted feature importance analysis using the

SVM model to identify the most important miRNAs in predicting

diabetes. Figure 3B shows the key miRNAs that exert the greatest

impact on the accuracy of diabetes prediction. Notably, miR-146,

along with miR-29, miR-223, miR-375, miR-126, miR-320, miR-133,

miR-17, miR-20, and miR-24, play a crucial role in accurately

predicting diabetes. Among these miRNAs, miR-146 stands out as

the most prominent, as indicated by its importance score of 0.0181,

followed by miR-29 with an importance score of 0.01471 (Figure 3B).

This observation indicates that miR-146 influences the overall

performance and accuracy of the SVM model in predicting

diabetes and highlights the potential significance of delving deeper

into the detailed exploration of miR-146.
Investigating the Role of miR-146
in diabetes

The high importance score of miR-146 suggests that it plays a

pivotal role in distinguishing between individuals with diabetes and

those without the condition. A total of 34 diabetes studies focusing

on miR-146 were identified and analyzed. A word cloud generated

from these studies revealed that miR-146 is potentially involved in

various diabetic complications, particularly inflammation and

neuropathy (Figure 3C), which was consistent with the result that

observed in topic modeling (Figures 2E, F).

The analysis of individual studies on miR-146 in the context of

diabetes yielded a heatmap that showcased the prevalence of several

genes, namely IRAK1, TRAF6, IL-6, TNF-a, NUMB, EGFR, and

TGFb-1, among others. To further investigate to direct target genes

of miR-146, an integrating analysis with TargetScanHuman data set

(16) was performed. The results revealed that IRAK1, TRAF6,

NUMB, and STX3 are direct targets of miR-146 in the context of

diabetes (Figures 3D, E). In addition, KEGG signal pathways were

constructed using the identified gene list obtained from relevant

diabetes literature. The resulting analysis highlighted several

significant pathways, including the ErbB signaling pathway, Toll-

like receptor signaling pathway, NF-kB signaling pathway, Insulin

signaling pathway, and TNF signaling pathway (Figure 3F). These

findings provide valuable insights into the potential mechanisms
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underlying the involvement of miR-146 in diabetes. The prevalence

of specific genes and their direct targeting by miR-146, as well as the

identification of relevant signaling pathways, contribute to a more

comprehensive understanding of the role of miR-146 in the

pathogenesis and progression of diabetes.
Discussion

In recent years, miRNAs have gained attention as potential

biomarkers and therapeutic targets for various diseases, including

diabetes (17–19). miRNAs play a crucial role in the regulation of

multiple pathways implicated in diabetes pathogenesis, such as

insulin secretion, insulin signaling, beta cell function, and glucose

homeostasis. Dysregulation of miRNAs has been associated with

the development of both type 1 and type 2 diabetes. The current

study aimed to summarize our current understanding of miRNAs

and their involvement in the development and progression of

diabetes and its complications.

We identified 13 crucial areas that highlight the extensive

implementation of miRNAs in various domains of diabetes

investigation. Notably, miRNA studies encompassed important

aspects such as diabetes biomarker research and the exploration

of diabetes-related complications, including diabetic inflammation,

diabetic cardiovascular diseases, and diabetes kidney disease. One

intriguing finding was the identification of miRNA-specific patterns

within different domains of diabetes research. For instance, we

observed that miR-34 garnered substantial attention in Topic 3,

specifically relating to its impact on pancreatic islets/beta cells. This

observation aligns with recent review studies, such as the one by

Pasquale Mone et al. (20), which emphasized the significant role of

miR-34 in regulating pancreatic islets/beta cell function in the

context of diabetes. These findings shed light on the multifaceted

involvement of miRNAs in diabetes research and emphasize their

potential as valuable tools for understanding the pathogenesis and

complications of diabetes. By uncovering miRNA-specific patterns

in different domains, we provide researchers with valuable insights

for further investigations and potential therapeutic interventions.

To unravel potential biomarkers, state-of-art machine learning

classifiers were employed. Among the classifiers utilized, the SVM

model exhibited exceptional performance, achieving an impressive

accuracy score of 0.60. Notably, miR-146 emerged as the most

important feature contributing significantly to the accuracy and

effectiveness of the prediction model. These findings underscore the

potential significance of miR-146 as a key biomarker in the intricate

landscape of diabetes.
TABLE 1 Performance comparison of different machine learning models for classifying diabetes with miRNAs.

Model Predictor Accuracy Recall Precision MCC F-score

NB miRNAs 0.552 0.7368 0.1296 0.1523 0.2205

DT miRNAs 0.5385 0.5152 0.9444 0.1553 0.6667

RF miRNAs 0.5656 0.5638 0.4907 0.1293 0.5248

SVM miRNAs 0.6063 0.5789 0.7130 0.2220 0.6390
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MiR-146 has been well-documented in human disease (21).

And notably, it has emerged as a critical miRNA whose

deregulation has been implicated in pathogenesis of diabetes.

Most recent review study summarized the implication of miR-146

in type 1 diabetes and type 2 diabetes (22–24). Its significance is

underscored by numerous studies that have examined the express

levels of miR-146 across various sample types, including whole

blood, serum, PBMC, plasma (25–31). These studies collectively

demonstrate the involvement of miR-146 in diabetes and highlight
Frontiers in Endocrinology 06
its potential as a biomarker for disease detection and monitoring. In

our finding, we observed that miR-146 is involved in ErbB signaling,

EGFR tyrosine kinase inhibitor resistance, MAPK signaling

pathway, Endocrine resistance, Toll like receptor signaling, TNF

signaling, NF-kB signaling pathway, etc., consistent with the

published studies (22, 32–35).

In addition to miR-146, our study identified the involvement of

several other miRNAs that exhibited varying degrees of

contribution to the SVM-based diabetes prediction, including
B
C

D

E

F

A

FIGURE 3

Identifying the function of miR-146 in diabetes. (A) Receive operating characteristic (ROC) curves were generated to assess the performance of
different machine learning models in predicting diabetes based on all the identified miRNAs. (B) Bar graph showing the feature importance scores of
key miRNAs measured by the SVM in predicting diabetes. (C) WordCloud displaying the key diabetic complications associated with miR-146
function. (D) Motif Analysis of identified genes, and total 4 hits are the targets of miR-146 in the context of diabetes studies. (E) Heatmap illustrating
the presence or absence of key genes in individual studies investigating the role of miR-146 in diabetes. Each column represents an individual study,
while each row corresponds to a specific gene mentioned in the study abstracts. The presence of a gene is depicted by red, while the absence is
represented by white. Asterisks (*) indicate the genes that are direct targets of miR-146 in the context of diabetes. (F) Bar plot showing the KEGG
signal pathways influenced by miR-146 in the context of diabetes studies, determined through text mining. The X-axis represents the -log10 (P-
value), indicating the significance of pathway enrichment.
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miR-29, miR-223, miR-375, miR-126, miR-320, and miR-133,

among others. This indicates that these miRNAs play a critical

role in diabetes as well. For example, it has been shown that miR-29

is associated with topics 2, 5, 8, and 9, miR-223 is studied in relation

to topic 9, and miR-375 demonstrates relevance to topics 3 and 5

(Figure 2). These findings are consistent with and supported by

previous review studies in the field (36–42).

The utilization of miRNAs as biomarkers and therapeutic

targets has the potential to improve the management of diabetes

and its associated complications. However, it is worth noting that

while the SVM model demonstrated a notable accuracy score of

0.60, there is room for improvement by incorporating additional

features such as genes and SNPs. These additional factors can

provide a more comprehensive and nuanced understanding of the

intricate mechanisms underlying miRNA’s role in diabetes.

Considering the multifaceted nature of diabetes, a comprehensive

understanding of miRNA’s role, coupled with the integration of

additional features, can pave the way for personalized interventions

and targeted therapies.

In conclusion, our study revealed a comprehensive

understanding of the diverse areas of focus within miRNA

research in the context of diabetes. Utilizing SVM with only

miRNAs as inputs, we achieved promising results in diabetes

prediction, particularly in identifying key miRNAs such as miR-

146 as significant players in the context of diabetes. However, it is

important to note that further confirmation through additional

clinical investigations is necessary to validate and reinforce the

findings of this study.
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