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Dietary protein levels modulate
the gut microbiome composition
through fecal samples derived
from lactating ewes
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Hongyuan Yang1, Xiaoqi Zhao1, Xiaojun Ni1, Chunyan Li1,
Baiji Danzeng1, Yajing Wang3 and Guobo Quan1*

1The Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming,
Yunnan, China, 2Zhejiang Vegamax Biotechnology Co., Ltd, Hangzhou, Zhejiang, China, 3State Key
Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality
and Safety Control, College of Animal Science and Technology, China Agricultural University,
Beijing, China
In ruminants, the digestion and utilization of dietary proteins are closely linked to the

bacterial populations that are present in the gastrointestinal tract. In the present

study, 16S rDNA sequencing, together with a metagenomic strategy was used to

characterize the fecal bacteria of ewes in the early lactation stage after feeding with

three levels of dietary proteins 8.58%, 10.34%, and 13.93%, in three different groups

(H_1), (H_m) and (H_h), respectively. A total of 376,278,516 clean data-points were

obtained by metagenomic sequencing. Firmicutes and Bacteroidetes were the

dominant phyla, regardless of the dietary protein levels. In the H_h group, the

phyla Proteobacteria, Caldiserica, and Candidatus_Cryosericota were less abundant

than those in the H_I group. In contrast, Lentisphaerae, Chlamydiae, and

Planctomycetes were significantly more abundant in the H_h group. Some

genera, such as Prevotella, Roseburia, and Firmicutes_unclassified, were less

abundant in the H_h group than those in the H_I group. In contrast,

Ruminococcus, Ruminococcaceae_noname, Anaerotruncus, Thermotalae,

Lentisphaerae_noname, and Paraprevotella were enriched in the H_h group. The

acquiredmicrobial genesweremainly clustered into biological processes;molecular

functions; cytosol; cellular components; cytoplasm; structural constituents of

ribosomes; plasma membranes; translation; and catalytic activities. 205987 genes

were significantly enriched in the H_h group. In contrast, 108129 genes were more

abundant in the H_I group. Our findings reveal that dynamic changes in fecal

bacteria and their genes are strongly influenced by the levels of dietary proteins. We

discovered that differentially expressed genes mainly regulate metabolic activity and

KEGG demonstrated the primary involvement of these genes in the metabolism of

carbohydrates, amino acids, nucleotides, and vitamins. Additionally, genes

responsible for metabolism were more abundant in the H_h group. Investigating

fecal bacterial characteristics may help researchers develop a dietary formula for

lactating ewes to optimize the growth and health of ewes and lambs.
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1 Introduction

Breeders and researchers are exploring better ways to improve

the productive traits (milk, meat and wool production) of sheep

breeds through different strategies, but the sheep breed is a critical

factor influencing productive traits (1). However, daily diets,

including their sources and components, also affect sheep growth

and health (1, 2). Generally, sheep graze on pastures growing

different types of plants such as grasses, clovers, and weeds.

During certain harsh periods of the year, sheep moved to

temporary indoor rearing and were mostly fed with small amounts

of concentrates and hay (1, 3). Currently, the feeding system of sheep

is changing significantly and gradually moving to an indoor-rearing

mode (2). Therefore, determining the effects of nutrition on sheep-

production during indoor rearing has become critical (2, 3).

Proteins are important nutrients for ruminants and play

important roles in metabolic activities (4). Many tissues and organs

are involved in the digestion of dietary proteins (5). Generally, a large

proportion of dietary proteins is degraded by ruminal bacteria to

small peptides and NH3, which are further utilized by bacteria to

synthesize bacterially derived proteins (5). These proteins are further

digested into amino acids and small peptides and are absorbed by the

small intestine (5, 6). These digested products enter the mesenteric

and portal veins. After they enter the liver, through synthesizing and

degrading activities, these components are utilized through the

surrounding tissues and organs (4, 6). The use of dietary proteins is

closely associated with gastrointestinal bacterial communities. The

composition and diversity of gastrointestinal bacteria greatly

influence the health status (7) and productivity of host animals (8, 9).

Ruminants depend on a diverse and complex population of

microbial organisms in their gastrointestinal tracts to convert their

food into usable forms of nutrients (4). In ruminants, the gut,

particularly the rumen, acts as the primary fermentation chamber

for the microbial community (7, 8). Symbiotic bacterial

communities are crucial for host production and health in many

ways, such as balancing immune responses, utilizing nutrients, and

regulating physiological activities (7). In sheep, a previous study

analyzed the composition and diversity of bacteria in the

gastrointestinal tract, including the rumen, reticulum, omasum,

abomasum, duodenum, jejunum, ileum, cecum, colon, and rectum

(10). However, problems related to animal use in research exist,

particularly when collecting rumen fluid from ruminants (11, 12).

In addition, studies have shown a potential relationship between

fecal bacterial communities and rumen bacteria.

Fecal samples are usually collected and used to assess the ruminant

gastrointestinal microbiota (13). According to a report by Shanks et al.,

fecal bacteria play crucial roles in animal health and productivity, as

well as in food safety, pathogenicity, and also in methods of fecal-

pollution-detection (14). Several studies on fecal bacteria have been

conducted in sheep (10, 13) and cattle (14, 15). Although previous

investigations have confirmed the functional roles of dietary proteins in

the growth and development of sheep (2, 3, 5), there are no reports on

the impact of dietary proteins on fecal bacteria in the first 90 days of

lactating after the parturition. In this study, we aimed to characterize

the fecal bacterial community of Yunnan semi-fine wool sheep at the

lactating stage, using 16S rDNA sequencing together withmetagenomic
Frontiers in Endocrinology 02
approaches, based on growth data obtained after feeding with various

levels of dietary proteins. Investigating fecal bacterial diversity in

lactating ewes may be useful for developing a dietary formulation for

optimizing the growth and health of ewes and lambs.
2 Materials and methods

2.1 Ethics statement

In the present study, all experiments trials were approved by the

ethical committee of the Yunnan Animal Science and Veterinary

Institute (201911004). Moreover, all authors strictly followed the

approved protocols and guidelines by the State Science and

Technology Commission of the People’s Republic of China, 1988

and the Standing Committee of Yunnan Provincial People’s

Congress 2007.10).
2.2 Collection of fecal samples

The feeding experiment was conducted at the Yunnan Animal

Science and Veterinary Institute farm, Kunming City, People’s

Republic of China (26°22′N; 103°40′E). Eighteen ewes with similar

body weight (approximately 50 kg) and age (2 years) were used in this

study. The details of the feed with different dietary protein levels and

formulations are presented in Table 1, which were slightly modified

based on a previous study (16). According to the levels of proteins

used (8.58%, 10.34%, and 13.93%), 18 ewes were equally distributed

into three groups H_I group, H_m group, and H_h groups. Each ewe

was housed separately and provided with dietary feed from the 135th

day of pregnancy till 90th day after parturition. All ewes were fed

twice daily and had access to water at libitum. Fresh fecal samples

were collected from the terminal rectum ninety days after parturition

to avoid contamination (17). Approximately 10 g of fecal sample was

loaded into a 10 mL sterile freezing tube (BIOFIL, China) and

immediately frozen in a liquid nitrogen tank. Finally, the tubes

were stored at –80°C for the subsequent experiments.
2.3 DNA extraction

Total DNA was extracted from fecal samples using the E.Z.N.A.
®Stool DNA Kit (D4015, Omega, Inc., USA) in accordance with the

manufacturer’s instructions. Nuclear-free water was used as the

blank. The total DNA was eluted using 50 mL of the Elution buffer,

and finally stored at -80°C.
2.4 PCR amplification and 16S
rDNA sequencing

The V3-V4 region of the prokaryotic (bacterial and archaeal)

small-subunit (16S) rRNA gene was amplified using primers 341F

(5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHVG

GGTATCTAATCC-3’). The 5’ ends of the primers were tagged with
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specific barcodes per sample and sequenced using universal primers.

PCR amplification was performed in a total volume of 25 mL reaction
mixture containing 25 ng of template DNA, 12.5 mL PCR Premix, 2.5

mL of each primer, and PCR-grade water to adjust the total volume.

The PCR settings to amplify the prokaryotic 16S fragments consisted

of an initial denaturation at 98°C for 30 s, 32 cycles of denaturation at

98°C for 10 s, annealing at 54°C for 30 s, extension at 72°C for 45 s,

and then final extension at 72°C for 10 min. The PCR products were

further evaluated using 2% agarose gel electrophoresis. Throughout

the DNA extraction process, ultrapure water was used as the negative

control to exclude the possibility of false-positive PCR results. The

PCR products were purified using AMPure XT beads (Beckman

Coulter Genomics, Danvers, MA, USA) and quantified using a Qubit

(Invitrogen, USA). Amplicon pools were prepared for sequencing.

The size and quantity of the amplicon library were assessed using an

Agilent 2100 Bioanalyzer (Agilent, USA) and Library Quantification

Kit for Illumina (Kapa Biosciences, Woburn, MA, USA), respectively.

Libraries were sequenced on a NovaSeq PE250 platform.
2.5 Metagenomic sequencing

The experimental procedure used for metagenomic sequencing

was based on previous studies (18, 19) with minor modifications.

After sample clustering analysis, three samples with higher
Frontiers in Endocrinology 03
similarity were selected from each treatment. So, a total of 9

samples were used for the metagenomic sequencing. A DNA

library was constructed using the TruSeq Nano DNA LT Library

Preparation Kit (FC-121-4001). DNA was fragmented using

dsDNA fragmentase (NEB, M0348S) by incubation at 37°C for

30 min. Library construction was initiated using the fragmented

cDNA. Blunt-end DNA fragments were generated using a

combination of fill-in reactions and exonuclease activity, and size

selection was performed using sample purification beads. An A-

base was then added to the blunt ends of each strand to prepare

them for ligation with indexed adapters. Each adapter contained a

T-base overhang to ligate the adapter to A-tailed fragmented DNA.

These adapters contained the full complement of the sequencing

primer hybridization sites for single-, paired-end, and indexed

reads. The single- or dual-index adapters were ligated to the

fragments, and the ligated products were amplified with PCR

using the following conditions: initial denaturation at 95°C for

3 min, 8 cycles of denaturation at 98°C for 15 s, annealing at 60°C

for 15 s, extension at 72°C for 30 s, and then final extension at 72°C

for 5 min. Paired-end 2×150 bp sequencing was performed on an

Illumina HiSeq 4000 platform (LC Sciences), based on the

recommended protocol provided by the manufacturer.
2.6 Bioinformatic analysis

Raw sequencing reads were processed to obtain valid reads for

further analyses. Sequencing adapters were removed from the

sequencing reads using Cutadapt v1.9 (20). The low-quality reads

were then trimmed using fqtrim v0.94 using a sliding-window

algorithm, and the remaining reads were aligned to the host genome

using bowtie2 (21) to remove host contamination. Once quality-

filtered reads were acquired, they were de novo assembled to

construct a metagenome for each sample, aided by IDBA-UD (22).

All coding regions (CDS) of the metagenomic contigs were predicted

using MetaGeneMark v3.26. The acquired CDS sequences of all

samples were clustered using CD-HIT v4.6.1 (23) to obtain unigenes.

The abundance of unigenes in each sample was estimated by TPM in

accordance with the number of aligned reads using bowtie2 v2.2.0 (21).

The lowest common ancestor taxonomy of the unigenes was obtained

by alignment against the NCBI NR database using DIAMOND v

0.7.12 (24). Functional annotations of the acquired unigenes, including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG), were performed. Based on the taxonomic and functional

annotations of the obtained unigenes, along with their abundance

profiles, differential analysis was performed at each taxonomic,

functional, or gene level using Fisher’s exact test (non-replicated

groups) or the Kruskal–Wallis test (replicated groups).
3 Results

3.1 Data acquisition

A total of 376,278,516 high-quality data points (clean data) were

generated from the metagenomic sequencing of nine fecal samples.
TABLE 1 The diet components and nutritional levels of ewes (air-dry
basis).

Corn raw material H_I H_m H_h

corn 28.2 26 19.05

soybean meal 5.40 8.65 18.60

corn starch 8.65 7.60 4.70

calcium carbonate 0.55 0.60 0.65

calcium hydrogen phosphate 0.55 0.50 0.35

salt 0.30 0.30 0.30

baking soda 0.35 0.35 0.35

premix 1.00 1.00 1.00

corn silage 40.00 35.00 34.00

bean powder 2.00 10.00 11.00

wheat straw 13.00 10.00 10.00

total 100 100 100

fine to coarse ratio 45:55 45:55 45:55

Nutrient content

metabolizable energy 9.45 9.47 9.47

protein 8.58 10.34 13.93

neutral detergent fiber (NDF) 32.17 32.01 32.52

acid detergent fiber (ADF) 17.24 17.71 18.44

calcium 0.69 0.71 0.71

phosphorus 0.38 0.39 0.39
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The acquisition rate of clean data was higher than 97%. Sequences

longer than 500 nucleotides were used in the present study. The

coding regions (CDS) of the assembled contigs were predicted using

MetaGeneMark and contigs shorter than 100 nt were removed. CD-

HIT was used to generate a nonredundant set and to output a

cluster file (identity=95%, coverage=90%). The counts of each

unigene were calculated using bowtie2 by mapping the reads of

each sample onto the unigenes. The abundance of the obtained

unigenes was estimated using TPM. In the present study, the total

number of acquired unigenes was 1,417,351. Among these unigenes,

the numbers of unigenes containing the start or stop codons were

359,225 (25.34%) and 263,828 (18.61%), respectively. The number

of unigenes with the start and stop codons was 599,224 (42.28%).

The remaining 195,074 (13.76%) unigenes did not have the start or

stop codon. The total length of all acquired unigenes was 1009.34

Mbp, with an average length of 712 bp. A Venn diagram reflects the

similarities among the three treatment groups (Figure 1). There

were 918960 genes simultaneously present in both the H_h and H_I

groups, and 256023 and 161698 genes were exclusively present in

the H_h and H_I groups, respectively. In addition, all genes in the

H_h group were present in the H_m group. 242368 genes were

found to only be present in the H_m group. All genes in the H_I
Frontiers in Endocrinology 04
group were present in the H_m group. 336693 genes were

exclusively found in the H_m group.
3.2 Annotation of bacterial species

Based on the classification system of microbial species in the NCBI

nr_meta database, the results of this study were revealed by Super

Kingdom, Phylum, Class, Order, Family, Genus, and Species using the

Lowest Common Ancestor algorithm. Detailed information associated

with bacterial abundance at the phylum and genus levels is included in

Supplementary Tables S1–S4. The most abundant 20 classifications

were selected to produce stacked bar charts from Super Kingdom to

Species in each sample. The results related to phylum and genus

abundances are shown in Figure 2. Figure 2A shows the phylum

abundance of each sample used, and Figure 2B shows the phylum

comparison between the three treatments. Among the 146 identified

phyla, the most abundant were Firmicutes, Bacteroidetes,

Proteobacteria, and Fibrobacteres, as shown in Figures 3A, B.

However, approximately 50% of the acquired sequences

(Bacteria_unclassified) could not be classified into any known phyla.

Figure 2C shows the genus abundance of each sample used, and
FIGURE 1

The Venn diagram of the H_I group vs the H_m group vs the H_h group. The orange circle represented the H_I group; the yellow circle represented
the H_m group; the green circle represented the H_h group.
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Figure 2D shows the genus comparison among the three treatments in

this study. After analysis, 2758 genera were identified. Among these

genera, Clostridium, Bacteroides, Prevotella, Firmicutes_noname,

Ruminococcus, Clostridiales_noname, and Fibrobacter were dominant

(Figures 2C, D). However, approximately 20% of sequences

(Bacteria_unclassified) could not be classified into any known genus.
3.3 Bacterial diversity analysis

Indices, including Chao1, Observed species, and shannon, were

used to analyze microbial species diversity in fecal samples collected

from the three treatments. These data are presented in Table 2. The

number of observed species in the H_m group was significantly higher

than that in the H_I group (P<0.01). However, no dissimilarity was

found between the H_h and the H_m or H_I groups (P>0.05).

Similarly, the chao1 value in the H_m group was significantly higher

than that in the H_I group (P<0.01). However, no difference was

observed between the H_h and the H_m or H_I groups (P>0.05). In

terms of the Shannon value, as shown in Table 2, the Shannon value in

H_m group was significantly less than that in H_h group (P<0.05).

However, the Shannon index value in the H_I group did not differ from

those in the other two groups (P>0.05). Based on the bacterial

abundance presented in each sample, the Mann–Whitney U test was

used to determine the differences in abundance at the phylum and

genus levels. The results related to the different bacteria at the phylum

level are shown in Figure 4. The abundance of Proteobacteria,

Caldiserica, and Candidatus_Cryosericota in the H_h group was

lower than that in the H_I group (Figure 4A). In contrast, phyla,

such as Lentisphaerae, Chloroflexi, Chlamydiae, Planctomycetes, and

Kiritimatiellaeota, dominated in the H_h group. The results of

comparison between the H_m and H_h groups are shown in

Figure 4B. Compared to the H_m group, these phyla, including

Firmicutes, Chloroflexi, Planctomycetes, Chlamydiae, and
Frontiers in Endocrinology 05
Synergistetes, were significantly enriched in the H_h group. However,

other phyla, such as Fibrobacteres, Elusimicrobia, Caldiserica,

Candidate_division_Zixibacteria, Candidatus_Daviesbacteria,

Candidatus_Schekmanbacteria, and Candidatus_Zambryskibacteria,

were more abundant in the H_m group. As shown in Figure 4C,

Fibrobacteres, Elusimicrobia, Lentisphaerae, Planctomycetes,

Candidatus_Omnitrophica, Chlorobi, and Kiritimatiellaeota were

dominant in the H_m group compared to those in the H_I group.

Firmicutes, Tenericutes, Chlamydiae, and Caldiserica were enriched in

the H_I group. At the genus level, the results are shown in Figure 3A;

the abundance levels of these genera in the H_h group, such as

Prevotella, Roseburia, Clostridiales_unclassified, Campylobacter,

Firmicutes_unclassified, and Phascolarctobacterium, were lower than

those in the H_I group. However, Ruminococcus, Ruminococcaceae_

noname, Anaerotruncus, Thermotalae, Lentisphaerae_noname and

Paraprevotella were significantly more abundant in the H_h group.

A comparison of the H_h and H_m groups is presented in Figure 3B.

Clostridium, Firmicutes_noname, Ruminococcus, Eubacterium,

Faecalibacterium, Bacteroidales_noname, and Anaerotruncus were

more abundant in the H_h group than in the H_m group. However,

Prevotella, Fibrobacter, Campylobacter, Prevotellaceae_nonname, and

Azospirillum were dominant in the H_m group. In addition, as shown

in Figure 3C. Fibrobacter, Alloprevotella, Elusimicrobium, Victivallis,

Lentisphaerae, and Fusobacterium were less abundant in H_I than in

H_m. Clostridium, Firmicutes, Lachnospiraceae_noname, Roseburia,

Clostridiales_unclassified, Blautia, Mycoplasma, and Hungatella were

enriched in the H_I group.
3.4 Functional annotation

GO (http://www.geneontology.org) is a major bioinformatics

initiative used to unify the representation of genes and gene product

attributes across all species. As shown in Figure 5A, most of the
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FIGURE 2

The stacked bar charts of bacterial abundance at the phylum (A, B) and genus (C, D) levels. The X-axis represented the nine samples used in this
study (A, C) or the three treating groups (B, D). The Y-axis represented bacterial abundance in each sample at the phylum (A, B) and genus (C, D)
levels. The bacterial species were represented by different colors.
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identified unigenes were clustered in biological process

(GO:0008150), molecular function (GO:0003674), cytosol

(GO:0005829), cellular component (GO:0005575), cytoplasm

(GO:0005737), structural constituent of ribosome (GO:0003735),

plasma membrane (GO:0005886), translation (GO:0006412), and
Frontiers in Endocrinology 06
catalytic activity (GO:0003824). Most of the unigenes were enriched

in molecular functions and biological processes, as shown in

Figure 5B. In addition, as shown in Supplementary Figure S1, the

abundance of genes involved in molecular functions, biological

processes, and cellular components was significantly higher in the
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FIGURE 3

Comparison of bacterial abundance in the H_I, H_m, and H_h groups at genus level. The X-axil represented the bacterial genus. The Y-axil
represented the abundance (log2 (Relative Abundance+1)). (A–C) represented the comparison between the H_h group and the H_I group, between
the H_h group and the H_m group, and between the H_I group and the H_m group, respectively.
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H_h group than in the H_I group. In addition, as shown in

Supplementary Figure S2, a similar pattern of change was

observed between the H_h and H_m groups. However, no

significant differences were observed between the H_m and H_I

groups. The KEGG annotation of the unigenes was performed. As

shown in Figure 6, unigenes were found to be primarily involved in

organism systems, metabolism, human diseases, genetic

information processing, environmental information processing,

and cellular processes. Among the unigenes, 101452, 67958,

53373, 42249, and 31016 may play roles in carbohydrate, amino

acid, nucleotide, cofactor, vitamin, and energy metabolism. Since

this study showed that high-protein diets benefited the growth of

lactating ewes compared to low-protein diets, the KEGG functional

differences between the H_h and H_I groups were analyzed. In the

H_h group, the unigenes involved in carbohydrate metabolism,

amino acid metabolism, nucleotide metabolism, energy

metabolism, metabolism of other amino acids, and biosynthesis

of other secondary metabolites were more abundant than

those in the H_I group (Figure 7). Furthermore, an interesting

phenomenon was that in comparison with the H_I group, more

genes in the H_h group were found to be potentially associated with

infectious disease.
3.5 Gene expression differences and
enrichment analysis

DEGs were the most valuable results of metagenomic

sequencing. These results represent the differential expression of

genes among different treatments or samples. In general, the default

threshold of genes with a significant difference is |log2 (fold)_

change)|≥1 and P value less than 0.05. Compared to those in the

H_I group, 193672 and 205987 unigenes were upregulated in the

H_m and H_h groups, respectively (Figure 8A). 52026 and 108129

genes were separately enriched in the H_I group. 90599 genes were

more abundant in the H_h group than in the H_m group, and

141184 genes were enriched in the H_m group. Functional

enrichment analysis of DEGs was performed. The most abundant

20 genes (Figure 8B) were selected to produce a heatmap illustrating

the clustering pattern of DEGs between the H_h and H_I groups.

We observed that the degree of enrichment of these genes was

greater in the H_h group than in the H_I group. The GO functional

classification of DEGs between the H_h and H_I groups is shown in

Figure 9A. In terms of biological processes, the DEGs were

primarily involved in transport, translation, and carbohydrate

metabolic processes. The identified DEGs were mainly present in

the cytosol and cytoplasm. Regarding molecular functions, most
Frontiers in Endocrinology 07
DEGs were involved in ATP binding, protein binding, and catalytic

activity. The scatter plot of KEGG enrichment (Figure 9B)

demonstrated that the DEGs were mainly responsible for

metabolic activities, such as alanine, aspartate, and glutamate

metabolism; arginine biosynthesis; citrate cycle; nitrogen

metabolism; pyruvate metabolism; starch and sucrose metabolism;

glycolysis; and methane metabolism.
4 Discussion

The lactating stage is critical for ewes and their lambs, as ewes

require essential nutrition to support themselves and their lamb’s

survival and health at this stage. The addition of proteins to daily

diets improves the metabolic activity of ruminants (2, 3, 5) In the

present study, we analyzed the effects of dietary proteins on the

bacterial characteristics in fecal samples using 16S rDNA

sequencing and metagenomic approaches. Our findings

demonstrate that dynamic changes in fecal bacteria and their

genes are strongly influenced by the levels of dietary proteins.

The utilization of dietary proteins by ruminants is closely

associated with the involvement of gastrointestinal bacteria.

Previous studies have primarily focused on rumen-derived

bacteria (4–8, 10, 11). However, some researchers have switched

their attention to fecal bacteria because of the potential relationship

between fecal and rumen bacteria (13–15, 17).

In the present study, the richness of genes in the H_m group

was the highest. All genes present in the H_h and H_I groups were

included in the H_m group. Notably, the level of dietary proteins in

the H_m group represented a regular protein level in the ewes’ daily

diet during the lactation stage. However, it may lead to a reduction

in the types of acquired genes in the feces. Therefore, the

maintenance of normal dietary protein levels benefits the richness

of fecal bacterial communities. In addition, there are 918960 genes

were simultaneously present in all three treatments, demonstrating

that these genes are highly conserved and essential for the metabolic

activities of ewes. They may also play important roles in ruminant

gut microbial ecology. A total of 146 phyla were identified in this

study. Firmicutes and Bacteroidetes were the dominant phyla in all

fecal samples, regardless of the dietary protein levels.

Our findings are consistent with other reports on sheep (10, 17),

cattle (7, 14, 15, 25), pigs (26–29), goats (30), and humans (31, 32).

Firmicutes and Bacteroidetes have been found to constitute the

majority of the gut-derived phylotypes in mammalian species (33–

36), suggesting that Firmicutes and Bacteroidetes play critical roles

in the microbial ecology of ruminant guts. Our study further

demonstrated that Firmicutes was the most abundant phylum,
TABLE 2 The values related to the observed_species, Shannon, and chao 1 index.

Treatment groups observed_species Shannon chao1

H_I 10338 ± 181b 8.19 ± 0.16 10856.38 ± 109.28b

H_m 13275 ± 1529a 8.09 ± 1.46a 14008.64 ± 1723.11a

H_h 12120 ± 555 8.41 ± 0.44b 12545.57 ± 432.40
Values in the same row with different superscripts (a and b) indicate significant differences among the groups (P <0 .05).
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with an abundance of 20%-30% out of the total bacteria obtained.

The dominance of Firmicutes further supports the conclusions of

previous studies on sheep and cattle (14, 17, 35, 37). However,

according to the report of Tanca et al., Firmicutes and Bacteroidetes
Frontiers in Endocrinology 08
account for 80% of total bacteria obtained in sheep feces (17). In this

study, the ratio of Firmicutes to Bacteroidetes was approximately

40%. In addition, according to a report by Kim et al., the ratio of

Firmicutes was over 50% in bovine fecal samples (15), and greatly
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FIGURE 4

Comparison of bacterial abundance in the H_h, H_m, and H_I groups at phylum level. The X-axil represented the bacterial phyla. The Y-axil
represented the abundance (log2 (Relative Abundance+1)). (A–C) represented the comparison between the H_h group and the H_I group, between
the H_h group and the H_m group, and between the H_I group and the H_m group, respectively.
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higher than the ratio of Firmicutes in ewes’ feces in this study. In

contrast, the most abundant phylum detected in goat rumen was

Bacteroides, not Firmicutes, which accounted for an average 42.11%

of the total bacterial community (30). Furthermore, the bacterial

characteristics of sheep feces differ from those of pig and chicken

feces. In a previous study, Bacteroidetes was predominant in pig

fecal samples at their different growth stages, with a mean relative

abundance ranging from 42.0%–51.9%, followed by Firmicutes (29).

In chickens, Proteobacteria (38.9%) were dominant, followed by

Firmicutes (36.4%), Bacteroidetes (15.8%), and Tenericutes

(8.9%) (38).

The differences between the abovementioned studies may be

due to specific factors, such as animal species, growth stage,

sampling position, and dietary components used. Based on this

study, as the third most abundant phylum, the richness of

Proteobacteria in the H_h group (2.03%) was slightly lower than

those in the H_m group (2.77%) or the H_I group (3.15%).

Proteobacteria includes a wide variety of pathogenic bacteria (30).

Therefore, increasing the levels of dietary proteins may improve the

capability of disease resistance in lactating sheep. In pigs, Zhao et al.
Frontiers in Endocrinology 09
found that Proteobacteria showed a significant decline along with

age (39). As neonatal pigs are more susceptible to diseases, there

may be an inverse relationship between the abundance of

Proteobacteria and disease resistance. Another piece of evidence is

the use of antimicrobial peptides in goat daily diets (30).

Stackebrandt et al. found that Proteobacteria were less abundant

in groups supplemented with AMPs (antimicrobial peptides) (30).

In chickens infected with multidrug-resistant (MDR) Escherichia

coli, the most abundant phylum in the feces was Proteobacteria (38).

These studies further demonstrate that the abundance of

Proteobacteria may be negatively associated with disease

sensitivity. In this study, the abundance of Bacteroidetes in the

H_h group was slightly lower than that in the H_m and H_I groups,

which agrees with a previous report showing that high-producing

cows have a lower abundance of Bacteroidetes (40). However, in

contrast to a previous study on cows, Planctomycetes, Synergistetes,

and Chloroflexi were significantly enriched in the H_h group in this

study. However, the roles of these phyla require further

investigations. At the genus level, 2758 genera were identified.

Among these genera, Clostridium, Bacteroides, Prevotella,
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Firmicutes_noname, Ruminococcus, Clostridiales_noname, and

Fibrobacter were the most dominant. Approximately 20%

sequences (Bacteria_unclassified) could not be classified into any

known genus.

Here, we found that Prevotella was not the most dominant

genus in sheep fecal samples, which is different from the genus-level

characteristics in goat rumen (41). As a permanent resident of the

bacterial community in the mature rumen, Prevotella is assumed to

comprise a large part of the rumen microbial genetic and metabolic

diversity. According to the report of Ren et al., at the genus level,

Prevotella dominated the assignable sequences, on average

accounting for 29.21% of the total bacteria (30), which may

correlate with the fact that most of digestive activities of fibers are

conducted in rumen. However, in the present study, a lower

abundance of Prevotella was observed in the feces of ewes fed a
Frontiers in Endocrinology 10
high-protein diet than in the H_I and H_m groups, demonstrating

the negative effects of a high-protein diet on the abundance of

Prevotella. In another study, the growth of calves, the abundance of

Prevotella gradually increased with calf growth. Compared to that in

newborn calves, Prevotella showed an almost 500-fold increase in

the adult rumen (42, 43). Also, Prevotella is widely associated with

plant polysaccharide digestion and are enriched in plant

polysaccharides (44). According to a report by Jami and Mizrahi,

three ruminal species of the pivotal Prevotella genus account for up

to 70% of the rumen bacterial population (43). These species can

utilize starches, non-cellulosic polysaccharides, and simple sugars as

energy sources, and succinate is the major fermentation end-

product (41). In addition, in newborn calves (1- and 3-day old),

the main genus in their rumen was Bacteroides, whereas in the older

age groups, the main ruminal genus was almost exclusively
FIGURE 6

The KEGG pathway classification of the acquired genes. The X-axel represented the percentage of genes. The left Y-axis represented the involved
KEGG pathways (KEGGLevel2). The right Y-axis represented the KEGGLevel1 functional classification. The digit on each column was the number of
involved genes.
FIGURE 7

Comparison of abundance of genes involved in KEGG pathways in the H_h group and the H_I group. The X-axis represented the involved pathways.
The Y-axis represented the abundance (log2 (Relative Abundance+1)). The red box represented the H_h group. The blue box represented the H_I group.
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Prevotella (25). Newborn calves are primarily dependent on milk,

which is rich in proteins (42, 43). However, along with their growth,

the ratio of plant-derived components in their daily diets gradually

increased. Prevotella seems to be positively associated with plant-

derived diets. In addition, a similar compositional alteration in the

Prevotella genus was reported in a previous study that compared the

gut microbiota of children from Europe and rural Africa (45). In

that study, the genus Prevotella dominated the Bacteroidetes

phylum, accounting for 53% of the total gut bacteria in African

children. In contrast, Bacteroides was the primary genus found in

European children. Moreover, a much higher ratio of the

Bacteroidetes phylum was observed in African children, along

with a lower abundance of Firmicutes (45). These differences may

have been caused by the dietary composition ingested by these

children. The African diet is mainly composed of plant fiber,

whereas the European diet is rich in animal protein, sugar, starch,

and fat (but low in plant fiber) (45).

Similarly, Prevotella was not the main genus in fecal samples

from neonatal pigs from days 3 to 7. However, Prevotella became

dominant between days 14 and 35 (29). All these studies

demonstrate that Prevotella plays an essential role in the

mammals’ growth and metabolic activities. Prevotella produces

acetate, which can be further transformed into butyrate with the

aid of some butyrate-producing bacteria (44, 46). Approximately

50% of butyrate-producing bacteria can produce butyrate from

acetate (47). These metabolic and biosynthetic activities may further

improve intestinal barrier function and reduce inflammation in the

mammalian gut (48, 49).

When the sheep were fed a high-protein diet, another genus that

showed an evident increase in fecal samples was Ruminococcus.

Ruminococcus generally comprises cellulolytic bacteria that are

commonly present in the adult rumen (50). However, at the genus

level, the rumen fluid of high-production cows was significantly

depleted of Ruminococcus (39). In general, the low-production cows

were fatter than the high-production cows. Thus, Ruminococcus has

been suggested to be negatively associated with milk production (51),

implying a positive relationship between Ruminococcus and cow
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meat production. Another study assessed the effects of probiotics on

gut microbiota and their association with childhood obesity (52).

The results revealed an abundant increase in the genus

Ruminococcus in overweight participants after intervention with

probiotics compared to normal-weight participants (52).

In the present study, Fibrobacter was more abundant in the H_h

and H_m groups than in the H_I group, implying a relationship

between Fibrobacter and the growth of ewes. Fibrobacter is a

cellulose-degrading microbes (53, 54). The fermentation products

of Fibrobacter are acetate, propionate, and succinate (30). Acetate,

propionate, and butyrate were the major volatile fatty acids,

accounting for 95% of the total volatile matter content in rumen

(55). Volatile fatty acids, as the end-products of fermentation by

rumen microbiome, provide 70%–80% of the calorific requirements

for ruminants (56). Therefore, the improved growth performance of

ewes fed high-protein diets may be due to an increase in volatile

fatty acids (30). Wang et al. reported that ruminal infusion of

soybean peptide increased the concentrations of ammonia,

propionate, and volatile fatty acids, and improved nutrient

digestion and ruminal fermentation in Luxi Yellow cattle (57).

Another study indicated that feeding a higher-fiber diet increases

the abundance of Fibrobacter (43). In combination with the results

of the present study, we further confirmed that increasing dietary

protein levels benefits the digestion and usage of plant-derived

fibers. Fibrobacter may play an important role in this process.

Currently, metagenomic technology is used to observe the

relationship between fecal bacterial composition and clinical

diseases in humans (58). Studies on other mammals have mainly

focused on pig (59, 60) and cattle (61). However, studies on sheep

are limited. In a previous study, 2097 gene families were identified

in sheep feces, and the sheep fecal microbiota was found to be

primarily involved in catabolism (17). The fecal microbiota

metagenome was rich in genes associated with the membrane

transport of molecules (ABC transporter, ATPase, permease, and

SecA), DNA replication and repair (helicase, DNA polymerase,

topoisomerase, and MutS), transcription (RNA polymerase),

translation (tRNA synthetases and translation factors), and
BA

FIGURE 8

Differentially expressed unigenes between the treatments fed with different levels of proteins (A) and the cluster analysis of differential gene
expression levels (B). Red color represented high enrichment. Blue color represented low enrichment.
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protein folding (chaperones), along with a few genes encoding

metabolic enzymes (17). In goats, metagenomic technology has

been used to investigate carbohydrate-active enzymes in the

intestinal tract, revealing a low abundance of enzymes that target

xylan and cellulose. Therefore, it may be concluded that plant cell-

wall digestion does not occur in the intestinal tract and may mainly

occur in the rumen (18).
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Most of the bacterial genes obtained in the present study were

clustered in biological processes, molecular functions, cytosol,

cellular components, cytoplasm, structural constituents of

ribosomes, plasma membranes, translation, and catalytic activity.

In the H_h group, genes involved in molecular function, biological

processes, and cellular components were more abundant than

those in the H_I group, implying that increasing dietary protein
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The enrichment analysis of GO function of differentially expressed genes. (A) represented that the genes were classified into biological processes,
cellular components and molecular function. The bar represents the number of differentially expressed genes. (B) represented that the scatter plot
of differentially expressed gene GO enrichment. The P value was calculated using the Fisher’s exact test. The X-axis represents the rich factor, and
the Y-axis means the KEGG pathway. Each bubble refers to the number of unigenes. Rich factor means the number of differentially expressed genes
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levels maintained the physiological functions of gut bacteria

better. Subsequently, in accordance with the KEGG results, the

acquired genes were found to be primarily involved in organism

systems, metabolism, human diseases, genetic information

processing, environmental information processing, and cellular

processes. Furthermore, several genes may influence the

metabolic activities of carbohydrates, amino acids, nucleotides,

and vitamins. The bacteria present in sheep feces are widely

involved in the digestion and use of nutritional components,

which is in agreement with a report by Tanca et al. In their

study, several genes in sheep feces encoded metabolic enzymes

(17). In this study, the abundance of genes involved in

carbohydrate, amino acid, nucleotide, energy, and other amino

acid metabolism was significantly higher in the H_h group than

in the H_I group.

One of the main objectives of this study was to observe the

differences in bacterial gene expression between these treatments.

DEGs can also act as potential markers to evaluate productive traits

in ruminants. As shown in Figure 8, when fed a high-protein diet,

205987 microbial genes were upregulated in sheep feces, and

108129 genes were enriched in ewes fed a low-protein diet. The

heatmap results further demonstrated a completely different

clustering pattern of DEGs between the H_h and H_I groups,

confirming that the levels of dietary proteins greatly influenced

bacterial gene characteristics in sheep feces. GO annotation

indicated the roles of these DEGs in transport, translation,

carbohydrate metabolic processes, ATP binding, protein binding,

and catalytic activity. Additionally, the KEGG results indicated that

these DEGs were mainly involved in metabolic activities such as

amino acid metabolism, arginine biosynthesis, citrate cycle,

nitrogen metabolism, pyruvate metabolism, starch and sucrose

metabolism, glycolysis, and methane metabolism. Differing from

the results of a study on pig (60), in this study, the ratio of the DEGs

functioning in carbohydrate metabolic activity in sheep fecal

metagenome was less than 2%. On the contrary, carbohydrate

metabolism is the most abundant subsystem, representing 13% of

pig fecal metagenome (60).

In conclusion, as an important nutritional resource, dietary

proteins and their metabolism are closely associated with gut

bacteria. However, further studies on the characteristics of the gut

bacterial communities at different growth stages are required. To

the best of our knowledge, the present study is the first attempt to

assess the fecal bacterial characteristics of sheep during early

lactation. Based on this study, we conclude that increasing dietary

protein levels can enhance the weight gain of lactating ewes by

modulating fecal bacterial composition. Firmicutes and

Bacteroidetes were identified as the dominant phyla in the fecal

samples, regardless of the protein levels used. 314116 DEGs were

identified between the H_h and H_I group using metagenomic

sequencing. These genes are primarily involved in metabolic

activities. Notably, this study is preliminary and requires further

in-depth analysis of the obtained data. Nevertheless, this study

provides an opportunity to understand the fecal bacterial

characteristics of lactating ewes, which may be helpful in

developing a suitable dietary formula for optimizing the health of

ewes and their lambs.
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