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A novel model based on
necroptosis to assess
progression for polycystic ovary
syndrome and identification of
potential therapeutic drugs

Mingming Wang1†, Ke An1†, Jing Huang2†, Richard Mprah1

and Huanhuan Ding1*

1Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China, 2Department of
Medical Informatics Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
Background: Polycystic ovary syndrome (PCOS), a common endocrine and

reproductive disorder, lacks precise diagnostic strategies. Necroptosis was

found to be crucial in reproductive and endocrine disorders, but its function in

PCOS remains unclear. We aimed to identify differentially diagnostic genes for

necroptosis (NDDGs), construct a diagnostic model to assess the progression of

PCOS and explore the potential therapeutic drugs.

Methods: Gene expression datasets were combined with weighted gene co-

expression network analysis (WGCNA) and necroptosis gene sets to screen the

differentially expressed genes for PCOS. Least absolute shrinkage and selection

operator (LASSO) regression analysis was used to construct a necroptosis-

related gene signatures. Independent risk analyses were performed using

nomograms. Pathway enrichment of NDDGs was conducted with the

GeneMANIA database and gene set enrichment analysis (GSEA). Immune

microenvironment analysis was estimated based on ssGSEA algorithm analysis.

The Comparative Toxicogenomics Database (CTD) was used to explore potential

therapeutic drugs for NDDGs. The expression of NDDGs was validated in

GSE84958, mouse model and clinical samples.

Results: Four necroptosis-related signature genes, IL33, TNFSF10, BCL2 and

PYGM, were identified to define necroptosis for PCOS. The areas under curve

(AUC) of receiver operating characteristic curve (ROC) for training set and

validation in diagnostic risk model were 0.940 and 0.788, respectively.

Enrichment analysis showed that NDDGs were enriched in immune-related

signaling pathways such as B cells, T cells, and natural killer cells. Immune

microenvironment analysis revealed that NDDGs were significantly correlated

with 13markedly different immune cells. A nomogramwas constructed based on

features that would benefit patients clinically. Several compounds, such as

resveratrol, tretinoin, quercetin, curcumin, etc., were mined as therapeutic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1193992/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1193992/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1193992/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1193992/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1193992/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1193992&domain=pdf&date_stamp=2023-09-07
mailto:dhh@xzhmu.edu.cn
https://doi.org/10.3389/fendo.2023.1193992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1193992
https://www.frontiersin.org/journals/endocrinology


Abbreviations: PCOS, polycystic ovarian syndrome;

omnibus; WGCNA, weighted gene co-expression netw

least absolute shrinkage and selection operator; N

diagnostic genes for necroptosis; GO, gene onto

encyclopedia of genes and genomes; GSEA, gene set en

protein-protein interactions; ROC, receiver operating ch

Wang et al. 10.3389/fendo.2023.1193992

Frontiers in Endocrinology
drugs for PCOS. The expression of the NDDGs in the validated set, animal model

and clinical samples was consistent with the results of the training sets.

Conclusion: In this study, 4 NDDGs were identified to be highly effective in

assessing the progression and prognosis of PCOS and exploring potential targets

for PCOS treatment.
KEYWORDS

polycystic ovary syndrome, diagnostic model, therapeutic drugs, necroptosis,
gene signature
1 Introduction

Infertility affects 8-12% of couples of reproductive age and has

become a global problem, among which female infertility accounts

for 60-70% (1). Polycystic ovary syndrome (PCOS), a common

endocrine reproductive disorder, affects 5-20% of women of

reproductive age. It is characterized by various reproductive,

endocrine, and metabolic features such as oligoovulation,

infertility, hyperandrogenemia, obesity, hyperinsulinemia, type 2

diabetes mellitus and cardiovascular diseases (2).

As a highly heterogeneous metabolic syndrome, PCOS is

affected by multiple factors, such as race and living environment,

and the clinical phenotype varies (3). Recently, Qiao et al. reported

the important role of gut microorganisms in the development and

treatment of PCOS (4). Another study explored the classification

and etiology of PCOS from a genomic perspective (5). Moreover,

some groups attempted to investigate the PCOS bio-markers and

pathogenic mechanisms using multi-omics and bioinformatics (6–

8). Despite the efforts made in recent decades, the etiology of PCOS

is not yet fully understood due to its complex pathogenesis and

variability. Hence, the diagnosis of PCOS is principally based on the

classical Rotterdam criteria and clinical symptoms (9). There is still

a lack of precise diagnostic criteria, and many patients often suffer

from misdiagnoses or missed diagnoses (10). Given this, it is

essential to discover new biomarkers to facilitate timely diagnosis

and intervention for PCOS.

Studies have shown that apoptosis of ovarian granulosa

cells (GCs) could lead to oocyte apoptosis and follicular atresia,

which may be one of the significant factors contributing to the

development of PCOS (11–13). Oxidative stress is one of the major

causes of GCs apoptosis and ovarian atresia. This process generates

sustained high levels of reactive oxygen species, triggering an

inflammatory response (14). Inflammation can induce necroptosis
GEO, gene expression
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in GCs, which may be responsible for the development of

PCOS (15).

Necroptosis, a new type of cell death, has recently been

considered a potential factor for GC death in the preovulatory

follicle (16). Necroptosis, also known as programmed necrosis, is a

regulated necrotic cell death mediated by receptor-interacting

protein kinase (RIPK) 1 and RIPK3. Features of necroptosis

include early loss of cytoplasmic membrane integrity, leakage of

cell contents, and swelling of organelles (17). RIPK1 and RIPK3 act

as stress sensors to promote necroptosis of GCs (18, 19). It has been

shown that the reticulophagy receptor CCPG1 mediated STAT1/

STAT3-(p) RIPK1-(p) RIPK3-(p) MLKL pathway could trigger the

necroptosis of GCs and be involved in the development of PCOS

(12, 20). Moreover, high levels of ROS and immunoinflammatory

factors could increase the expression of RIPK1 and RIPK3 in GCs

(15). Furthermore, dysregulation of GCs and immune cells in PCOS

patients also accelerates anovulation (21). Based on these findings,

necroptosis may be a helpful diagnostic tool and therapeutic target

for PCOS. However, the gene signatures associated with necroptosis

and its mechanism in PCOS remain unclear.

In recent years, the combination of big data analytics and

clinical data has become an effective approach for identifying

diagnostic markers, exploring pathogenesis, and developing drugs

(22). In this study, we utilized machine learning combined with

clinical samples to identify necroptosis-related genes, constructed a

diagnostic model to assess the progression of PCOS and explored

the potential therapeutic drugs for PCOS. This work provides a

theoretical basis for identifying new diagnostic markers and

therapeutic targets for PCOS.
2 Materials and methods

2.3 Gene expression profile acquisition and
differentially expressed genes screening

We searched the GEO database using the keywords “PCOS,

Homo sapiens” and obtained 5 expression datasets: GSE95728,

GSE114419, GSE106724, GSE137684, and GSE84958 (23).

GSE95728, GSE114419, GSE106724, and GSE137684 were used as

the training set and GSE84958 as the validation set. As the training
frontiersin.org
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set was from different batches and platforms, it was merged using

the sva package version 3.36.0 in R version 3.6.1 to remove batch

effects (24). The validation set was normalized with the voom

func t ion prov ided by the l imma package (h t tp s : / /

bioconductor.org/packages/release/bioc/html/limma.html) version

3.34.7 for model validation analysis (25). Details of the dataset are

shown in Table 1.

The samples were divided into control and PCOS groups based

on their source information and screened for differentially

expressed genes using the limma package in R (version 3.6.1).

False discovery rate (FDR)< 0.05 and |log2FC|>0.5 were used as the

threshold for differential screening.
2.2 WGCNA screening for PCOS-related
modules and genes

Weighted Gene Co-Expression Network Analysis (WGCNA)

could identify modules with similar expression patterns, analyze the

linkage between the modules and the phenotype of the samples, map

the regulatory network between the modules and identify key

regulatory genes. To identify synergistic variation in gene sets, a

modular clustering analysis of all genes was performed using the R

package WGCNA (Version 1.61, https://cran.rproject.org/web/

packages/WGCNA/) (26). In the WGCNA algorithm, the elements

of the gene co-expression matrix were defined as the weighted values

of the correlation coefficients of the genes. The weights were chosen

so that the connections between the genes in each gene network

follow a scale-free network distribution. The weighted value here was

the softPower. Firstly, by setting a series of powers and calculating the

squared correlation coefficients of the connectivity k and p (k) and

the average connectivity for each power value, selecting the

appropriate power value to make the connections between genes in

the network obey the scale-free networks distribution. Secondly,

based on the clustering and dynamic pruning method, the

parameters (minModuleSize=50: each module contained at least 50

genes; MEDissThres=0.3: modules with similarity > 0.7 will be

merged) were set to aggregate highly correlated genes into

modules. Finally, calculating the module-phenotype correlation,

where the phenotype referred to the disease status of the sample,

and the modules closely associated with PCOS were selected as

disease-associated genes.
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2.3 Acquisition of differentially expressed
genes for necroptosis

We obtained 159 necroptosis genes from published literature

and intersected them with differentially expressed genes and PCOS

modular genes to obtain differentially expressed genes for

necroptosis (27). The Pearson correlation coefficients and

significance between the differentially expressed genes were

calculated based on the correspondence of the PCOS samples.
2.4 Functional enrichment analysis

Gene Ontology (GO) was used to analyze the biological function,

pathway or cellular localization of differentially enriched genes. Kyoto

Encyclopedia of Genes and Genomes (KEGG) was a functional

enrichment database for identifying the pathways in which a gene

set (multiple genes) might be significantly concentrated. Gene-Set

Enrichment Analysis (GSEA) could determine whether gene sets

differed significantly between two biological states. GO and KEGG

enrichment analysis was performed with DAVID 6.8. Enrichment

resultswere considered significant for each enriched item containing at

least 2 genes and p<0.05. The top 20 items were selected for

presentation (28–30). Moreover, the “cluster Profiler” package

(Version 1.2.1) was used to conduct GSEA. Significant p-values were

obtained using the “BH” correction, with p.adjust<0.05 considered a

significant enrichment (31).
2.5 Protein-protein interaction network
construction with GeneMANIA database

The GeneMANIA database (http://genemania.org/) was used to

perform a PPI analysis of model genes and their 20 interacting

genes to predict correlations between co-localization, shared

protein structural domains, co-expression and pathways (32).
2.6 Diagnostic model construction

The Least Absolute Shrinkage and Selection Operator (LASSO)

logistic regression model was used to further screen for PCOS-
frontiersin.or
TABLE 1 Gene expression profile information.

Dataset Database Sample information Data source

GSE95728 GEO 7 controls and 7 PCOS patients GPL16956

GSE114419 GEO 3 controls and 3 PCOS patients GPL17586

GSE106724 GEO 4 controls and 8 PCOS patients GPL21096

GSE137684 GEO 4 controls and 8 PCOS patients GPL16956

GSE84958 GEO 23 controls and 15 PCOS patients GPL16791

Necroptosis related genes Published article 159 Necroptosis-related genes
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associated necroptosis genes with the glmnet package (version 2.0-

18) in R3.6.1 language (33). The Riskscore model was constructed

based on the gene regression coefficients and expression levels. The

Riskscore was calculated as follows:

Riskscore =obgene � Expgene

bgene represents the LASSO regression coefficient of the gene

and Expgene represents the expression level of the gene in each

sample. To validate the model accuracy, the riskscore values for

each sample in the validation dataset were calculated to plot the

diagnostic ROC curves, box plots of the distribution of RiskScore

and heat maps of the expression of the model genes, following the

Riskscore formula and using the same regression coefficients.
2.7 The construction and visualization
of nomogram

Nomogram was established based on multifactor regression

analysis, which integrated multiple predictors and plotted them on

the same plane at a certain scale to show the interrelationships of

variables in the predictive model. Nomogram was constructed using

the rms package Version 5.1-2 in the R (34). Calibration curves were

used to assess the predictive power, decision curve analysis (DCA)

to assess the clinical utility and the Concordance index (C-index) to

evaluate the predictive power of the nomogram.
2.8 Immune microenvironment analysis

The ssGSEA algorithm was used to calculate individual immune

cell enrichment scores using the R package GSVA (version 1.36.2).

Using the Wilcoxon test and Spearman analysis, immune cells with

a p< 0.01 were considered significantly correlated with PCOS (35).
2.9 Drugs prediction

To explore chemical drugs associated with diagnostic genes, we

searched for the targeting drugs (Chemical Interactions) of the key

genes as described above in the online CTD database (https://

ctdbase.org/) (36). Drug-gene relationship pairs were selected to be

supported by at least two references and PPI network construction

was performed using Cytoscape software (version 3.4.0, http://

chianti.ucsd.edu/cytoscape-3.4.0/) (37).
2.10 PCOS patients’ samples collection and
mouse model construction

The details of GCs collection from PCOS patients and controls

are described in a previous publication (13). Briefly, follicular fluid

was centrifuged at 250 x g for 10 minutes after removing the

oocytes. The GCs layer was pipetted into a new centrifuge tube,

washed, resuspended in PBS, centrifuged at 250 x g for 5 minutes

and the cell was collected.
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The PCOS mouse model construction details were described in

a previous publication (13). Briefly, 3-week-old female mice were

injected subcutaneously with DHEA (6 mg/100 g body weight) daily

and controls were injected with an equivalent dose of sesame oil.

Twenty-eight (28) days later, blood was collected from the eyes and

ovarian tissue was collected for testing and analysis (28).
2.11 Gene expression validation with real-
time quantitative PCR

Gene expression with qPCR has been previously described (12,

38). Briefly, mouse ovarian tissue and GCs from PCOS patients were

extracted using the TRIzol method and reverse transcribed using a

cDNA kit. The hub gene expression was measured using qPCR using

Glyceraldehyde phosphate dehydrogenase (GAPDH) as an internal

control. The mRNA expression levels were determined using the

2−DDCt method. The primer sequences are listed in Table S1.
3 Results

3.1 Acquisition of differentially expressed
genes for necroptosis

The four sets of gene expression profiles were combined into

one dataset by removing the batch effect (Supplementary Figure 1,

Figure S1). A total of 453 upregulated and 187 down-regulated

genes were obtained (Figures 1A, B).

We performed WGCNA analysis using the full gene expression

matrix to screen for genes associated with PCOS. Based on

clustering and dynamic pruning methods, highly correlated genes

were clustered and eventually integrated into 14 modules (Figures

S2, 1C). As shown in Figure 1D, the negative correlation coefficients

between the brown and cyan modules and PCOS are significant. In

contrast, the positive correlation coefficients between the green and

turquoise modules and PCOS are remarkable, so the four module

genes (4421 genes in total) were considered closely related module

genes for PCOS (Figure 1D).

A total of 12 differentially expressed genes for necroptosis were

obtained by taking the intersection of necroptosis genes with

differentially expressed genes and PCOS module genes (Figure 1E).

The correlation coefficients between two of the 12 genes were further

calculated and heat maps were created (Figure 1F).
3.2 Functional enrichment analysis

GO and KEGG enrichment analyses were performed to

determine the functions and related pathways of the differentially

expressed genes for necroptosis. We found 102 GO items and 31

KEGG pathways were enriched. The GO analysis showed

enrichment of positive regulation of inflammatory response,

defense response to virus, apoptotic process, regulation of

interleukin-6 production, regulation of MHC class II biosynthetic

process, positive regulation of tumor necrosis factor production,
frontiersin.org
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and positive regulation of necroptotic process in biological process.

Moreover, we observed an enrichment of cell membranes,

cytoplasm in cellular components. Furthermore, cytokine activity

and identical protein binding were enriched in molecular functions

(Figure 2A). Most importantly, the KEGG mainly focused on

necroptosis, HIF-1 signaling pathway, NOD-like receptor

signaling pathway, inflammatory mediator regulation of TRP

channels, NF-kappa B signaling pathway, and Natural killer cell-

mediated cytotoxicity (Figure 2B).
Frontiers in Endocrinology 05
3.3 LASSO algorithm to screen for
differentially diagnostic genes for
necroptosis (NDDGs)

Applying the LASSO Cox regression algorithm, we obtained four

NDDGs BCL2, IL33, PYGM, and TNFSF10 in the training set, which

was used as a necroptosis signature (Figures 3A, B). Furthermore, we

constructed RiskScore model with the corresponding regression

coefficients of NDDGs. The receiver operating characteristic curve
B

C D

E F

A

FIGURE 1

Acquisition of differentially expressed genes for necroptosis. (A) Volcano plot of differentially expressed genes. Red and blue dots indicate
upregulated and down-regulated genes, respectively, and gray is the non-significant gene. (B) Heat map of differential gene expression. Blue is low-
expressed genes and red is high-expressed genes. (C) Systematic clustering tree of genes and gene modules generated by dynamic shearing
method. Different colors represent different gene modules. (D) Correlation analysis of WGCNA modules with the disease status of the samples.
Numbers outside parentheses indicate correlation coefficients and those inside the parentheses indicate p-values. (E) The intersection of
necroptosis genes with differentially expressed genes and PCOS module genes. (F) Correlation analysis of PCOS-associated differential necroptosis
genes. Red sectors indicate negative correlations, while blue sectors indicate positive correlations. The larger fan area indicates the larger absolute
value of the correlation coefficient. Numbers in the lower left corner indicate specific correlation coefficients. WGCNA, weighted gene co-
expression network analysis.
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(ROC) showed that the area under the curve (AUC) was 0.94,

indicating an excellent disease prediction effect (Figure 3C).

Moreover, the RiskScore was significantly higher in PCOS group

than in control, which evidenced the accuracy of the model

(Figure 3D). Furthermore, we have illustrated the relationship

between the expression of the NDDGs and the RiskScore by using a

heatmap (Figure 3E).More importantly, we re-confirmed this model’s

accuracywith the samemethod in the validation set (Figure S3). All the

results proved that the model has a good prediction effect.
3.4 The construction of a nomogram
and ROC curve

To validate the diagnostic ability of the 4 NDDGs for PCOS, we

constructed a nomogram and used calibration curves to assess its

predictability (Figure 4A). The calibration curve showed a minor

error with a C-index of 0.878 between the actual PCOS risk and the

predicted risk, indicating that the nomogram has a high PCOS

predictive accuracy (Figure 4B). Moreover, the decision curve

analysis (DCA) showed a favorable clinical benefit for the
Frontiers in Endocrinology 06
nomogram of patients (Figure 4C). To better assess the clinical

effect of the nomogram, a clinical impact curve was plotted based on

the DCA curve. As shown in Figure 4D, the “Number high risk”

curve is in proximity to the “Number high risk with event” curve for

high-risk thresholds from 0.7 to 1, suggesting that the nomogram

has a desirable performance in prediction.

To further evaluate the prognosis of NDDGs in PCOS patients,

we conducted ROC curve analysis in both the training and

validation cohorts. The results showed that NDDGs have high

accuracy in predicting patient outcomes in both two cohorts.

(Figures 4E, F)
3.5 PPI construction and GSEA enrichment
analysis of NDDGs

We constructed a PPI network and performed functional

analysis for the 4 NDDGs with their 20 reciprocal genes using the

GeneMANIA database. As shown in Figure 5, NDDGs were

involved in apoptotic signaling pathways and mitochondria-

related functional pathways.
B

A

FIGURE 2

Functional enrichment analysis. (A, B) GO (A) and KEGG (B) analysis of PCOS-associated differential necroptosis genes. The color blue to red
indicates the significance from less to more, and the bubble size indicates the number of enriched genes GO, gene ontology; KEGG, Kyoto
encyclopedia of genes and genomes.
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Furthermore, GSEA enrichment analysis was used to mine the

mechanism of KEGG pathway for NDDGs Figure 6. The present

results demonstrate the positively correlated top 6 KEGG pathways

for each gene. The findings show that the pathways were

significantly enriched to T cells as natural killer cell-related

pathways, which implied the crucial roles of the immune

microenvironment in PCOS.
3.6 Relationships between the NDDGs and
the immune microenvironment

In the GSEA analyses, we found that NDDGs were highly

enriched in immune-related pathways. We further employed

ssGSEA algorithm to evaluate the association between necroptosis

and the immune microenvironment in PCOS (Figure 7A). Among

28 immune cells, we identified 13 immune cells that differed
Frontiers in Endocrinology 07
significantly between control and PCOS and were noticeably

enriched in the PCOS group.

Furthermore, we estimated the correlation efficiency between

NDDGs and the immune microenvironment. Among them, PYGM

and TNFSF10 were predominantly favorably correlated with the

immune cells while IL33 was primarily negatively correlated with

natural killer cell, memory B cell, mast cell, immature B cell, effector

memory CD8 T cell, CD56dim natural killer cell, activated dendritic

cell (Figure 7B).
3.7 Validation of NDDGs and drug
prediction

To validate the expression of NDDGs in PCOS, we first tested

the expression of NDDGs using the validation set GSE84958, which

showed significant differences in BCL2 (Fold change (FC) = 1.5),
B

C D

E

A

FIGURE 3

Construction of the diagnostic scoring model (A, B) LASSO logistic regression algorithm used to screen key genes. (C) ROC curves of the diagnostic
model in the training set. (D) Distribution of RiskScore in control and PCOS groups. (E) Heat map of the expression of the NDDGs in each sample.
LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic curve; NDDGs, differentially diagnostic genes for
necroptosis.
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PYGM (FC = 1.87) and IL33 (FC = 1.76) (Figure S4). More

importantly, we collected clinical samples and constructed a

PCOS mouse model for further validation. The results exhibited

that the expression of BCL2 (FC = 1.35 & 1.52), PYGM (FC = 1.38

& 2.08) and TNFSF10 (FC = 1.42 & 1.73) was significantly higher in

the GCs from PCOS patients and ovarian tissues of PCOS mice

compared with controls. In comparison, the expression of IL33 (FC

= 1.27 & 1.32) was notably lower (Figure 8). In general, these results

were consistent with the analysis of the training set.

To predict the corresponding drugs of NDDGs, we searched the

CTD and constructed a network diagram. We discovered 58 drug-

gene relationship pairs in the database containing 4 NDDGs and 45

drug molecules (Figure 9).
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4 Discussion

PCOS is one of the most common endocrine disorders in

women of reproductive age. PCOS patients are often

misdiagnosed or underdiagnosed due to the lack of precise

diagnostic criteria. Discovering new and effective biomarkers may

help facilitate timely diagnosis and intervention for patients with

PCOS. In this study, we construct a risk model based on necroptosis

to assess the progression of PCOS. Based on machine learning and

algorithmic analysis, we identified four necroptosis-related

signature genes, IL33, BCL2, PYGM, and TNFSF10, and further

determined the signaling pathways, immune microenvironment

and targeted drugs.
B

C D

E F

A

FIGURE 4

Nomogram for PCOS patients and ROC curves. (A) Nomogram for PCOS patients. (B) Calibration curve to assess the predictive power of the
nomogram. (C) DCA curve to assess the clinical value of the nomogram. (D) Clinical effects curve based on DCA curves to assess the clinical impact
of the nomogram. DCA, decision curve analysis. (E, F) ROC curves analysis of training set (E), testing set (F).
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In PCOS patients, the prevalence of insulin resistance is around

50-70% (39). Ovarian GCs are energy-consuming cells providing

estradiol and nutrients to the oocyte (40). Consequently, insulin

resistance or apoptosis in GCs can impair oocyte development and

ovulation, an essential cause of PCOS (41, 42). PI3K/AKT-mediated

insulin signaling pathway was closely associated with metabolic

abnormalities and reproductive disorders in PCOS (43). Insulin

could activate AS160, GSK-3b and FOXO1 through PI3K/AKT to

promote GLUT4 transport and glucose uptake and to regulate

gluconeogenesis and glycogen synthesis (44). Insulin resistance

impairs glucose metabolism and imposes a hyperfunctional state

on the ovaries, which increases the response to gonadotropins, leads

to abnormal steroid hormone synthesis and secretion, and results in

excessive follicular recruitment and development (44). In PCOS

patients, insulin resistance in GCs leads to PI3K/AKT signaling

inhibition, contributing to GCs apoptosis and degeneration,

subsequently leading to follicular atresia (45). Besides, Insulin

resistance is an important cause of hyperglycemia in women with

PCOS. Hyperglycemia-derived ROS led to the activation of NF-kB

and the production of pro-inflammatory factors such as TNF or IL-
Frontiers in Endocrinology 09
6 (46, 47). High glucose caused the inhibition of antioxidant

enzymes, reducing the ability of GCs to remove ROS (48). The

accumulation of ROS impairs the function of GCs and causes GCs

apoptosis and follicular atresia. As such, dysregulation of insulin

signaling and high glucose production leads to inflammation and

GCs apoptosis, which might be responsible for antral follicular

atresia and the development of PCOS (49).

PYGM is a muscle glycogen phosphorylase reported to have a

primary role in providing energy for muscle contraction. It is also

expressed in tissues other than muscle, such as the brain, lymphoid

tissue, blood and ovaries (50, 51). PYGM was reportedly involved in

insulin and glycogen signaling pathways, insulin resistance and

necroptosis (51). Based on the increased expression of PYGM in

GCs reported in this study, we speculate that PYGM may

influence PCOS development via insulin resistance regulation in

GCs. Besides, PYGM was also proven to regulate the immune

function of T cells (52). Our immune infiltration results revealed a

significant correlation between PYGM and various T cells. Hence,

PYGM may influence the inflammatory status of PCOS by

regulating the immune infiltration of T cells. However, the
FIGURE 5

Construction of PPI network with GeneMANIA database.
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mechanisms underlying these biological functions need to be

thoroughly investigated.

TNFSF10 belongs to a family of tumor necrosis factor (TNF)

ligands that induce apoptosis by binding to their receptors and

triggering the activation of MAPK8/JNK, caspase 8 and caspase 3

(53). It was reported that TNFSF10 could be a marker of necroptosis

in various diseases, such as ischemic cardiomyopathy and cancers

(54, 55). This study is the first to identify TNFSF10 as a diagnostic

marker of necroptosis in PCOS, and its specific function in the

development of PCOS needs to be further investigated. BCL2 has

been reported to be involved in the development of PCOS (56).

Also, BCL2 was involved in necroptosis in various diseases (57, 58).

In this study, it acted as one of the diagnostic markers of necroptosis

in PCOS, consistent with the previous reports (59).

IL33 is a new member of the IL1 cytokine family and encodes a

cytokine protein. It can function either extracellularly as an

inflammatory factor or intracellularly as a nuclear factor with

transcriptional regulatory functions (60). IL33 is mainly involved in

the maturation of immune cells such as Th2 cells, the activation of mast

cells and natural killer cells. One study found that IL33 expression was

elevated in PCOS patients compared to controls (61). Another showed a

significant decrease in IL33 levels in the ovaries of PCOS rats treated

with omega-6 fatty acids (62). These results implied that IL-33 might be

involved in the development of PCOS as a pro-inflammatory factor.

However, the decreased expression of IL-33 in GCs from PCOS patients

found in the public database in the present study was not consistent

with the reports. The reason for this may be the method of analysis and

the different sources, types, and size of the samples. Instead of using the
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serum of patients and ovarian tissue from rats, we obtained the results

using several databases to analyze PCOS GCs. More importantly, we

verified the expression of IL33 in the validation set GSE84958, clinical

sample and mouse model. Despite this, the reasons for the discrepancy

in results require further analysis.

The GO category “positive regulation of inflammatory response,

apoptotic process, positive regulation of interleukin-6 production,

positive regulation of macrophage activation, positive regulation of

tumor necrosis factor production, positive regulation of necroptotic

process, T cell homeostasis” indicated that the genes were involved in

processes of immune regulation, which fits well with the concept of

PCOS as a chronic inflammatory disease. KEGG enrichment analysis

was significantly linked to necroptosis. The enriched GSEA pathways

involve inflammatory, immune, and apoptotic signaling pathways.

These pathways have included the T cell receptor signaling pathway,

natural killer cell-mediated cytotoxicity, toll-like receptor signaling

pathway, B cell receptor signaling pathway, and cytokine receptor

interaction, critical in the inflammatory response to PCOS.

By analyzing the correlation between diagnostic genes and

immune cells, we found that PYMG and TNFSF10 were positively

correlated with immature B cells, memory B cells, effector memory

CD8 T cell, regulatory T cell, T follicular helper cell and IL33 showed

a negative correlation with immature B cell, memory B cells. Both T

helper cell 17 (T17) and Treg cells belong to CD4+T lymphocytes.

Chronic low-grade inflammation was considered a key factor in the

pathogenesis of PCOS (63). The imbalance of T cell subsets and the

abnormal cytokine concentrations exist in the ovary of women with

PCOS (64). PYGM is also expressed in T lymphocytes, where it plays
B

C D

A

FIGURE 6

GSEA enrichment analysis (A–D) GSEA enrichment analysis of NDDGs of BCL2 (A), IL33 (B), PYGM (C) and TNFSF10 (D). GSEA, gene set enrichment
analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1193992
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1193992
B

A

FIGURE 7

Immune microenvironment analysis. (A) The distribution of 28 immune cells in PCOS and control group. (B) Correlation analysis of 4 diagnostic
necroptosis genes with 13 immune cell species. (* p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001, ns indicates not significant).
B C D

E F G H

A

FIGURE 8

Validation of NDDGs in PCOS patients and mouse model. (A–D) The expression level of TNFSF10, BCL2, PYGM and IL33 in granulosa cells from
PCOS patients and controls. (E–H) The expression level of TNFSF10, BCL2, PYGM and IL33 in the ovarian tissues of PCOS mice and controls.
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a crucial role in the control of IL2–stimulated T-cell migration and

proliferation in an EGFR-dependent manner (52, 65). EGF/EGFR

signaling was reported to affect the proliferation of cumulus GCs,

oocyte maturation and meiosis and play a potential role in the

pathogenesis of PCOS (66). We hypothesize that EGFR may

activate PYGM to regulate T cell migration and proliferation in

PCOS cases. TNFSF10, also known as TRAIL, regulates immune

responses and cell homeostasis via an apoptosis-independent

pathway (67). TRAIL/TRAIL-R interaction regulates CD4+ T cell

activation and directly suppresses T cell activation via inhibiting TCR

signaling, indicating that TRAIL-R is a novel immune checkpoint in

T cell responses (68). In the present study, TNFSF10 was observed to

have a strong positive correlation with CD4+ T cells, suggesting that

it may contribute to immunomodulatory effects in PCOS by

modulating the T-cell response.

As reported, CD19+ B cells could contribute to the pathogenesis

of PCOS (69). The peripheral proportion and activity of CD19+ B

cells were increased in women with PCOS. DHEA-induced

morphological changes to mouse ovaries could be prevented by

CD19+ B cell depletion. Moreover, TNF-a-producing B cells are

involved in the pathological process of PCOS (70). In this study,

GSEA analysis showed that NDDGs were enriched in the B cell

receptor signaling pathway. Immune cell analysis indicated

immature B cells and memory B cell numbers were significantly

higher in PCOS samples. Meanwhile, PYGM, TNFSF10 and IL33

were notably associated with immune infiltration of B cells. It has

been found that TNFSF10 was demonstrated to be upregulated in B

cells in primary Sjögren’s syndrome, suggesting a regulatory role for

TNFSF10 in B cells. Our subsequent concern may be how these

genes regulate B-cell function in PCOS.

We predicted compounds corresponding to the four diagnostic

genes from the CTD database and discovered several compounds,

such as resveratrol, tretinoin, quercetin, curcumin, etc., which have

been investigated as therapeutic drugs for PCOS (71–73). For
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instance, quercetin has been demonstrated to reduce inflammation

in PCOS patients and DHEA-induced PCOS rats (74, 75). Another

study showed that curcuminmight be a safe and useful supplement to

ameliorate PCOS-associated hyperandrogenemia, hyperglycemia,

and hyperlipidemia (76, 77).

Overall, we found IL33, BCL2, PYMG, and TNFSF10 to be

potentially necrotic apoptosis-associated diagnostic markers in

PCOS. Nonetheless, this study has some limitations. The results

were based on mining and analyzing the published database. There

was still a lack of experimental evidence for the mechanism of these

diagnostic markers in necroptosis of GCs and the development of

PCOS. In particular, whether PYMG is involved in the development

of PCOS by affecting insulin resistance and inflammation needs to be

thoroughly investigated. Second, the cellular composition of the

immune infiltrate was significantly different in PCOS patients

compared with normal. Primarily, the activated dendritic cell,

immature B cell, mast cell, MDSC, memory B cell, natural killer

cell, neutrophil, and plasmacytoid dendritic cell may be associated

with GCs necroptosis and the development of PCOS. Further studies

of these diagnostic genes and immune cells may provide feasible

directions for clinical diagnosis and immunotherapy of PCOS.
5 Conclusion

In this study, we constructed a risk model based on necroptosis to

assess the progression of PCOS. Based on machine learning and

algorithmic analysis, we identified four necroptosis-related signature

genes, IL33, BCL2, PYMG, and TNFSF10, and further determined the

signaling pathways, immune microenvironment, and targeted drugs.

Furthermore, the expression of the four model genes was validated in a

PCOS mouse model and clinical samples. This is the first necroptosis-

related signature in PCOS and could be a valuable and non-invasive tool

for diagnosing and evaluating the progression and prognosis of PCOS
FIGURE 9

Drug prediction for the NDDGs. Red circles indicate upregulated genes, green circles indicate downregulated genes, and blue diamonds indicate
drug small molecules. The yellow line represents a drug that increases the expression of a gene or protein, and the blue line represents a drug that
decreases the expression of a gene or protein. The node size denotes the connectivity size.
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patients. This study provides a theoretical basis and new insights into the

pathogenic mechanism and therapeutic drug development for PCOS.
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