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Uncoupling hepatic insulin
resistance – hepatic
inflammation to improve
insulin sensitivity and to
prevent impaired metabolism-
associated fatty liver disease
in type 2 diabetes
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Diabetes mellitus is a metabolic disease clinically-characterized as acute and

chronic hyperglycemia. It is emerging as one of the common conditions

associated with incident liver disease in the US. The mechanism by which

diabetes drives liver disease has become an intense topic of discussion and a

highly sought-after therapeutic target. Insulin resistance (IR) appears early in the

progression of type 2 diabetes (T2D), particularly in obese individuals. One of the

co-morbid conditions of obesity-associated diabetes that is on the rise globally is

referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of

known and suspected mechanism that underlie the progression of NAFLD which

concurrently exhibits hepatic inflammation, particularly enriched in cells of the

innate arm of the immune system. In this review we focus on the known

mechanisms that are suspected to play a role in the cause-effect relationship

between hepatic IR and hepatic inflammation and its role in the progression of

T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break

an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD

with a concurrent restoration of physiologic glycemic control. As part of this

review, we therefore also assess the potential of a number of existing and

emerging therapeutic interventions that can target both conditions

simultaneously as treatment options to break this cycle.
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Introduction

Diabetes mellitus is a metabolic disease clinically-characterized as

acute and chronic hyperglycemia (1). It is emerging as one of the

common conditions associated with incident liver disease in the US.

The spectrum of liver disease ranges from mild transaminitis to non-

alcoholic fatty liver disease (NAFLD). NAFLD encompasses non-

alcoholic steatosis (fatty liver) without inflammation (normal

transaminases), non-alcoholic steatohepatitis (NASH) without

fibrosis, NASH with fibrosis eventually progressing to cirrhosis,

hepatocellular carcinoma and liver failure culminating in death (1,

2). In clinical practice, most patients with NAFLD are asymptomatic

with possible hepatomegaly. They are diagnosed when liver enzymes

ALT and/or AST are elevated, or steatosis is detected on abdominal

imaging. It is a diagnosis of exclusion, and normal liver enzymes do

not eliminate a diagnosis of NAFLD (3–7). Worldwide, the pooled

prevalence of NAFLD (umbrella term of macrovesicular fat

deposition) is 25.24% (8). In the US, a comparison of 3 cycles of

the National Health and Nutrition Examination Survey (NHANES)

based on transaminitis alone, demonstrated a steady increase in the

prevalence of NAFLD from 5.5% in 1988 to 11% in 2008. The

inclusion of steatosis with normal transaminases may account for an

even higher prevalence (9). The prevalence of NAFLD’s closely

associated metabolic counterparts such as essential hypertension,

obesity and diabetes has trended up as well (10). Studies in

multiple countries have demonstrated that NAFLD has a higher

prevalence in men. Prevalence in women increases with age, while it

remains stable in men. Sex hormones, menopausal status and obesity

are major contributing factors to this disparity (11).

The mechanisms by which diabetes drives liver disease have

become a topic of intense discussion and highly sought-after

therapeutic targets. Traditionally, diabetes has been classified into

type 1 (T1D) and type 2 (T2D). T1D begins as an autoimmune

process culminating in an autoimmune inflammation-mediated,

selective impairment of the pancreatic beta cells and overt

hyperglycemia. T2D, instead, is characterized by peripheral

insulin resistance (IR) compensated for by the production of

more insulin culminating in overt hyperglycemia. Accumulating

evidence suggests that these seemingly divergent conditions share

many etiopathogenetic and clinical features other than just

hyperglycemia. Thus, latent autoimmune diabetes of adults

(LADA) presents features of both T1D and T2D and IR is seen in

overweight T1D patients (12). On the other hand, some T2D

patients exhibit pancreatic autoimmunity (13).
Evolution of hepatic IR in T2D and
T2D-associated NAFLD

Broadly-understood, IR is coupled to impaired insulin action at

multiple points in the signaling cascade in the main glucose-

utilizing, insulin-responsive tissues, particularly skeletal muscle,

adipose, and the liver. These as well as possible pressure points of

therapeutic interest are illustrated in Figure 1. These include the

action of lipid mediators, cellular stress, mitochondrial
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abnormalities, and leukocyte-derived soluble molecules (14).

Lipid-induced IR has been observed in the liver (15) as the

consequence of high fat diet (HFD) or lipolysis, where the

concentration of FFA exceeds that of the intracellular fatty acid

oxidation and storage rate, as demonstrated in humans and rodent

models (14). Increased concentrations of diacylglycerol (DAG) also

lead to IR by impairing insulin signaling (14). For example,

plasmalemmal accumulation of intrahepatic DAG stimulates

protein kinase Cϵ and inhibitory insulin receptor kinase

phosphorylation on threonine (16, 17) resulting in IR. These

results were consistent in rodent models and humans. In addition

to protein kinase Cϵ, increased activity of the d enzymatic isoform

in livers of obese humans has been observed to cause hepatic IR

(18). Human study outcomes and rodent models have shown that

activation of other protein kinase C isoforms (d, ϵ, n, q) have been
implicated in DAG release and IR onset or progression (14). Non-

FFA-derived lipids are another species implicated in the onset of

hepatic IR in humans exhibiting NASH. A number of studies in

humans revealed elevated intra-hepatic FFA concentrations

concurrent with hepatic oxidative stress and inflammation (19).

While ceramides have also been implicated in hepatic IR under

obese conditions and T2D evolution, this has been well-reviewed

elsewhere (20) and remains outside the topic of the current review.

While HFD-facilitated elevations in circulating FFAs and lipids as a

basis of IR is strongly-supported by many lines of animal and

human investigation (21), not all situations of IR are a consequence

of this. Cellular stress, instead, is a better predictor of IR in the obese

state. Endoplasmic reticulum (ER) stress, particularly, is a common

finding in the liver among obese men and women (22, 23).

Nevertheless, exposure to HFD in rodents leads to an expansion

of lipid deposition inside the liver followed by hepatic IR even in the

absence of peripheral fat accumulation and peripheral IR. Under

such diet conditions, insulin signaling has been shown to be

impaired, partly due to activation of PKCe and JNK1 (24).

Estrogen has a protective role against hepatic steatosis and insulin

resistance by decreasing triglyceride synthesis and increasing

hepatic FFA oxidation (25). Circulating 17-beta estradiol also

suppresses hepatic gluconeogenesis via FoxO1 signaling,

independent of IRS-1 and IRS- 2 (26). In mice IRS-2 is

transcriptionally-attenuated as a function of sterol-regulatory

element binding protein (SREBP) activation and FoxO

suppression (27–31). This is possibly a consequence of

hyperinsulinemia-induced downregulation of IRS-2 facilitating

hepatic IR (32, 33). Further, growing evidence indicates that

hepatic DAG accumulation potentiates hepatic IR (34) and DAG

levels inside hepatocyte lipid droplets were particularly-informative

predictors of IR in humans (35).
The paradox of increased hepatic
lipogenesis in the presence of
hepatic IR

One of the molecular pathways of insulin signaling is the

activation of Akt which, as it suppresses hepatic gluconeogenesis,
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in parallel causes activation of sterol regulatory element binding

protein 1c (SREBP1c). As demonstrated in transgenic rat

hepatocytes, this is a consequence of Akt-stimulated mammalian

target of rapamycin complex-1 (mTORC1) activity which regulates

the transcription and stability of SREBP1c (36). Activated SREBP1c

stimulates increased expression of genes encoding key enzymes in

FA biosynthesis including those of the fatty acid elongase complex,

fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and ATP

citrate lyase (37). A seeming paradox is observed inside the liver

with developing obesity and progression towards T2D-associated

NAFLD. Impairment of gluconeogenesis suppression occurs

concomitant with de novo lipogenesis (DNL) and IR. This can be

partially explained as a function of liver insulin signaling

stimulating hepatic DNL whose biochemical pathway products

predispose and drive the impairment of gluconeogenesis
Frontiers in Endocrinology 03
suppression. These biochemical pathway products and their

concentrations, evidence suggests, determine the onset and rate of

hepatic structural and cellular damage observed in the onset of

NAFLD in mice (38). The question that remains to be better

understood is, what is the point in hepatic insulin signaling where

its effects on glucose and lipid metabolism diverge?

Some evidence suggests that mTORC1may be one such point of

divergence at the level of hepatic hyperinsulinemia and resistance.

Studies in rodents have shown that the blockade of Akt and PI3K

activity prevents insulin-mediated expression of genes of enzymes

involved in gluconeogenesis while mTORC1 prevented insulin-

dependent induction of SREBP1c without any effect on

suppression of expression of gluconeogenetic genes (39).

mTORC1 is a nutrient-sensing biochemical control point

promoting its re-distribution to the lysosome (40–42). However,
FIGURE 1

Insulin-sensitive inter-organ effects of obesogenic diets in the deterioration of insulin sensitivity and possible treatment pressure points. Obesogenic
diets promote a state of systemic low-grade inflammation which contributes to, and is response to pathologic changes in glucolipometabolism in
the main insulin-sensitive tissues and organs. The intestinal microbiome is altered causing changes in the complement of short-chain fatty acids
produced. These are released into the circulation affecting insulin sensitivity and potentiate systemic and insulin-sensitive tissue inflammation.
Obesogenic diet causes adipose hypertrophy and expansion, resulting in the conversion of resident M2 macrophages into pro-inflammatory M1
macrophage. Concurrent core adipose hypoxia creates an environment that signals “danger”. This initiates the accumulation of neutrophils and other
leukocytes which become activated, further potentiating local inflammation. The net result is peripheral insulin resistance, consequent to insulin
receptor signaling impairment due to the action of immunokines produced by the accumulating pro-inflammatory leukocytes. IL-6, for example,
acting via the IL-6 receptor on adipocytes, impairs insulin-stimulated phosphorylation of signaling components downstream of the insulin receptor
tyrosine kinase. Skeletal muscle is susceptible to expanding fat and accumulation of lipid droplets, as well as the effects of circulating FFA on
hepatocytes cause the accumulation of leukocytes and their activation, with a net effect of insulin signaling impairment. The different classes of
agents shown in the Figure have shown variable beneficial effects on insulin sensitivity. Combination approaches could simultaneously act
systemically and on the key insulin-sensitive tissues, attenuating inflammation thus facilitating better insulin sensitivity.
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as demonstrated in transgenic mouse models, mTORC1, on its own,

is insufficient to cause de novo lipogenesis and NASH, at least in the

absence of Akt2 (43). The nuance in these observations is best

evaluated noting the role of tuberous sclerosis complex (TSC)

proteins (44, 45). A number of mouse models have shown that

Akt stimulation of mTORC1 is conditioned on TSC2 inhibition.

Hepatic deletion of TSC1 results in an insulin-depended mTORC1

activation and protects from steatosis and de novo lipogenesis (44,

46). Additional studies in mice exhibiting hepatocyte-targeted

inactivating genetic modifications of Akt, FoxO1, and TSC1,

insulin-dependent co-ordinate activation of mTORC1 and FoxO1

inhibition were considered to be sufficient and possibly-necessary

for insulin-dependent de novo lipogenesis (47, 48).
The stress response as one of the
mechanisms involved in the evolution
of hepatic IR

Co-incident with the onset of NAFLD, are a series of changes

inside hepatocytes indicating an acute stress response; changes

concomitant with intra-hepatic inflammation (49). Central to this

stress response is the unfolded protein response (UPR) with its

fulcrum point the endoplasmic reticulum (ER). Hepatic ER stress

has been observed in NAFLD (50) and related to its progression,

including its mechanistic relationship with hepatic insulin

resistance (51). ER stress has been coupled to steatohepatitis-

associated insulin resistance (52). Moreover, de novo lipogenesis

in the liver has also been linked to hepatocyte ER stress (53).

Pharmacologic suppression of Caspase-2 as well as Caspase-2

disruption, observed in hepatocyte ER stress-associated NASH

prevented fibrosis and inflammation by preventing SREBP1 and

SREBP2 activation. These observations suggested that ER stress

could participate in the early onset of hepatic insulin resistance, de

novo lipogenesis and the progression towards NAFLD.
Amino acids in the evolution of
hepatic IR

It stands to reason that, especially under HFD conditions, lipids

and FFAs are widely-viewed as the basis of IR, systemic or hepatic,

however, other metabolites, especially in high fat “Western diets”

have been implicated. Several amino acids (AA) have been shown to

contribute to IR (15). In humans, AA elevation in plasma impairs

insulin-stimulated glucose disposal in skeletal muscle. The

mechanism appears to be through the mammalian target of

rapamycin (mTOR)/S6 kinase pathway and phosphorylation of

IRS-1 (54). Branched-chain (BC) AA are constituents of liver

gluconeogenesis and their levels in the circulation have been

found to be correlated with IR in humans (55). In skeletal muscle

under hypersinulinemic conditions, BCAA impair glucose disposal

and augment ATP synthesis without any effect on mitochondrial

abundance of DNA (56, 57). In contrast, transient dietary reduction
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of BCAA reduces post-prandial insulin secretion and improves

adipose metabolism (58).
Leukocytes, immunokines, and
inflammation: cause or outcome
of hepatic IR, in response to
metabolic stress?

Macrophages are possibly the first leukocytes to accumulate

inside the liver of obese individuals concomitant to IR onset

(peripheral and/or hepatic) (59). These cells impair insulin

signaling mainly via secreted immunokines (60). Liver-resident

macrophages have been implicated in the onset and progression

of hepatic IR and a number of overlapping mechanisms have been

identified in their activation. While the following observations have

been made mainly in skeletal muscle, and muscle-associated

adipose, one can anticipate similar mechanisms to participate in

hepatic IR: Accumulation of lipids inside myotubes in humans and

rodent models, stimulates NF-kB nuclear translocation, attenuated

mitochondrial respiration, fragmentation and mitophagy and

elevated production of reactive oxygen species (ROS) (61).

Systemic IR is widely-reported to co-incide with macrophage

accumulation and activation inside adipose (62), however,

adipose IR can manifest adipose macrophage accumulation and

activation (63), suggesting that, at least in some instances, IR can

precede an inflammatory state and may in fact represent a “danger”

signal causing the eventual activation of Kupffer cells and liver

macrophages. Potential mechanisms underlying an IR-first cause

could involve local hyperinsulinemia-stimulated activation of these

leukocytes and/or hyperinsulinemia-stimulated increase in

microvascular blood flow, hyperoxygenation and hepatic cell

stress. Hyperinsulinemia would then be a consequence of

pancreatic b cell impairment. A number of known mechanisms of

peripheral IR could cause beta cell impairment via stress induction,

UPR, and failure to sense glucose/produce insulin (64, 65).

Overnutrition and obesity lead to a systemic low grade chronic

inflammatory state referred to as meta-inflammation, characterized

by adipocyte necrosis and altered secretory phenotype in adipocytes

(66–68). This results in the recruitment and release of

proinflammatory cells and cytokines, such as TNFa expressed by

macrophages and monocytes infiltrating obese adipocytes. Adipose

tissue contains predominantly M2 macrophages, with a phenotypic

switch to M1 in obese persons. M1 macrophages produce

chemokines such as MCP-1 which recruit circulating monocytes

to the liver and adipose tissue where they can undergo maturation

into the pro-inflammatory M1 phenotype. Adipocytes also produce

low levels of TNFa, leading to MCP-1 production and macrophage

infiltration in adipocytes, triggering release of pro-inflammatory

cytokines, such as IL-6 and IL-1b (69). The level of pro

inflammatory cytokines in subcutaneous abdominal adipose

tissue, inversely correlates with hepatic and systemic insulin

sensitivity. Obese individuals with NAFLD have shown a decrease

in hepatocyte insulin signaling compared to obese individuals with
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normal intrahepatic triglycerides (70). This low grade chronic

inflammatory state in adipose tissue further contributes to IR via

TNFamediated serine/threonine phosphorylation of IRS-1, leading

to enhanced lipolysis and increased exposure of hepatocytes to

lipids (71, 72), fueling the progression of NASH.

More recent human and rodent studies, however, show that

macrophages alone may not be sufficient to be involved in hepatic

pathology concomitant to obesity-driven IR. Accumulation of

neutrophils occurs very close to, or concurrent with that of

macrophages (73). Indeed, more recent data demonstrate a

prominent role of neutrophils over macrophages as being pivotal

leukocytes that license and co-operate with macrophages in the

onset of IR and T2D (74, 75). Neutrophil migration to sites of

“danger” and their activation is a function of the balance of the

CXCR2/CXCR4 chemokine receptor density on their surface (76).

Neutrophil-attracting CXCR2 ligands are expressed in the pancreas,

adipose and liver (77), suggesting that under potentially-stressful

states, their secretion can be expected to recruit and activate

neutrophils, which in turn would exacerbate and amplify a low

grade inflammatory condition (78).

With the activation of leukocytes inside the liver, such as

macrophages, growing intra-hepatic lipid deposition results in

immunokine release [reviewed in (79) and (80)] which

potentiates adipocyte lipolysis (81) concomitant to inhibition of

hepatic insulin signaling (81, 82). Immunokines promote not only

hepatic, but also systemic IR (83, 84), and cytokines like TNFa are

detectable and upregulated in concentration inside the liver and

adipose tissue of NASH patients (85), suggesting that upregulated

TNFa in adipose might potentiate the progression of NAFLD in

two ways: systemic IR and activation of a peripheral inflammation

of insulin-responsive tissues (86). For example, adipose-produced

IL-6 in liver stimulates hepatic SOCS3, suppressing insulin

signaling, resulting in hepatic IR (87). Serum IL-6 concentrations

are elevated in NAFLD and NASH (88).
Possible strategies to improve hepatic
insulin sensitivity

The most obvious approaches to improving insulin sensitivity

are diet changes and exercise that result in weight loss. However,

work-life balance, in many instances, can impede commitment to

defined diet and even low-level exercise activity. The distinct sex

related disparities in the prevalence of NAFLD due to an interplay

of sex hormones, age related hormonal changes as well as diseases

such as polycystic ovarian syndrome and Turner’s Syndrome may

warrant exploration into sex-specific therapeutic strategies that

have been presented and/or reviewed elsewhere (89–93).

An array of different medicinals has been developed specifically

to lower glucose concentrations, improve insulin production and/or

correct weight and attenuate inflammation. Table 1 presents the

clinical studies where insulin sensitivity, and hepatic insulin

sensitivity in particular, was one of the outcome measures. Other

classes of drugs have been repurposed for these indications. Their
Frontiers in Endocrinology 05
effects on IR have been mild to variable. A single class of agent to

improve insulin sensitivity together with prevention of IR-

associated liver pathology remains to be discovered, although we

have shown that a neutrophil-targeting CXCR2 antagonist could

offer such a solution [see below, (105)].
Antihyperglycemic agents

Sulfonylureas lower blood sugar concentrations by stimulating

insulin secretion independent of food intake, however, they are

associated with hypoglycemia. While some studies demonstrated

beneficial effects on IR, others could not (106, 107). Sulfonylurea use

is slowly being replaced by newer agent classes to treat hyperglycemia.

Metformin remains a first-line glucose lowering agent. Although

the underlying mechanism of action remains incompletely

understood, it appears that it inhibits the hepatic glycerol-3-

phosphate dehydrogenase activity, resulting in suppression of

glycerol-induced gluconeogenesis and increased cytosolic redox

state. Together, these actions lead to a reduction in lactate

dehydrogenase and lactate-induced endogenous glucose production

(108). Other possible mechanisms of action include the inhibition of

complex I followed by increased AMP, activating AMP kinase and

facilitating fatty acid oxidation in liver and reduced expression of

genes encoding enzymes involved in gluconeogenesis. Additionally,

AMP interferes with glucagon signaling and gluconeogenesis (108).

In non-hepatic tissues, metformin increases insulin stimulated

glucose utilization (108) and AMP kinase activity (109). A meta-

analytic inspection of 11 randomized controlled trials (RCT) in obese

and overweight adolescents, revealed that metformin reduced fasting

plasma glucose (FPG) at less than 6 months, without impacting

insulin sensitivity (110). Another meta-analysis of 31 RCT using

metformin for more than 8 weeks in individuals at high risk for T2D

revealed that it improved insulin sensitivity concurrent with a

reduced incidence T2D (111). An additional meta-analysis in

patients with NAFLD revealed benefit in insulin sensitivity without,

however, any improvement in NAFLD liver histology (112).
Peroxisome proliferator-activated
receptor agonists

PPAR agonists, particularly those for PPARg, have shown

promising efficacy in improving IR and liver histology in T2D-

associated NAFLD. As a class, they also suppress the production of

pro-inflammatory immunokines concurrent with stimulation of

adiponectin production (113, 114). Pioglitazone treatment of T2D

patients has resulted in beneficial outcomes in NAFLD (62)

resulting in improved liver and peripheral insulin sensitivity

(101). While its use has been somewhat questioned due to

adverse event concerns (115), a more recently-developed agent,

lobeglitazone, exhibits improved safety with improvements in

insulin sensitivity and liver steatosis in T2D-associated NAFLD

(116). Another PPARg-sparing agent, MSDC-0602K, also achieves
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TABLE 1 Clinical trials assessing the 3-month (and greater) outcomes on insulin sensitivity in overweight/obese individuals with or without type 2 diabetes.

Study
Agent

Study Design Main Outcome(s) Metabolic Outcomes Reference

Lixisenatide
vs
Placebo

Randomized, Placebo-
controlled

Decreased HbA1c Decreased
- FPG
- BW
- 2hr PPG
Increased
- HOMAb

Ahren et al. (94)

Dulaglutide
vs
Liraglutide

Randomized, Parallel Decreased HbA1c Decreased
- FPG
- BW
- PPG

Dungan et al. (95)

Exenatide
vs
Placebo

Randomized, Placebo-
controlled

Decreased
- HbA1c
- Hepatic triglycerides
- Epicardial adipose

Decreased
- BW

Dutour et al. (96)

Dulaglutide
vs
Liraglutide
vs
Placebo

Randomized, Placebo-
controlled

Decreased HbA1c Decreased (both agents vs.
placebo)
- HbA1c
- FPG
Increased
- HOMA-2 %b

Miyagawa et al.
(97)

Empagliflozin
vs
Placebo

Randomized, Placebo-
controlled

Decreased Hepatic Lipid Content Decreased
- FPG
- BW
- Uric acid

Kahl et al. (98)

SAR425899
vs
Liraglutide
vs
Placebo

Randomized, Parallel Decreased HbA1c (both agents vs. placebo)
Increased
- HOMA-2 %S

Schiavon et al. (99)

Saroglitazar
vs
Placebo

Randomized, Placebo-
controlled

Increased
- Glucose Metabolism (M)
- Insulin Sensitivty (M/I)
- HOMA-b

Decreased
- HbA1c
- FPG
- Triglycerides
Increased
- HDL-C

Jain et al. (100)

Pioglitazone
vs
Placebo

Randomized, Placebo-
controlled

Increased
- Glucose Disposal Rate
- Insulin-Stimulated Suppression of Endogenous Glucose
Production

Decreased
- HbA1c
- FPG
- Plasma TG
- Visceral Fat
- BW
Increased
- BW
- Fat Mass
- Subcutaneous Fat

Miyazaki et al.
(101)

Semaglutide
vs
Empagliflozin

Randomized
Active Control

Decreased
- HbA1c

Decreased
- FPG
- Fasting Plasma Insulin
- Fasting C-Peptide
- BW
- CRP

Rodbard et al.
(102)

Canagliflozin
vs
Placebo

Decreased
- Hepatic Triglycerides
Increased
- Insulin-Stimulated Suppression of Endogenous Glucose
Production
- Beta Cell Function

Decreased
- HbA1c
- FPG
- Fasting Plasma Insulin
- BW
Increased
- Insulin Clearance
- FFA

Cusi et al. (103)

(Continued)
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insulin-sensitizing peripheral effects safely (117). More recently,

CHS-131 demonstrated significant dual-target outcomes,

improving fasting insulin levels and insulin sensitivity, total

plasma cholesterol, triglycerides, liver enzymes, and increased

plasma adiponectin levels. Most importantly, CHS‐131 improved

liver histology and markers of hepatic fibrosis (118). Fibrates,

ligands of PPARa, reduce fasting plasma glucose, insulin, and

improve insulin sensitivity (119) although some questions remain

about their true efficacy (120). Seladelpar and GW501516 are

PPARd agonists shown to improve insulin sensitivity in obese

individuals (120, 121) with mechanisms of action that include

increased fatty acid oxidation in skeletal muscle and attenuation

of macrophage pro-inflammatory state (122). Another PPAR agent

is Elafibranor, a PPARa/d agonist, which reduces inflammation and

enhances both peripheral and liver insulin sensitivity under obese

conditions (123, 124), although the latter findings remain to be

validated (125). Saroglitazar is a dual PPARa/g agonist with whole

body insulin sensitivity improvement without adverse events noted

with the use of other PPARa/g agonists (100, 104). A pan-PPAR

agonist, lanifibranor, is currently being tested in phase II studies,

with enabling data showing improved insulin sensitivity in T2D and

improved intra-hepatic lipid content in T2D-associated NAFLD

(clinicaltrials.gov #NCT03459079).
Fatty acid synthetases

A randomized single blinded phase 2a clinical trial evaluated the

efficacy of a fatty acid synthetase inhibitor TVB-2640 on de novo

lipogenesis in a population of NASH patients (126). Fatty acid

synthetases convert metabolites of simple sugars to palmitate (126).

The rationale behind this was to reduce de novo lipogenesis in

patients with NASH. The outcome demonstrated decreased liver fat

by 9.6% in a population with fatty liver and fibrosis that included

subjects with diabetes.
Incretins

GLP-1 agonists like exenatide, liraglutide, semaglutide, and

lixisenide can improve insulin sensitivity, although it is not clear if

this effect is in the periphery or in the liver as well (94, 96, 102, 127,

128). Glucose-dependent insulinotropic polypeptide (GIP;

tirzepatide) use also achieved some insulin sensitivity improvement

in T2D, although again it is unknown if this acted at the level of the

liver (127). Reduced hepatic inflammation and lipid deposition was
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demonstrated in T2D-associated liver pathology following a tri-

pathway-targeting approach using HM1521, an agent that targets

glucagon/GIP/GLP-1Ra in mice and in humans (117, 127).
a-Glucosidase inhibitors and sodium
glucose co-transporter-inhibitors

While a-Glucosidase inhibitors (AGI) are not a priori thought

of as agents that could affect IR, clinical studies have shown that

they can, following establishment of a steady dose level (129, 130).

These effects are expected to be extra-hepatic and a consequence of

attenuation of hyperglycemia. In a similar manner, Sodium Glucose

Co-transporter-2 Inhibitors (SGLT2I) have also demonstrated

some insulin sensitivity enhancing effect (103, 131, 132) including

a positive effect on liver IR (103) with neutral outcomes on non-

hepatic IR (133).
Leukocyte and immunokine-targeting
anti-inflammatory agents

It stands to reason that the accumulation of pro-inflammatory

leukocytes and elevation of the concentration of their pro-

inflammatory soluble mediators inside insulin-sensitive tissues is

a high-priority target of therapy aimed to restore normal insulin-

sensitivity in T2D as well as prevent any T2D-associated liver

impairment that can be a consequence of, or drive hepatic IR.

Salicylates were among the earliest agents tested for this objective

and demonstrated mild improvement in peripheral glucose disposal

(134, 135).

Inhibition of TNFa action with a variety of antibodies

(etanercept, infliximab, adalimumab) improved insulin sensitivity

in some patients, however, the heterogeneity of the study

populations requires validation of those outcomes (135, 136).

Targeting the IL-1b system (using IL-1 receptor antagonist

protein, or antibodies like canakinumab and gevokizumab)

improves glucoregulation overall, absent of any discernible effects

on insulin resistance in T2D (135). In contrast, using the IL-6-

targeting antibody tocilizumab, which aims to break the IL-6-

mediated interference of insulin signaling, achieved statistically-

relevant improvement of insulin sensitivity in obese patients (137).

Some excitement was generated when initial results from pre-

clinical and early-clinical outcomes were reported showing

improved hepatic function with the use of cenicriviroc, a dual

CCR2/CCR5 chemokine receptor antagonist in hepatic pathology,
TABLE 1 Continued

Study
Agent

Study Design Main Outcome(s) Metabolic Outcomes Reference

Saroglitazar
vs
Pioglitazone

Randomized, Parallel Decreased
- HbA1c
- FPG

Decreased
- Triglycerides
- VLDL-C
- LDL-C
- HDL-C

Krishnappa et al.
(104)
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however these reactions were tempered when the agent was unable

to improve insulin sensitivity in patients with NASH (138).

As neutrophil accumulation into areas characterized by

molecular and microenvironmental structural anomaly is a

function mainly of the balance of CXCR2 and CXCR4 ligands

and the neutrophil cell surface ratio of CXCR2:CXCR4 chemokine

receptors (76), modulation of signaling via these receptors was

proposed to be potentially therapeutic for T2D progression, IR, and

possibly NAFLD. CXCR2-deficient mice are resistant from high fat

diet-induced IR and T2D and are characterized by reduced

macrophage accumulation in adipose (139). We recently

demonstrated that a selective CXCR2 antagonist, AZD5069 (140)

treatment of high fat diet-fed mice, improved insulin sensitivity and

insulin-induced suppression of hepatic glucose production,

decreased hepatic lipid storage, and significantly-prevented the

progression towards liver pathology reminiscent of NAFLD.

Myeloperoxidase (MPO) is a key enzyme in neutrophil

respiratory burst, that generates reactive oxidation species. Studies

have shown an increase in the prevalence of MPO-positive Kupffer

cells and neutrophils in the liver during NASH. The free radicals

produced by MPO could participate in liver damage, directly (on

hepatocytes) and/or on the stroma. MPO-deficient mice fed a high fat

diet were protected against NASH-related liver injury. Additionally,

mice fed with an oral MPO inhibitor exhibited reduced transaminitis

and fibrosis (141). Thus, this enzyme, targeted alone or together with

CXCR2 inhibitors/antagonists could represent a novel therapeutic

approach in liver IR-related NASH (142, 143).

Currently there are no FDA-approved single agent treatments

for the concurrent management of insulin sensitivity and the

prevention (or at least the attenuation of progression to) to

NAFLD/NASH in individuals with metabolic syndrome and T2D.

The closest drug to market is obeticholic acid which recently

completed a phase 3 clinical trial, but has yet to be approved by

the FDA due to safety concerns in long term adverse effects (144).

Our outcomes with AZD5069, as a single agent, showing benefits in

the prevention of progression of insulin resistance and liver

pathology reminiscent of NASH/NAFLD, as well as clinical trials

in humans showing that AZD5069 was very well-tolerated with few

side effects (145), offer an opportunity for this and possibly other

similar drugs (e.g. ladarixin (146),) to enter clinical consideration as

adjunctive treatments to standard of care of obesity and T2D to

prevent and/or attenuate insulin resistance and liver pathology.

AZD5069 and similar agents may be found to exert their overall

effects in a wider-ranging manner. For example, by preventing

CXCR2-stimulated inhibition of insulin-induced glucose transport

in muscle cells (147). Additionally, by preventing the effects of IL-8

(produced by growing adipose) on insulin-induced Akt

phosphorylation in adipocytes (148, 149). This furthers

strengthens the rationale that these agents can be potentially

helpful treatments in insulin resistance-incident obesity and T2D.

Finally, ongoing studies in our laboratory will soon determine if

neutrophil antagonism impacts macrophage accumulation and

function and thus, in an indirect manner, AZD5069 and similar

agents, such as ladarixin (146), could prevent accumulation and

further activation of liver-resident macrophages.
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Modulation of lipid and
energy metabolism

Improvement in insulin sensitivity in obesity and T2D-associated

NAFLD have been achieved using lipid metabolism-modifying agents

like ketohexokinase inhibitor, a protein tyrosine phosphatase-1B

inhibitor, or an w3-fatty acid [reviewed in (117)]. Liver-targeted

dinitriophenyl (DNP)-methyl ether (DNPME) and mitochondrial

protonophore (CRMP) aiming to motivate hepatic fatty acid

oxidation while reducing lipid accumulation improved systemic IR

in rodent and non-human primate models of obesity-associated

NAFLD (150). Another mitochondrion-acting agent, BAM15, also

showed evidence of improving systemic IR and liver inflammation as

well as pathology in mouse models of obesity (150). Precise targeting

of sensitive points inside these pathways without systemic adverse

events or toxicities remains a largely-unexplored area of T2D

pharmaceutical research, especially for the objective of improving

IR concurrent with delaying or obviating liver pathology.
Discussion

It is now evident that inflammation dependent pathways have a

clear pathological role in the propagation of NAFLD. Initially, IR and

hepatic lipid accumulation result in oxidative stress and activation of

inflammatory pathways in the liver. In fact, inflammation plays a key

role in IR as well. Overnutrition and increased caloric intake, set the

stage for IR via multiple mechanisms. IR and hepatic lipid

accumulation result in oxidative stress and activation of

inflammatory pathways in the liver. Additionally, ER stress

culminates in the UPR aimed at reducing ER burden while

simultaneously increasing the translation of pro-apoptotic proteins.

Finally, obesity-mediated adipocyte inflammation and necrosis

results in a systemic meta-inflammation mediated by macrophages

and cytokines such as TNFa and IL-8. IR contributes to hepatic

steatosis through an increase in the circulating FFA, further leading to

inflammation dependent liver injury resulting in NASH. This

happens through liver macrophages in combination with, as

emerging evidence indicates, the increased recruitment of

neutrophils through CXCR2 signals. This recruitment of

inflammatory cells to the liver plays a key role in the pathogenesis

of NASH. Functionally, peripheral IR, especially in the liver further

impairs systemic glucoregulation. The liver is a key site of

gluconeogenesis, typically down regulated by insulin via the

interference in transcription of gluconeogenic genes. Insulin

physiologically favors lipogenesis and inhibits gluconeogenesis.

Paradoxically, during IR states in the liver, there continues to be an

increase in lipogenesis and gluconeogenesis referred to as selective IR.

This culminates in NASH and systemic hyperglycemia, contributing

to the diabetic phenotype.

With respect to therapeutics, a novel approach is to target IR

and interfere with the natural disease progression of NASH. Bearing

in mind that IR often precedes NASH and has an overlapping

pathogenesis in the form of systemic meta-inflammation,
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combination therapy targeting at least two distinct inflammation

networks would have maximum synergistic value. CXCR2

antagonists are a novel approach that have demonstrated both an

improvement in insulin sensitivity and interference in the natural

disease progression of NASH, through an interference in

recruitment of inflammatory cells. CXCR2 antagonists in

combination with PPARg agonists may have a synergistic role

considering the latter’s proven efficacy in improving insulin

sensitivity and potential in NASH treatment. PPARg agonists

improve insulin sensitivity by increasing adiponectin and GLUT-

4 translocation. Though limited by their side effects such as

pulmonary edema in clinical practices new alternatives like CHS-

131 show promise in this aspect, alone or in combination.
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