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Lifestyle changes have made metabolic disorders as one of the major threats to

life. Growing evidence demonstrates that obesity and diabetes disrupt the

reproductive system by affecting the gonads and the hypothalamus-pituitary-

gonadal (HPG) axis. Apelin, an adipocytokine, and its receptor (APJ) are broadly

expressed in the hypothalamus nuclei, such as paraventricular and supraoptic,

where gonadotropin-releasing hormone (GnRH) is released, and all three lobes

of the pituitary, indicating that apelin is involved in the control of reproductive

function. Moreover, apelin affects food intake, insulin sensitivity, fluid

homeostasis, and glucose and lipid metabolisms. This review outlined the

physiological effects of the apelinergic system, the relationship between apelin

and metabolic disorders such as diabetes and obesity, as well as the effect of

apelin on the reproductive system in both gender. The apelin–APJ system can be

considered a potential therapeutic target in the management of obesity-

associated metabolic dysfunction and reproductive disorders.
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1 Introduction

Sedentary lifestyles and dietary changes in recent decades have increased the risk of

metabolic disorders such as obesity and diabetes worldwide (1). As a result, more than a

third of the world’s population is overweight and obese (2).

Obesity is a common metabolic disorder, which is defined as an abnormally high or

excessive accumulation of fat and hence a high body mass index (BMI) (3, 4). The World

Health Organization (WHO) defines BMI of ≥ 25 kg/m2 as overweight, ≥ 30 kg/m2 as obese,
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and ≥ 40 kg/m2 as severely obese (3). A Western diet and reduced

physical activity are the primary environmental factors that cause

obesity, in addition to genetics (5).

Obesity caused by a high-fat diet (HFD) can increase the risk of

cardiovascular diseases and metabolic disorders such as type 2

diabetes mellitus (T2DM) and dyslipidemia (4). Many studies

have shown that obesity or diabetes in both genders is associated

with reproductive dysfunction and infertility by disrupting the

hypothalamic-pituitary-gonadal (HPG) axis, as well as by

reducing the number and quality of sperm and oocytes (3).

Adipose tissue, the main site of lipid storage, is involved in the

production of adipokines or adipocytokines, such as leptin,

adiponectin, resistin, visfatin, and apelin, which play a critical role in

the control of glucose and lipid metabolism, insulin sensitivity, energy

metabolism, immune system, and neuroendocrine function (6–9).

Apelin is a ligand of the G-protein-coupled receptor (GPCR)

and regulates several biological functions in the human and rodents

body, including blood pressure, fluid homeostasis, food intake and

energy balance, immune response, and neuroendocrine response to

stress via its autocrine, paracrine, endocrine, and exocrine effects

(10, 11). Apelin is produced by adipose tissue, and many other

tissues like the central nervous system, heart, kidneys, lungs,

mammary glands, and placenta (12, 13). Moreover, its receptor

(APJ) is broadly distributed in the lungs, cardiovascular system,

kidney, mammary glands, white adipocytes, central nervous system,

paraventricular nuclei, gastric mucosa, testes, and uterus (14, 15).

Of note, apelin plays an important regulatory role in glucose

metabolism with its insulin-mimetic effects and lipid metabolism by

promoting fuel consumption and reducing fat mass (16). According

to previous studies, obesity and T2DM by inducing insulin

resistance increase apelin levels (17). Moreover, previous studies

indicated that the serum levels of apelin and its receptor gene

expression can be influenced by diet (18, 19). Apelin expression is

also influenced by nutritional status and its plasma levels decrease

with fasting and increase with re-feeding (16).

The role of apelinergic system on the HPG axis has been proven,

and apelin has been widely described as an influential factor in

controlling reproduction in both genders (20). Due to the presence

of apelin and its receptor in reproductive-related areas such as the

hypothalamus and pituitary gland, its role in controlling the

secretion of LH (luteinizing hormone) and FSH (follicle-

stimulating hormone) is understandable (21). Furthermore, apelin

is associated with reproductive disorders such as polycystic ovary

syndrome (PCOS), endometriosis, and ovarian cancer (22).

This review outlines the current knowledge regarding the role of

the apelinergic system in different physiological processes from the

periphery to the brain, with an emphasis on the regulation of

metabolism and metabolic disorders, namely diabetes and obesity.

Moreover, its critical role in the physiology of the HPG axis and the

reproductive system of both males and females was discussed.
2 Obesity and the reproductive system

Obesity can affect female reproductive processes, including

ovarian follicular recruitment, oocyte growth and quality, oocyte
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fertilization, embryonic growth, and evolution and implantation

(3). Obese women exhibit lower levels of sex hormone-binding

globulin (SHBG) and higher levels of androgens, estrogens, and

insulin than those with normal body weight (3, 23, 24). Owing to

extensive adipose tissue in obese women and the high activity of

aromatase enzyme, a larger amount of androgens is converted into

estrogens (25), which in turn through negative feedback on the

HPG axis impairs gonadotropin secretion resulting in ovulation

dysfunction and irregular menstruation (3, 25).

Obesity also adversely affects the male reproductive system and

decreases fertility rates (26, 27) owing to a decrease in sperm

concentration, an increase in the number of abnormal sperm, and

abnormal sperm motility (28, 29). The results of a meta-analysis

showed that for every five units of BMI increase, all sperm

parameters, including total sperm count, sperm concentration,

and semen volume, declined by 2.4%, 1.3%, and 2.0%,

respectively (30).

Maternal obesity and HFD also have adverse effects on the

reproductive systems of offspring (18). Epidemiological studies in

recent decades show that maternal nutrition during pregnancy has

important effects on the offspring’s fertility (31). Maternal nutrition

during pregnancy can lead to growth abnormalities and

reproductive dysfunctions (32). Our previous study revealed that

maternal HFD during pregnancy and lactation markedly decreased

the number of primary, secondary, and graafian follicles, while

increasing the number of atretic follicles in their offspring (18).

HFD has also been shown to increase atretic follicles through up-

regulation of ovarian cell cycle inhibitors, expansion of granulosa

cells (Gc) apoptosis (33), or modifications of the expression of genes

engaged in growth, development, and apoptosis of follicles in the

ovary (34).
3 Diabetes and the
reproductive system

The International Diabetes Federation estimates that 387

million people have diabetes and this is expected to rise to 592

million by 2035 (35, 36). The most common feature of diabetes is

hyperglycemia, which occurs as a result of impaired insulin

secretion or insulin action (37). Diabetes has become a major

public health concern due to its complications, such as

neuropathy, nephropathy, retinopathy, cardiovascular disease, and

subfertility and infertility (38).

In recent decades, the link between obesity and T2DM has

become well-known, and the main cause of this relationship is

insulin resistance (39). Obesity is described by enlarged adipose

tissue and dyslipidemia resulting in an excessive non-esterified fatty

acids (NEFAs) release and the secretion of several biologically active

elements, so-called adipokines, including tumor necrotic factor-a
(TNF-a) and interleukin-6 (IL-6), leptin, and adiponectin, from the

adipose tissue, ultimately promoting systemic low-grade

inflammation or meta-inflammation. Obesity-associated

inflammation can impair insulin signaling through serine

phosphorylation of insulin receptor substrate-1 (IRS-1) and

inhibiting phosphatidylinositol 3-kinase (PI3K)/protein kinase B
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(PKB) signaling, resulting in impaired glucose uptake. Besides,

disproportionate FFA delivery to the liver increases the rate of

gluconeogenesis, resulting in hyperglycemia. Furthermore, long-

term exposure to elevated FFAs and increased hepatic triglyceride

and glucose synthesis synergistically cause damage to the b-cells of
the pancreas and impair insulin secretion, contributing to the

development of insulin resistance and T2DM (40, 41).

Increasing the incidence of diabetes in both genders is a major

concern for reproductive health (42). Clinical evidence and animal

studies have proven that diabetes disrupts fertility, directly by

impairing the function and structure of the gonads or indirectly

by affecting the HPG axis (43–45). A low amount of gonadotropin-

releasing hormone (GnRH) or a decrease in the sensitivity of the

pituitary gland to GnRH is one of the factors related to the HPG

axis dysfunction (46). The dopaminergic activity also increases in

diabetic patients, which can subsequently inhibit GnRH

secretion (46).

In the male reproductive system, diabetes induces structural

changes like increased interstitial space, the destruction of germinal

epithelium and abnormal pattern of seminiferous tubules (47),

impairs glucose metabolism in Sertoli/blood testes barrier, reduces

GnRH, gonadotropins, and testosterone levels, and the sensitivity of

the pituitary gland to GnRH (46). Besides, diabetes decreases sperm

quality and/or function, disrupts spermatogenesis, and results in

ejaculatory dysfunction and a decreased libido (2, 47–50).

Moreover, diabetes via decreasing serum testosterone and

gonadotropins levels impairs the feedback mechanisms in

Luteinizing hormone-releasing hormone (LHRH) producing cells

(43, 44, 47, 50).

Women with diabetes may experience delayed menstruation

and earlier menopause, which can affect fertility (51). Furthermore,

the risk of polymenorrhea and amenorrhea significantly are

increased in diabetic women compared to healthy women (52,

53). Type 1 diabetes can also reduce ovary size and oocyte quality

(54), contribute to mitochondrial dysfunction during meiosis, and

cause apoptosis of cumulus cells and DNA methylation (54).

Besides, hyperinsulinemia observed in T2DM can change the

levels of insulin-like growth factor binding protein (IGFBP),

insulin-like growth factor 1 (IGF-1), and SHBG, which in turn

cause an increase in androgen secretion from the ovaries and

adrenals, and ultimately anovulation (46).
4 Gestational diabetes mellitus and
the reproductive system

Obesity and overweight are also associated with a clustering of

metabolic risk factors in early pregnancy and an increase in the risk

of GDM (55). During the second and third trimester, 5-10% of

pregnant women experience GDM, which involves hyperglycemia,

glucose intolerance, and insulin resistance (56–58). Obesity,

inactivity, advanced maternal age, family history of T2DM, GDM

in the previous pregnancy and PCOS may cause GDM (59).

GDM has a series of negative effects on the health of the mother

and offspring (58). Evidence shows that GDM increases fetal
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macrosomia and preeclampsia in the short term (58). It is

estimated that 70% of women with GDM may develop T2DM

later, up to 28 years after delivery (60). Infants born to mothers with

GDM ar e mor e p rone t o neona t a l h ypog l y c em i a ,

hyperbilirubinemia, hypocalcemia, respiratory distress syndrome,

and polycythemia (61). Moreover, GDM offspring will be at an

increased risk of obesity and impaired glucose metabolism during

childhood, adolescence, and youth (62).

Of note, diabetes adversely affects the reproductive function of

offspring (63, 64). In this regard, offspring born to diabetic dams

showed prostate tissue damage, decreased testosterone levels, and

decreased sperm count and testicular tissue weight (65).

Interestingly, GDM and intrauterine exposure to hyperglycemia

predispose offspring to future reproductive dysfunction by altering

the expression of genes involved in the differentiation and

proliferation of Sertoli cells in the testes like p27kip1, CX43 and

aromatase (66).
5 Apelin: structure, receptor,
and expression

Apelin is a small endogenous peptide, which interacts with class

A G-protein-coupled receptor (GPCR), the APJ receptor. The

APLN gene, located on chromosome Xq 25-26, translates to a 77

amino acids prepropeptide or apelin precursor, which is then

cleaved into proapelin or apelin-55 through a proteolytic event.

Proapelin is further cleaved into different apelin isoforms, based on

their length, including apelin 13, 17, and 36. Apelin has a shot half-

life (less than 5 min), and its plasma concentration in healthy

human and mice is 0.26 ± 0.03 nmol/L and 100–1000 pg/mL,

respectively (67). The APJ receptor has varying affinity for different

apelin isoforms. Short isoforms like apelin-13 have low affinity and

quickly dissociate, whereas longer isoforms (apelin-17 and -36)

have high affinity and bind tightly. Since apelin-13 exhibits much

stronger biological potency than apelin-36, it is widely used for

exploring the physiological effects of apelin in in vitro and in vivo

preparations (20). Post-translational modification of apelin-13

produces pyroglutamate [Pry (1)- apelin-13, containing a

pyroglutamate group at its N-terminal, which is more resistant to

degradation by peptidases and has a longer half-life and represents

the major isoform of apelin in human tissues (68). The

concentration of apelin isoforms is not the same in different

organs. For example, apelin-36 is the most abundant form in the

testis, uterus, and lung, and [Pry (1)]-apelin-13 is the dominant

isoform in human blood (ranges from 7.7 to 23.3 pg/ml), brain, and

heart (69). Moreover, pry1-apelin-13 and apelin-17 are the

predominant forms in the plasma (70, 71).

The apelin receptor (APJ), an intron-less gene and a GPCR, was

first identified in 1993. In humans, APJ is encoded by the APLNR

gene, presented at chromosome 11q12, and in rats and mice, it is

encoded by Aplnr gene, located on the chromosomal locations 3q24

and 2E1, respectively (13). Compared to the rat and mouse APJ, the

human’s protein structure of apelin receptors contains 380-amino

acid (versus 377-amino acid in rat and mouse APJ) and shares 90%
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sequence homology with rat and 92% homology with mouse APJ.

The endogenous ligands for the APJ receptor exhibit nanomolar

affinity, and 13-amino acid in their C-terminal region are essential

for receptor binding (72).

Apelin and its receptor are expressed in many peripheral tissues

in addition to the central nervous system, including the lungs,

cardiovascular system, kidneys, mammary glands, white adipose

tissue, gastric mucosa, testis, and uterus (73). In addition, studies in

mice revealed that apelin is expressed in the endothelial part of the

arterioles in the liver, pancreas, lung, adipose tissue, and spleen (74,

75). Table 1 shows the expression pattern of Apelin/APJ receptor in

various tissues and species.

APJ couples to different G-protein subunits, including Gai/o, Gas,

Gaq/11, and Ga12/13. The APJ receptor couples to Gai/o G-protein and

subsequently inhibits adenylated cyclase and c-AMP production

thereby the protein kinase A (PKA) pathway, and activates

extracellular-regulated kinases (ERKs) and phosphoinositide 3-

kinase (PI3K)/Akt (PKB) signaling, which play a fundamental role in

cell proliferation and survival. Conversely, Gas mediates the activation

of adenylyl cyclase, causing PKA production. APJ coupling to Gaq/11
activates the phospholipase C (PLC)/AMP-activated protein kinase

(AMPK) pathway, leading to increased intracellular calcium.

Furthermore, activation of Ga12/13 results in rearrangement of the

cytoskeleton (76). Apelin-13 is a potent Gai1 activator and promotes

cell proliferation, migration, and survival, and metabolic function via

activation of the PI3K/Akt or mitogen-activated protein kinase

(MAPK) pathways (77). All bioactive apelin isoforms bind to APJ to

couple Gai and inhibit cAMP production. Both apelin-13 and apelin-

36 stimulate APJ coupling toGai andGaq, resulting in the activation of

ERK1/2 and PLC signaling pathways (78).

Upon sustained activation of APJ, phosphorylation of APJ

receptor by GPCR kinase-b recruits b-arrestin promoting

receptor desensitization and internalization (79). The fate of the

internalized APJ receptor is ligand-dependent, in which [Pry (1)]-

apelin-13 or apelin-13 internalized receptor is rapidly detached

from b-arrestin and recycled to the cell membrane, whereas apelin-

36 forms a stable binding of b-arrestin to APJ and leads to its

degradation by lysosome (80).
6 Central effects of apelin

Apelin and its receptor are widely distributed in neurons and

oligodendrocytes of the different brain regions including the

hypothalamus, medulla oblongata, hippocampus, septum,

amygdale, forebrain, and brainstem (12), indicating that the

apelinergic system plays a major role in neural signaling (73). The

protective effect of apelin on cortical neurons can be exerted by

inhibiting the production of reactive oxygen species (ROS), the

release of cytochrome c from mitochondria into the cytosol,

mitochondrial depolarization, and apoptosis via Erk/Akt signaling

pathways (81). In a study that examined the effects of apelin-13 on

inflammation caused by cerebral ischemia-reperfusion injury in

rats, it was shown that treatment with apelin-13 at the beginning of

reperfusion decreased the expression of inflammatory mediators

such as IL-1b, TNF-a, and intercellular adhesion molecule-1
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(ICAM-1) (82). The apelin receptor is also expressed in the

corticotrophs in the pituitary gland, where it stimulates the

release of ACTH in an autocrine/paracrine way (83).

The action of apelin on the body depends on the dose and route

o f adm in i s t r a t i on (84 ) . Admin i s t r a t i on o f ap e l i n

intracerebroventricularly (i.c.v.) in a dose-dependent manner,

increases the secretion of corticotropin-releasing hormone (CRH),

adrenocorticotropic hormone (ACTH), corticosterone, vasopressin,

while decreases the secretion of prolactin, thyroid-stimulating

hormone (TSH), growth hormone, FSH, and LH (83, 85). It has

been shown that blood pressure, nutritional behavior, and the

secretion of pituitary hormones can be altered by intraventricular

injection of apelin in mice (85).

Apelin is also involved in regulating food consumption and

appetite. Apelin suppresses appetite by inducing a-melanocyte-

stimulating hormone (a-MSH) release expression in pro-

opiomelanocortin (POMC) neurons (86). Taheri et al. reported

that intraventricular injection of apelin to fed animals had no

significant effect on their food intake; however, apelin

administration (at a dose of 30 nmol) in the fasted animals

increased food intake at 2-4 h (85).

Previous studies showed that apelin-containing neurons in the

hypothalamic nuclei, namely paraventricular (PVN) and supraoptic

(SON) project toward the posterior pituitary and release apelin

along with vasopressin (VP) and oxytocin into the blood, indicating

that apelin affects fluid homeostasis and drinking behavior, but still

many inconsistencies exist that remain to be elucidated.

Apelin and APJ receptors are co-localized with VP in

magnocellular VP-ergic neurons of the hypothalamus, where

apelin inhibits the activity of these neurons and thereby

hypothalamic VP release (87, 88). Preclinical and clinical evidence

also confirms the reciprocal interaction between apelin and VP.

Apelin not only reduces central VP secretion but also opposes the

actions of VP on the kidney and inhibits water reabsorption in the

renal collecting duct by preventing aquaporin 2 (AQP-2) channels

translocation to the apical membrane (89, 90). Roberts et al. also

showed that APJ receptor knockout impaired drinking behavior

and water hemostasis, exhibited by decreased water intake and

failure to concentrate urine in response to exposure to water

restriction (91). In contrast, Kubra et al. demonstrated that apelin

gene knockout had no effect on water intake in water-deprived

mice (92).

In physiological conditions, magnocellular neurons of the

hypothalamus balance apelin and VP release to maintain normal

plasma osmolality. In healthy individuals, hyperosmolality

increases VP and decreases apelin, resulting in water retention,

while water loading induces opposite effects (70). Systemic or

central apelin injection had different effects on water intake in

animals. Some studies found that injecting apelin systemically or

centrally in normovolemic animals increased water intake (85, 93),

while others found that injecting apelin centrally in animals with

HFD-induced obesity or water deprivation decreased water intake

and VP plasma levels (94). Mitra et al. discovered that

administering apelin centrally or peripherally to animals with free

water access did not affect water intake and did not reduce water

intake in water-deprived rats (95).
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Central injection of apelin-17 to lactating mice attenuated plasma

VP levels and increased diuresis (71). One study showed that

subcutaneous administration of an apelin-17 stable analog (LIT01-

196) in normal water-loading and normonatremic condition

promoted aquaretic effects and increased urine output and water

intake independent of affecting central VP secretion. Moreover,

apelin-17 analog administration in the excessive VP secretion model

(syndrome of inappropriate antidiuresis) corrected fluid homeostasis

and plasma sodium levels by inhibiting the effect of VP on AQP-2

channels in the collecting duct and increasing water diuresis (96).

Nevertheless, intravenous injection of [Pry (1)]-apelin 13 to

hydrated sheep has been shown to increase plasma VP

concentration (97). An in vitro study also demonstrated that

apelin-13 (100 nmol) stimulated the release of VP from

hypothalamic explants. It seems that depending on the dose and

isoform of apelin and the conditions of the experiment
Frontiers in Endocrinology 05
(physiological or special conditions such as water deprivation,

lactation, and hyponatremia, which can change the basal

secretion of VP) the effects of apelin on magnocellular VP-ergic

neurons can be different (71, 85).
7 Peripheral effects of apelin

Previous reports support the effects of apelin on the

cardiovascular system (98). Administration of apelin has been

shown to increase the production of nitric oxide (NO) in the

endothelium of blood vessels primarily through the activation of

endothelial nitric oxide synthase (eNOS) and thus decreases blood

pressure (74). Furthermore, apelin exerts an antioxidant effect in the

cardiomyocytes, vessels, and adipocytes by suppressing the release

of reactive oxygen species (ROS) and enhancing the expression of
TABLE 1 Apelin/APJ receptor expression pattern in various tissues and species.

Tissues Species References

N
er
vo

us
 s
ys

te
m

Hypothalamus (PVN, SON Magnocellular, Arcuate nucleus, Ventromedial nucleus), POMC
Pituitary lobes (anterior, intermediate, posterior)

Medulla oblongata
Hippocampus

Septum
Amygdale
Forebrain
Brainstem
Cerebellum

Olfactory bulb
Spinal cord
Striatum
Thalamus

Cerebral cortex

Human, rat, mice, lizard (1–8, 22)

P
er
ip
he

ra
l s

ys
te
m

N
o
n
�
R
ep

ro
d
uc

ti
ve

 t
is
su

es

Plasma/serum
Kidney

Cardiovascular
Skin

Pancreas
Spleen

Lung and Bronchus
Adipose tissue

Liver
Adrenal gland
Skeletal muscle

Thymus
Stomach

Thyroid glands
Intestine

Eye
Bladder

Mammary gland

Human, rat, mice, lizard
Rat, mice, human, lizard

Human, rat, mice, rabbit, lizard,
zebrafish

Human, lizard
Rat; mice, human, lizard
Mice, human, lizard

Human, rat, mice, lizard, canine
Human, rat, mice

Rat, mice, human, lizard
Human, rat, mice, lizard
Human, rat, mice, lizard

Human, mice
Mice, rat, bovine, lizard

Rat, lizard
Rat, mice
Monkey
Mice, rat
Sheep, rat

(9–14) (15–21)

R
ep

ro
d
uc

ti
ve

 t
is
su

es

Placenta
Uterus

Ovary (Gc, Cumulus, Tc, oocytes, zona pellucida, antral follicles)
Corpus luteum

Testis (Spermatids, Spermatozoa, Residual bodies, Leydig cells, Sertoli cells, Seminiferous
tubules)
Embryo

Human, mice, rat
Mice, rat, human

Human, mice, rat, sheep, monkey,
porcine

Human, rat, mice, bovine, buffalo,
porcine

Zebrafish, frog

(23) (24) (25)
(22, 26–28)

(29, 30) (31) (32)
(33)

(29, 34–36)
(37) (38)
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antioxidant enzymes (99, 100). The apelinergic system also

stimulates gastric and endothelial cell proliferation, regulates

catecholamine-mediated lipolysis, increases glucose uptake in

insulin-sensitive tissues, promotes retinal angiogenesis, acts as a

positive inotrope, and maintains fluid homeostasis (16, 101). Apelin

activates Na+/H+ and Na+/Ca2+ exchangers and inositol

triphosphate receptors, causing calcium release from the

sarcoplasmic reticulum and increasing myocardial contraction

(68, 102, 103).
8 Metabolic effects of apelin

8.1 Apelin and glucose metabolism

Apelin and its receptor,APJ, are distributed in the pancreatic tissue

and contribute to the control of glucose metabolism (104, 105). The

apelinergic system aids glucose homeostasis by enhancing glucose

absorption in the gastrointestinal tract, boosting glucose transport in

skeletal muscles and adipose tissues, andmodulating insulin secretion

(106). Previous studies proved that apelin dose-dependently

modulates pancreatic insulin secretion, where a low dose of apelin-

36 (2 nmol/kg) declines whilst a high dose (1 µM) of apelin-36

increases insulin release following intravenous glucose injection

(107, 108). Apelin-13 also inhibits insulin secretion stimulated by

high glucose concentrations (10mM) aswell as glucagon-like peptide-

1 (GLP-1)-enhanced insulin secretion in insulinoma cells (109). In

normal and insulin-resistant mice, injecting a low apelin-13

concentration (200 pmol/kg) enhanced insulin sensitivity and

glucose uptake in skeletal muscle and adipose tissue (104).

The AMP-activated protein kinase (AMPK), an energy sensor,

stimulates the absorption of glucose in skeletal muscle, oxidizes

fatty acids in adipose tissue, and reduces the production of liver

glucose (110). Yue et al. (2010) indicated that apelin boosts glucose

transport in C2C12 muscle cells by activating the AMPK pathway,

and apelin gene knockout in high fat- and- carbohydrate-fed mice

decreases insulin sensitivity (105). Apelin also stimulates glucose

transport in human fat tissue through the activation of the AMPK

pathway (111). Additionally, apelin increases insulin-related

glucose uptake in insulin-resistant 3T3-L1 fat cells via activation

of the PI3K/Akt pathway (112). Administration of [Pry (1)]-apelin

13 improves myocardial glucose uptake by enhancing the

translocation of GLUT4 in an AMPK-reliant way (69, 113).

Moreover, apelin levels in insulin-resistant disorders, namely

obesity, and T2DM, are increased, and apelin treatment increases

insulin sensitivity, glucose tolerance, and fatty acid oxidation (114,

115), representing the effectiveness of exogenous apelin on diabetes-

related complications.

Previous studies reported that oral glucose administration

quickly increased the secretion of apelin by intestinal epithelial

cells, consequently, apelin increases glucose absorption from the

intestine by activation of the AMPK pathway and increasing glucose

transporters in the brush border membrane, causing an increase in

glucose levels in the portal vein and rapid secretion of insulin from

the pancreas (116, 117). On the other hand, an oral APJ antagonist

administration before glucose gavage reduces glucose absorption by
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enterocytes and reduces hyperglycemia (116). An in vitro study also

revealed that human endothelial cultured cells secrete apelin in

response to glucose (118).

Apelin is also expressed in the hypothalamus and regulates glucose

homeostasis in the central nervous system (CNS) in an eNOS-

dependent manner. Injecting apelin-13 i.c.v. at low doses reduced

blood glucose levels, while high doses increased blood glucose and

insulin levels, and decreased insulin sensitivity in normal diet-fed

animals, possibly by over-stimulating the sympathetic nervous system

and enhancing liver glycogen breakdown and gluconeogenesis (119,

120). Central injection of apelin in obese diabetic mice induced

hyperglycemia, while there was a slight change in insulin level (119).
8.2 Apelin and lipid metabolism

Apelin also influences lipidmetabolism in both isolated adipocytes

anddifferentiated 3T3-L1adipocytes.Apelin inhibits isoproterenol (b-
adrenergic agonist)-induced lipolysis via a pathway, including Gq, Gi,

and AMPK (121). In insulin-resistant adipocytes, apelin increases the

amount of perilipin around lipid vacuoles and enhances the activity of

the AMPK pathway, hence increasing lipid solidity and resistance to

lipase function (122). In obese and insulin-resistant mice, chronic

apelin treatment increases fatty acid oxidation inmuscles by activating

the AMPK pathway (114).

In vivo studies have indicated that the expression of apelin is

strongly regulated by nutritional status (123). Fasting has been

shown to suppress apelin expression while re-feeding returns apelin

level to normal (111). Yang et al. found that 20 weeks of HFD

resulted in increased apelin levels and gene expression of its

receptor in adipose tissue and gastrocnemius muscle

(124). Garcia-Diaz et al. also reported that 50-day HFD

increases apelin mRNA in the subcutaneous adipose tissue (125).

HFD feeding during pregnancy and lactation can also increase

serum levels of apelin in dams while decreasing serum apelin in

adult male offspring (19, 123, 126). Paternal HFD exposure affects

offspring’s metabolic traits via epigenetic changes in leptin and

adiponectin gene promoters, though to a lesser extent than in utero

HFD exposure (127). Our previous study also showed that maternal

HFD increased serum levels of apelin-13 and its receptor gene

expression in the ovarian tissue of offspring (18). Moreover,

maternal nutritional status can affect breast milk apelin levels. In

this regard, a study showed that HFD feeding during lactation

increases the concentration of apelin in breast milk, possibly by up-

regulation of apelin expression in myoepithelial cells in the

mammary gland (126). Long-term HFD consumption by

inducing insulin resistance and hyperinsulinemia increase apelin

secretion from adipose tissue (123, 128, 129).
9 Apelin in metabolic disorders

9.1 Obesity

Obese patients have increased apelin levels and APJ receptor

expression in adipose tissue (130, 131), while weight loss reduces
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plasma apelin levels (132). Moreover, in experimental obesity

models that are associated with hyperinsulinemia, apelin levels

significantly increased (16, 133). It seems that high levels of fatty

acids reduce cell sensitivity to insulin and eventually cause insulin

resistance and hyperinsulinemia, which increases apelin secretion

from adipose tissue (134). On the other hand, apelin-transgenic

mice failed to gain body weight under a HFD feeding condition for

20 weeks and showed decreased body adiposity and resistance to

diet-induced obesity (135). Moreover, apelin-deficient mice showed

decreased plasma adiponectin, increased insulin, impaired glucose

and insulin tolerance, and insulin resistance (105). [Pry (1)]-apelin-

13 infusion over 4 weeks improved insulin sensitivity and decreased

insulin levels in apelin-null and db/db mice (105).

Adiponectin is an adipokine secreted by adipose tissue, which

increases glucose uptake and insulin sensitivity and lessens hepatic

gluconeogenesis. Adiponectin levels and insulin sensitivity are

positively correlated, but inversely proportional to body fat and

leptin levels. Obesity often leads to reduced adiponectin levels and

insulin resistance (136, 137). Besides, the adiponectin/leptin ratio is

a suggestive indicator of metabolic abnormalities and insulin

resistance (138). Another study showed that chronic apelin-13

administration decreased white adipose tissue weight and body

weight gain, increased energy expenditure, decreased leptin, and

increased adiponectin levels in serum, but there was no change in

food intake (139).

Apelin treatment for 28 days improved insulin sensitivity and

skeletal muscle lipid oxidation and utilization, without significantly

affecting body weight in obese and insulin-resistant rats (114).

Another study showed that chronic apelin treatment (0.1 mmol/

kg/day for 28 days) in HFD-induced obese mice decreased glucose

and insulin levels, and increased fatty acid oxidation and

mitochondrial biogenesis in soleus muscle (140). Therefore,

optimal levels of apelin in blood circulation can probably be

effective in delaying or reducing insulin resistance.
9.2 Diabetes

Emerging evidence supports the role of apelin in the

pathogenesis of diabetes (141). Several studies have demonstrated

an increase in plasma concentrations of apelin in patients with type

1 or type 2 diabetes (131). Apelin regulates insulin secretion, glucose

uptake, lipid oxidation, apoptosis, oxidative stress, and

angiogenesis, playing a critical role in diabetes-related

complications like cardiovascular diseases, diabetic nephropathy,

and endothelial dysfunction (142). Feng et al. found that chronic

apelin-13 treatment (0.1 mmol/kg for 10 weeks) in T2DM improved

insulin sensitivity and protect pancreatic beta cells (143). In the

streptozotocin-induced type 1 diabetes model, decreased insulin

levels is accompanied by a decrease in apelin levels (16, 133). Insulin

regulates apelin expression and secretion via the PI3K/protein

kinase C/MAPK pathways in mice and humans (16). In fact,

hyperapelinemia is a compensatory mechanism that inhibits

pancreatic secretion and increases insulin sensitivity and glucose

absorption in mouse muscle tissues in a non-insulin-dependent

manner (144).
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In addition, acute administration of apelin-13 (100 ml/2 min)

can improve glucose tolerance and increase glucose utilization in

healthy and insulin-resistant mice by activating the AMPK and Akt

signaling pathways (145). In type 1 diabetes, apelin therapy (400

pmol/kg) for 10 weeks enhanced pancreatic islet mass, insulin

content, and reduced endoplasmic reticulum stress in the

pancreatic islets (146). Apelin-13 was reported to improve glucose

metabolism, dyslipidemia, insulin sensitivity, and decrease leptin

levels in an HFD-induced T2DM model (147).
9.3 GDM

GDM is a complication related to glucose intolerance (148). In a

healthy pregnancy, insulin sensitivity decreases during pregnancy to

maintain glucose for fetal consumption, but in most women, due to

the production of sufficient amounts of insulin by the pancreas,

blood glucose levels remain normal during pregnancy (58). In

GDM, the pancreas is unable to produce enough insulin, and

blood glucose levels remain at a high level (58). Although

hyperglycemic conditions improve after delivery, GDM can

increase the risk of postpartum T2DM (58). Mayeur et al.

demonstrated that the apelin/APJ system is involved in the

control of glucose homeostasis in the fetus and infant. They

showed that administration of apelin in embryonic day 17

increased the transplacental transfer of glucose by fetal tissues.

Moreover, injection of apelin at doses of 10 and 15 nmol/kg in

neonates reduced blood glucose, while higher doses of apelin (20

and 40 nmol/kg) increased blood glucose and decreased insulin

levels in neonates (149).

Several studies have also investigated apelin concentration in

pregnant women with GDM; however, there is heterogeneity in the

reported results. Although some studies reported decreased levels of

apelin in GDM women compared to the control group (150–153),

Sun et al. in a systematic review and meta-analysis demonstrated no

significant change in serum apelin in pregnant women with GDM

(154). In contrast, Aslan et al. reported higher serum apelin levels in

pregnant women with GDM than in healthy pregnant women

(155). Also, a recent meta-analysis showed that GDM is

associated with increased apelin levels (156). Moreover, Boucher

et al. found increased apelin levels at the beginning of pregnancy in

obese women and mice (157).
10 Apelin and the HPG axis and
reproductive system

10.1 HPG axis

The function of the gonads, including the ovaries and testes, is

regulated by the HPG axis (158). This axis comprises 3 parts,

including the hypothalamus, which is responsible for synthesizing

GnRH, the pituitary gland, where LH and FSH are synthesized, and

gonads, involved in the production of sex steroids and other

hormones (158). Evidence shows that apelin and its receptors are

widely expressed in the hypothalamus nuclei, namely PVN and
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SON, where GnRH is released (13, 159–161), and in all three

pituitary lobes (anterior, intermediate, posterior) of rats (73),

representing that apelinergic system is involved in the control of

behavioral processes, energy homeostasis, and endocrine function

namely reproductive function (162, 163). APJs are also expressed in

the ovaries and testes and may play a role in regulating

reproduction through the HPG axis (21). An earlier study

reported that a single central injection of apelin-13 in rats

activated the hypothalamic-pituitary-adrenal (HPA) axis and

increased ACTH and corticosterone levels, whereas suppressed

the pituitary hormones, indicated by diminished circulatory

prolactin, LH, and FSH levels (85). Chronic i.c.v injections of

apelin-13 for seven days in male rats significantly reduced LH

release, testosterone levels, and the number of Leydig cells, while

had no significant effects on FSH levels (21).

An in vitro study showed that the administration of

progesterone and LH increased the levels of apelin and APJ

mRNA in the Gc and theca cells (Tc), respectively (164). Tekin

et al. showed that intraperitoneal chronic injections of apelin-13 (1,

5, and 50 µg/kg for 14 days) decreased LH, FSH, and testosterone

levels, but had no significant effects on GnRH levels, indicating that

its inhibitory effect on reproductive function is mediated mainly

through suppression of pituitary hormones (165). Recently, it has

been reported that activation of APLNR (apelin receptor gene) in

GnRH-releasing embryonic stem cells protects the neurons against

oxidative stress and apoptosis and increased cell proliferation in an

Akt signaling-dependent manner. However, prolonged

overexpression of complete blockage of the APJ receptor reduced

GnRH release (166).

A study in pregnant rats showed increased apelin levels at the

end of pregnancy (gestational day 21), and apelin administration

dose-dependently strengthens the myometrial contractility of the

uterine (167). Conversely, an in vitro study on human myometrial

fibers demonstrated the inhibitory effect of apelin treatment (1

nmol/L to 1 mmol/L) on spontaneous and oxytocin-triggered

isometric myometrial contractions (168). Likewise, Asalah et al.

found that apelin (100 nmol/L) administration to isolated uterine

strips of pregnant rats inhibited spontaneous uterine reactivity

(169). Pregnant women with obesity exhibited increased apelin

levels which causes a decrease in frequency and strength of

myometrial contractions (170).
10.2 Functions of apelin in the ovary

Apelin and its receptor APJ are expressed in the ovaries of many

species, such as bovine, buffalo, primates, porcine, rodents, and

humans (18, 20, 171, 172). Apelin and APJ genes are expressed in

different cells of the ovary. Shimizu et al. showed that the apelin

gene is expressed only in the Tc of bovine follicles, while APJ gene is

expressed both in the Tc and Gc (164). In human ovarian cells,

apelin and its receptor are expressed in the Gc, cumulus, Tc, and

oocytes at different phases of follicular development (173).

Moreover, different reproductive hormones can affect the

expression of apelin or its receptor in the ovary. An in vitro study

revealed that FSH induced apelin/APJ expression in the Gc, whilst
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in the Tc, LH stimulated the expression of both apelin and APJ

receptors, and progesterone prompted the expression of APJ

mRNA in bovine follicles (164). Also, the level of apelin is

different at the physiological stages of the ovulation cycle and

pregnancy (171). In the bovine ovary, apelin mRNA and APJ

receptors are increased during the early and mid-luteal stages of

the estrus cycle, while following corpus luteum (CL) regression,

there is a decrease in their expression levels (171).

Apelin and its receptor are involved in the physiological

functions of ovarian cel ls , including steroidogenesis ,

folliculogenesis, proliferation, and apoptosis (164, 172–174).

Previous in vitro studies on human, bovine, and porcine ovarian

cells showed that apelin improved follicles proliferation and

development and survival of Gc via activation of the ERK1/2 and

Akt signaling pathways. Additionally, apelin increased the secretion

of progesterone and estradiol (E2) and increased the activity of

enzymes catalyzing the synthesis of steroids, including 3b-
hydroxysteroid dehydrogenase/D5–4 isomerase (3b-HSD) and

CYP19A1, by activating of the MAPK/AMPK pathway (173–176).

Apelin also regulates the proliferation and apoptosis of ovarian cells

(177). Apelin stimulated the PI3K/Akt signaling pathway to

promote proliferation and inhibit apoptosis in the Gc (177). A

recent in vitro study revealed that administration of apelin-13 to Gc

of buffalo ovaries promoted IGF-1-induced progesterone synthesis

but did not affect FSH-stimulated progesterone secretion, and

boosted antioxidant capacity and Gc proliferation (178). Besides,

the angiogenic effect of apelin is mediated through the stimulation

of the proliferation and migration of endothelial cells. Apelin/APJ is

expressed in the smooth muscle cells of bovine arterioles of the CL

and controls the luteolysis process in the CL by inducing blood

vessels expansion possibly due to the activation of the eNOS

pathway and nitric oxide production (179, 180).
10.3 Apelin in ovarian pathologies

Apelin is linked to frequent female reproductive pathological

conditions such as PCOS, ovarian cancer, and endometriosis (14,

181, 182). In PCOS patients, high levels of apelin in the blood and

follicular fluid, and Gc of ovaries were reported (22, 183). Roche

et al. reported that the expression levels of apelin and APJ in human

Gc from obese PCOS are higher than in healthy women and non-

obese patients (173). Moreover, administration of apelin-13 and 17

to primary human Gc increased IGF-1, estradiol, and progesterone

secretion, as well as 3b-HSD protein expression. Sun et al. also

showed higher apelin levels in PCOS patients than in control, which

was positively correlated with BMI, insulin levels, and insulin

resistance index (184). Nevertheless, Chang et al. reported lower

serum apelin in non-obese PCOS subjects than in the control group

(185). A study reported lower levels of apelin-36, apelin-12, LH,

SHBG, and adiponectin and higher levels of leptin in obese PCOS

patients. Besides, plasma levels of apelin isoforms were inversely

correlated with leptin and LH, whereas apelin levels were positively

associated with serum adiponectin levels (186). Mishra et al.

demonstrated a decrease in adiponectin and an increase in leptin

levels in the plasma of PCOS patients (187). Since leptin and
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adiponectin modulate steroidogenesis, gonadotrophins release, and

fertility (8, 9), apelin replacement may improve reproductive

dysfunction associated with obesity or T2DM through increasing

adiponectin and the adiponectin/leptin ratio.

Apelin is also highly expressed in glandular cells of the ectopic

and eutopic endothelium of women with endometriosis during the

secretory phase (14). Recent studies also demonstrated a

relationship between apelin and ovarian cancer (181, 188). APJ

was found to be highly expressed in human ovarian tumor cells,

and its activation increased cancer cell growth and proliferation by

triggering the STAT3 pathway, which is linked to a worse

prognosis. However, inhibition of APJ receptor by ML221

suppressed the pro-metastatic phenotype of the cancer cells

(188). Despite the fact that age advances down-regulated

endogenous apelinergic system, which could speed up age-

related physiologic declines (189–191), there is limited evidence

concerning the changes in apelin or its receptor levels in

reproductive tissue with aging. The deficiency of apelin and its

receptor genes in female mice aged eight to nine months resulted

in reduced expression of the LH receptor and inhibin-a in the

ovaries, indicating an early onset of infertility and the aging of the

reproductive system (192). Figure 1 shows the function of apelin/

APJ in the ovaries.
10.4 Functions of apelin in the testis

Apelin and APJ receptors are also expressed in the testicular

tissue of several species, like humans, rodents, and canines (193–

195). A recent study found that apelin and APJ are expressed in

Leydig cells of rats (194). Troisi et al. reported that apelin is present

in canine spermatids, spermatozoa, and residual bodies, as well as in

the Leydig cells and seminiferous tubules (193). Estienne et al.

demonstrated that intraventricular infusion of a high dose of apelin-
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13 (10 nmol) reduced the number of Leydig cells (7). This evidence

highlights the critical role of apelin and APJ receptors in the male

reproductive system (7, 196).

Varicocele is an abnormal enlargement of scrotal veins,

associated with inflammatory alterations in testicular tissue, and

impairs spermatogenesis. Akkan et al. reported high levels of apelin

in the testicular tissue of rats with varicocele, whereas APJ

expression was decreased, possibly because of receptor

internalization (197). Das et al. reported a direct relationship

between increased apelin and APJ levels in the testicular Leydig

and germ cells and decreased testosterone release in type 1 diabetic

mice (198). Moreover, in an in vitro examination, they showed that

the apelin receptor antagonist, ML221, increased testosterone

synthesis, while apelin-13 had no effect on testosterone secretion

in diabetic testis (198). Interestingly, Song et al. found that protein

expression of apelin is increased in the testis of diabetic mice and

human cell culture, while there was no significant change in APJ

protein levels (199). Moreover, apelin injection into the testicular

interstitium of diabetic mice impaired the integrity and

permeability of the blood-testis barrier (BTB) in Sertoli cells by

decreasing gap junction and tight junction protein levels, suggesting

that abnormally elevated apelin levels impair spermatogenesis by

disrupting the BTB (199). Conversely, the APJ antagonist, ML221,

restored BTB integrity, and improved blood testosterone levels,

sperm concentration, and motility, but did not restore natural

fertility in diabetic mice (199). Additionally, apelin administration

to the Sertoli cell culture decreased reproductive-associated

metabolites, including b-nicotinamide adenine dinucleotide

(NAD+), carnitine, and glutathione, while increased in the

amount of palmitelaidic acid (198, 199). Based on the above,

targeting the apelinergic system holds a promising approach to

improve male reproductive function and fertility in diabetic

conditions. Figure 2 summarized the functions of the apelinergic

system in the male reproductive system.
FIGURE 1

Schematic diagram indicating the involvement of apelin in ovarian physiology. Gc, Granulosa Cells; Tc, Theca Cells; APJ, Apelin receptor; CL, Corpus
Luteum; eNOS, Endothelial nitric oxide synthase; NO, Nitric Oxide; PI3K, phosphatidylinositol 3-kinases; AKT, Protein kinase B; MAPK, Mitogen-
Activated Protein Kinase; AMPK, AMP-activated protein kinase; 3b-HSD, 3b-Hydroxy Steroid Dehydrogenase.
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11 Conclusion

The apelinergic system is an essential regulator of energy

metabolism and exerts diverse beneficial effects against the

development of the metabolic disorders, particularly diabetes and

obesity. Apelin also regulates fertility and reproductive functions in

physiological and pathological conditions through its autocrine

and/or paracrine effects. Therefore, targeting this pathway is a

current demand and a novel outlook that could provide more

treatment options for improving reproductive capacity in

metabolic disorders. More detailed studies are required to address

all roles of the apelinergic system in this context.
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