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Diabetes mellitus promotes
susceptibility to
periodontitis—novel insight into
the molecular mechanisms
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1Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China,
2Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of
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Diabetes mellitus is a main risk factor for periodontitis, but until now, the

underlying molecular mechanisms remain unclear. Diabetes can increase the

pathogenicity of the periodontal microbiota and the inflammatory/host immune

response of the periodontium. Hyperglycemia induces reactive oxygen species

(ROS) production and enhances oxidative stress (OS), exacerbating periodontal

tissue destruction. Furthermore, the alveolar bone resorption damage and the

epigenetic changes in periodontal tissue induced by diabetes may also

contribute to periodontitis. We will review the latest clinical data on the

evidence of diabetes promoting the susceptibility of periodontitis from

epidemiological, molecular mechanistic, and potential therapeutic targets and

discuss the possible molecular mechanistic targets, focusing in particular on

novel data on inflammatory/host immune response and OS. Understanding the

intertwined pathogenesis of diabetes mellitus and periodontitis can explain the

cross-interference between endocrine metabolic and inflammatory diseases

better, provide a theoretical basis for new systemic holistic treatment, and

promote interprofessional collaboration between endocrine physicians

and dentists.

KEYWORDS

diabetes mellitus, inflammatory, host immune response, oxidative stress, microbiota,
microRNA, epigenetic changes, periodontitis
1 Introduction

Diabetes mellitus is a group of metabolic disorder diseases caused by absolute or

relative insulin secretion insufficiency and (or) insulin utilization obstacles, with

hyperglycemia as the main feature, causing a longer-term health aftermath, higher

mortality risks, and reduced life expectancy (1). The 10th edition of the IDF Diabetes

Atlas shows that there will be 537 million diabetes mellitus patients worldwide in 2021;
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more than one in 10 adults now have diabetes mellitus. It is

estimated that by 2045, the number of diabetes patients will reach

783 million. The USA, India, China, and other countries with large

populations contribute the most to the total number of diabetes

mellitus patients (2). The high attack rate, disability rate, case

fatality rate, and rapid growth prevalence of diabetes have

brought major challenges to the healthcare system. Diabetes

mellitus-related chronic complications can affect multiple organs

throughout the body, including macro- and microvascular diseases,

diabetes-related nephropathy, diabetes-related peripheral

neuropathy, diabetes-related retinopathy, which may eventually

lead to blindness, and diabetes-related delayed tissue healing (3).

Since 1993, periodontitis has been described as another typical

complication of diabetes mellitus (4). Furthermore, several reviews

have indicated that diabetes mellitus patients are more likely to

suffer from periodontal disease than those without diabetes (5–9).

Periodontitis is the result of the interaction between a repaired

inflammatory/host immune response of the periodontium and a

dysbiotic periodontal microbiota challenge (10) characterized by a

chronic destructive and progressive inflammatory response, which

is caused by gram-negative bacteria in a bacterial plaque within

microbial dysbiosis (11, 12). It is a chronic multifactorial

inflammation disease affecting the supportive tissues of the entire

periodontium and may lead to loss of periodontal attachment,

formation of periodontal pocket, resorption of alveolar bone, and

eventually tooth loss if left untreated (13). Periodontitis affects

about 45%–50% of adults, and the incidence of periodontitis

among people over 65 years old rises to more than 60% (14–16).

Severe periodontitis is the sixth most common human disease

among 291 assessed global diseases (17), and it is estimated to

affect an average of 11.2% (ranging from 5% in Oceania to 20.4% in

Latin America) of the global adult population. In recent years, many

epidemiological and experimental studies have demonstrated that

periodontitis can affect systemic health through various molecular

mechanisms and is independently related to most chronic systemic

comprehensive diseases, such as diabetes mellitus (18). Therefore,

severe periodontitis is a large social, economic, and healthcare

burden, can increase global medical expenses and social

inequality, and also has a significant influence on the human

public health system (18).

The existing studies show a certain bidirectional association

between periodontitis and diabetes; they increase the incidence of

each other and are related to disease severity. Diabetes mellitus is a

main risk factor for periodontitis (5–9, 19), and it has been showed

that the incidence or the risk of progression of periodontitis in

diabetes patients with inadequate control increased by 86%

compared with nondiabetes patients or well-controlled diabetes

patients (20). On the other hand, periodontitis patients exhibit poor

glycemia control, a further risk of insulin resistance, and a higher

prevalence of diabetes-related complications (10, 21–24). Many

studies have attested that periodontal therapy can reduce the load

of periodontal inflammation, which in turn has a positive effect on

blood glycated hemoglobin levels (25–29). Therefore, it is necessary

to screen patients with diabetes for periodontitis and vice versa (9).

However, since the two comorbidities of diabetes with

periodontitis are independently associated and mediated by
Frontiers in Endocrinology 02
complex interactions among microbiome, inflammation, host

immune response, oxidative stress, genetics, and other factors

(30), the exact molecular mechanisms between them and the

pathways between diabetes and periodontal tissue anatomy and

physiological changes are still unclear. In the meantime, there is a

lack of multi-disciplinary collaboration between endocrinologists

and stomatologists when managing diabetes patients (31); in fact,

only 30% of endocrine physicians report that they have ever

referred their patients to a stomatosis clinic institution for oral

health assessment (32). It is noteworthy that endocrine physicians

need to be aware of periodontitis and its impact on glycemia control

and the risk of insulin resistance (22), and patients with

periodontitis should also be consulted about their increased risk

of diabetes (33). The aim of this study is to review the latest clinical

data on the evidence of diabetes promoting the susceptibility of

periodontitis from epidemiological, molecular mechanistic, and

potential therapeutic targets and discuss the possible molecular

mechanistic factors such as microbiome factors, inflammation

factors, host immune response factors, oxidative stress factors,

periodontal tissue destruction factors, and epigenetic changes,

focusing in particular on novel data on inflammatory/host

immune response and oxidative stress. Understanding the

intertwined pathogenesis of diabetes mellitus and periodontitis

better may provide convenience to physicians and dentists for

timely diagnosis and optimal management of these two diseases.
2 Diabetes is a main risk factor for
periodontal disease

There are several types of diabetes mellitus, but type 1 diabetes

mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are

considered the two main groups (2). T1DM is characterized by

autoimmune damage to the pancreatic Langerhan islet b-cells,
which prevents the pancreas from producing (enough) insulin. In

contrast, T2DM, which makes up 90%–95% of all cases of

diagnosed diabetes, is characterized by insulin resistance in

conjunction with a relatively low level of insulin secretion.

In 1993, periodontitis was described as the sixth complication of

diabetes mellitus (4). Since then, several studies have confirmed that

diabetes mellitus is associated with a higher prevalence, incidence,

severity, and progression of periodontitis in both T1DM and T2DM

(5–8, 19–21, 34–36). Diabetes patients have a two to three times

higher risk of developing periodontitis than the general population

(34); the level of glycemic control is the key to determining risk (37);

and the severity of periodontitis is rising to 10 times higher for

smokers (38). In fact, diabetes mellitus is considered one of the two

real risk factors of periodontal disease (39) and has been included in

the “grading” component of the new classification of periodontal

diseases by the European Federation of Periodontology (EFP) and

the American Academy of Periodontology (AAP) (14, 39, 40).

A meta-analysis of 13 studies showed that diabetes increased the

incidence or risk of progression of patients with periodontitis by

86% (20). There are also many studies that have confirmed that

patients with poorly controlled diabetes have more serious clinical
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symptoms of periodontitis (such as exploratory bleeding (bleeding

on probing (BOP)), plaque index (PI), clinical attachment loss

(AL)) and periodontitis radiological parameters (such as marginal

bone loss (MBL)) compared with those without diabetes or well-

controlled diabetes (37, 38, 41–44). Diabetes mellitus can revise the

expression of inflammatory-related cytokines such as tumor

necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-

1b (IL-1b); increase the generation of reactive oxygen species (ROS)

and its association with the oxidative stress index; disrupt the

receptor activator of nuclear factor-kappa B (NF-kB) ligand

(RANKL)/osteoprotegerin (OPG) axis; activate osteoclasts

responsible for bone resorption; and destroy polymorphonuclear

leucocyte activity, which in turn may accelerate the development of

periodontitis (44).

In conclusion, periodontitis and diabetes affect each other, but

the two-way relationship between them seems to exist

independently of related risk factors. On the other hand, among

the diagnosed patients with diabetes mellitus, periodontitis is

associated with elevated glycosylated hemoglobin, poor glycemic

control, and a higher incidence of diabetes-related complications

(41–43).
2.1 Effect of T2DM on periodontitis

The majority of available studies on the bidirectional

interactions between diabetes mellitus and periodontitis are based

on T2DM because its global prevalence is higher and the onset age

of T2DM is older. These factors combine to increase the danger of

the intersection of T2DM and periodontitis. Most studies that

explore the relationship between T2DM and periodontitis have

clearly shown that the enhancement of periodontal damage index

and the increment of periodontitis risk are associated with increased

glycosylated hemoglobin levels. Although it is not proportional, the

level of hyperglycemia is associated with an increased probability of

periodontitis and later tooth loss (5, 7–9, 41–44).

A recent review summarized data on the two-way relationship

between T2DM and periodontitis and found that T2DM increased

the prevalence rate of periodontitis by 34% (RR = 1.34; 95% CI,

1.11–1.61), and T2DM patients had a 0.89-mm higher clinical

attachment loss, 0.61-mm deeper periodontal pockets, 2.01 fewer

teeth remaining, and 2.22 more teeth lost than T2DM-free

participants. The two diseases promoted each other’s incidence

rate and were related to the severity of the disease (8). Stöhr et al. (9)

also conducted a systematic review and meta-analysis of the existing

evidence on this topic with 15 observational studies, including

295,804 participants and more than 22,500 confirmed cases, and

the result reported that diabetes was associated with an increased

risk of onset and progression of adult periodontitis compared with

people without diabetes mellitus (SRR = 1.24; 95% CI, 1.13–1.37), so

diabetes patients should understand their higher risk of periodontal

disease (9). Another cross-sectional clinical study also confirmed

that T2DM patients had more serious tooth loss, and more than

95% of T2DM patients had some periodontal damage to varying

degrees. These results could be used as baseline data to promote the

collaborative and comprehensive management of diabetes (37). A
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study in an Italian population also assessed that a family history of

T2DM, poor glycemic control, and C-reactive protein (CRP) levels

could be the effective predictors of the onset and progression of

severe periodontitis. For 1 unit of increase in serum HbAlc, the

probability of severe periodontitis in patients increased by

approximately 60% (44), and there was a higher risk in T2DM

patients with higher glycosylated hemoglobin levels at baseline (22).

Therefore, the onset, duration, and severity of hyperglycemia

play an important role in the development of chronic periodontitis

(44). Hyperglycemia promotes the inflammatory/host response of

periodontal tissues in a direct or indirect way via the advanced

glycation end product (AGE) and its receptor (RAGE), which can

alter the function of leukocytes and fibroblasts, promote the

expression of proinflammatory cytokines, and increase the

RANKL/OPG ratio, ultimately promoting osteoclast formation

and alveolar bone absorption (7). According to the numbers of

cross-sectional and longitudinal studies, it can be concluded that

T2DM is a main risk factor for periodontitis and may be one of the

pathogenesis of periodontitis (5).
2.2 Effect of T1DM on periodontitis

There have been a few clinical studies exploring the relationship

between T1DM and periodontitis in the past, and there is significant

heterogeneity between these studies in assessing clinical periodontal

status. Because most studies on T1DM involve children or

adolescents, the relationship between periodontitis and T1DM at

the crossover level is not as clear as that with T2DM (45). Sanz et al.

(22) concluded that there was no sufficient evidence to suggest a

possible association between periodontitis and poor glycemic

control in T1DM patients. Roy et al. (46) also proved that when

comparing diabetes patients with healthy ones in terms of clinical

attachment loss (CAL), the combined difference between T2DM

patients (0.652; 95% CI, 0.465–0.840) was more than that within

T1DM patients (0.691; 95% CI, 0.427–0.956).

On the other hand, numerous studies on diabetic children have

shown that the incidences of periodontal disease in patients with

T1DM are higher than in healthy ones. These findings suggest that

there is a two-way relationship between T1DM and periodontal

disease similar to T2DM (36, 47–50). A systematic review and

meta-analysis demonstrated that patients with T1DM had higher

PI, pocket depth (PD), BOP, and CAL compared with children or

adolescents without diabetes, and all the results were statistically

significant (49). Another systematic review of 37 related studies

reported that compared to the systemically healthy controls, T1DM

patients had poorer periodontal health, higher plaque scores, and

greater periodontal destruction (47). Similarly, a recent systematic

review also conducted a comprehensive analysis of 11 studies on

this subject and confirmed that T1DM is a main risk factor related

to the development of periodontitis. Compared with nondiabetic

people, the proportion of T1DM patients affected by periodontitis

has more than doubled, and periodontitis is more serious. There

seems to be a great difference between subjects in different glycemic

control states (36). Moreover, periodontal health in children and

adolescents with T1DM deteriorates with poor diabetes control
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(48). Furthermore, compared to healthy children, the saliva

secretion rate of T1DM children was significantly reduced (51),

and the decrease in human beta-defensin (hBD)-3 concentration in

saliva could partly explain why children with T1DM were more

likely to suffer from periodontal disease (52).

Although the number of recent studies involving the

relationship between periodontitis and T1DM has increased

exponentially, there is still no general consensus on the causal

cause–effect relationship between periodontitis and T1DM (45),

and the connection between periodontitis and T1DM does not

appear to be as strong as the link with T2DM (49). Many systematic

reviews have failed to demonstrate the causal relationship between

them. Thus, more longitudinal studies with larger sample sizes are

needed to prove whether periodontitis is a cause of metabolic

control worsening in T1DM children or a result of the onset and

progression of T1DM.
3 The plausible pathogenic
mechanisms of diabetes mellitus on
periodontitis

The plausible pathogenic mechanisms of diabetes promoting

the susceptibility of periodontitis are as follows: (1) microbiome

factors; (2) enhanced inflammatory response via cytokines,

adipokines, AGE/RAGE, and miRNAs; (3) host immune factors;

(4) oxidative stress; (5) alveolar bone resorption damage; and (6)

epigenetic changes.
3.1 Microbiome factors

“Microbial dysbiosis” is considered to be the pathogenesis of

periodontitis, and the transformation of beneficial symbiotic

microbial communities to pathogenic bacteria communities in

subgingival plaque biofilms is the major initiation and causation

of periodontitis (12). Different microbial communities adhere to the

surfaces of the tooth root and are better protected from the effects of

shear forces and ambient oxygen compared to the supragingival

microbial communities (53). It is well known that periodontal

microbial biofilms can cause host inflammation, leading to

periodontal destruction and tooth loss (54).

Previous studies failed to reach a consensus on the presence of

diabetes mellitus having an effect on the composition of the

periodontal microbiota (55). Taylor et al. (56) concluded that

there was no compelling evidence to demonstrate that diabetes

mellitus (T1DM or T2DM) had an obvious impact on the

periodontal microbiota; in addition, the level of glycemic control

in diabetes patients did not affect the composition of subgingival

bacteria biofilm (57).

With the rapid growth of next-generation sequencing

technologies (NGST), a lot of studies in recent years indicated

that diabetes mellitus could alter the composition and biodiversity

of the subgingival microbiome. A case-control study showed that

the composition of subgingival microbiota varies depending on the
Frontiers in Endocrinology 04
presence of periodontal disease and different glycemic statuses. In

diabetes subjects, the numbers of Actinobacteria and

Fusobacterium were significantly more abundant. Actinobacteria

increased the probability of diabetes by 10%, and Fusobacterium

increased the probability of diabetes by 14%, while the numbers of

Proteobacteria were less abundant (58). Another research showed

that the salivary microbiome of nondiabetic people and patients

with diabetes histories had significant differences (59). There was a

clear reduction in the diversity of biological and phylogenetic in the

subgingival microbiota of diabetes and pre-diabetes patients in

comparison with patients with normoglycemic subgingival

microbiota (60). Furthermore, compared with healthy controls,

the numbers of Pseudomonas genera , Haemophi lus ,

Streptococcus, and Neisseria increased significantly in T2DM, as

did the Firmicutes/Bacteroidetes ratio, but the numbers of

Acinetobacteria reduced greatly (61). A recent study using the

metagenomics shotgun sequencing found that the subgingival

microbiome of T2DM patients with periodontitis had few red

complex species genes, while the subgingival microbiome of

healthy periodontal status individuals in patients with diabetes

contained more orange complex species genes. This obvious

difference led to an ultimate increase in the susceptibility of the

oral microbiome of diabetes patients to periodontitis than

nondiabetic individuals (62).

A lot of authors reported that diabetes mellitus reduced the

richness and alpha diversity of the subgingival microbiome, and the

reason was insufficient glycemic control (59–61, 63, 64). On the other

hand, there were also some studies that showed that diabetes did not

change the abundance and diversity of genera or phyla of subgingival

microbiota in periodontitis patients but would strengthen the

subgingival microbiota network connection in the periodontal

tissue, thereby affecting the occurrence and development of

periodontitis (65, 66). Mathur et al. (67) detected that compared

with control groups, there was no big difference in the alpha diversity

of T2DM patients’ salivary microbiota, but the relative abundance of

12 genera such as Atopobium, Parvimonas, and Aggregatibacter were

partially reduced, and drug treatment for T2DM could partially

restore the abundance of some salivary microbiota genera. Another

study showed the same result: at the genus level, a decreased

abundance of Neisseria, Porphyromonas, and Prevotella and an

increased abundance of Selenomonas, Faecalibacterium, and Rothia

were observed in the diabetic groups (68). However, even with the use

of modern methodologies and omics methods, the understanding of

the composition of subgingival bacterium under the condition of

diabetes mellitus was still insufficient (69). More future studies of

larger cohorts are needed to carry out the truth.

At present, the only consensus view is that diabetes mellitus can

increase the pathogenicity of the periodontal microbiota. T2DM

patients are more susceptible to periodontal pathogens and have a

higher risk of periodontitis (62). The metabolism of galactose,

mannose, and fructose, the mutual conversion of glucuronic acid

and pentose, and the pathways of glycolysis may represent a

potential microbial association between diabetes and

periodontitis, and butyric acid is important in the interaction

between them, affecting the bacterial secretion system and leading

to a higher risk of periodontitis in T2DM patients (70). In
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periodontitis patients with or without diabetes mellitus, four

microbial functional pathways associated with cell motility and

signal transduction of virulence factors were enriched (62).

Moreover, diabetes changes the pathogenicity of oral microbiota

by increasing the production of interleukin-17 (IL-17) (71). In

addition, treatment with the IL-17 antibody reduced the

pathogenicity of subgingival microbiota, decreased neutrophil

recruitment, and diminished proinflammatory factors IL-6 and

RANKL, ultimately achieving a reduction of alveolar bone

resorption (72).

Taken together, the inflammatory environment of the

periodontium inducing selective pressure drives microbial

dysbiosis and increases the pathogenicity of the periodontal

microbiota, which will stimulate the host to produce greater

inflammation, causing attachment loss and a deep periodontal

pocket of periodontitis (55). Diabetes mellitus can alter the oral

microbiota, and this effect is partially reversed only by giving

antibodies of inflammatory mediators IL-17, RANKL, and IL-6,

which indicates that diabetes mellitus, oral bacterial composition,

and inflammation have a strong correlation (6).
3.2 Inflammation factors

Inflammation is the primary focus of previous studies that

attempted to link diabetes mellitus and periodontitis because both

disease conditions are strongly associated with overt inflammatory

processes (7). The occurrence of TIDM is usually due to disorders in

immune regulation, leading to the activation of the innate immune

system and the expansion of autoreactive T and B lymphocytes

produced by autoantibodies (73). The reason for the development

of T2DM is the inability of pancreatic islet B cells to compensate for

hyperglycemic levels caused by decreased incretin response and

increased glucagon secretion (74). Functional impairment of

natural killer and B cells, as well as changes in the proliferation of

macrophages and T cells, lead to the progression of T2DM (75).

Although microbial dysbiosis has a direct impact on

periodontal tissue, it is also important for microorganisms to

mediate the amplified inflammatory response of susceptible hosts

by forming strong adhesive biofilms on the surface of teeth during

the progression of periodontitis (53). The accumulation of dental

plaque leads to inflammation in the periodontal tissues, which then

drives environmental changes and facilitates the growth of gram-

negative bacteria. Further uncontrolled inflammation/immune

responses largely promote tissue destruction (76). Inflammation is

a protective response of periodontal support tissue to bacterial

noxious stimuli, a process aimed at restoring balance by eliminating

noxious stimuli such as pathogens. However, chronic dysfunctional

inflammation caused by diabetes mellitus can lead to enlarged tissue

destruction. Diabetes, smoking, chronic inflammatory diseases, and

other risk factors worsen the condition of periodontitis and affect

the therapeutic effect of periodontitis (13).
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3.2.1 Cytokines
Cytokines are substances secreted by immune cells or other cells

that are recognized as inflammatory mediators and are related to

the inflammatory reaction. Studies strongly show that diabetes and

hyperglycemia directly induce a high inflammatory status in the

infected periodontium, and the expression of proinflammatory

cytokines is more significant in gingival tissue and crevice fluid of

patients with diabetes periodontitis than in individuals with system

health (77).

The most abundant data available concerns increased IL-1b,
TNF-a, and IL-6. There is sufficient evidence to show that

compared to patients with simple periodontitis, patients with

combined diabetes and periodonti t i s have increased

proinflammatory cytokines IL-6 and IL-1b, and there is a

quantitative relationship between glycemic control and these

cytokines (56, 57). On the other hand, a decreased secretion of

anti-inflammatory cytokines such as transforming growth factor-

beta (TGF-b), interleukin-4 (IL-4), and interleukin-10 (IL-10) may

also lead to the aggravation of periodontal inflammation in diabetes

patients (78). In conclusion, the hyperglycemia caused by diabetes

can directly or indirectly reduce the expression level of anti-

inflammatory cytokines such as IL-4, IL-10, and TGF-b1 and

increase the expression level of proinflammatory cytokines such

as IL-1b, IL-6, IL-8, IL-17, and TNF-a, all of which together

enhance the periodontal inflammatory performance (79, 80).

In addition to cytokines, other proinflammatory mediators,

such as metalloproteinases and chemokines, are also found to be

associated with diabetes (4, 7, 71, 72, 77, 78, 81–84). Kim et al. (85)

confirmed that the expression of matrix metalloproteinase-14

(MMP-14) was higher in the periodontal tissues of diabetes

patients with poor glucose control. On the other hand, a

reduction in proresolution mediators such as resolvins, protectins,

maresins, and lipoxins may also contribute to enhanced periodontal

inflammation (76), which involves three separate biosynthetic and

potent mediator families. During the inflammatory process, the

proinflammatory factors emit signals which can facilitate the

synthesis of proresolution mediators such as resolvins, leading to

the activation of the innate immune system and eliminating

pathogens stimuli (86–88). Ozturk et al. (89) also confirmed that

there were higher levels of proinflammatory peptide substance-P in

the gingival crevicular fluid and serum of diabetic patients with

poor glycemic control, which may aggravate the progression of

periodontitis and cause greater periodontal destruction.

3.2.2 Adipokines
There are multifarious types of adipokines, including adiponectin

related to metabolic function, resistin and leptin related to endocrine

function, complement factors related to immunity, angiotensinogen

related to cardiovascular function, and so on (90). According to

previous studies, some adipokines are involved in the occurrence and

progression of periodontal disease and diabetes, but the existing

evidence is insufficient. There are also many studies trying to
frontiersin.org

https://doi.org/10.3389/fendo.2023.1192625
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1192625
research the expression of adipokines in the gingival crevicular fluid or

serum and related mechanisms in periodontitis patients with or

without diabetes, and the results are also unclear; further

investigations are warranted.

Resistin is produced by various cells of the immune/

inflammatory system (91, and seems to be the most widely

researched adipokine linking periodontal disease and diabetes. As

a proinflammatory factor, resistin promotes the release of

interleukin-12 (IL-12) and TNF-a, induces the activation of NF-

kB, and enhances the secretion of monocyte chemoattractant

protein-1 (MCP-1) and IL-6 (92). Two studies showed

comparable resistin levels in gingival crevicular fluid and serum

between periodontitis with/without diabetics (93, 94). However, the

other study showed significantly higher levels of resistin in serum

and gingival crevicular fluid in periodontitis with T2DM than in the

chronic periodontitis group (95). A recent study identified that the

expression of resistin in chronic periodontitis was significantly

higher compared to the periodontal health group, and the level of

resistin was also higher in the periodontitis patients with T2DM.

There was a strong positive correlation between resistin,

glycosylated hemoglobin (HbA1c) level, and periodontal clinical

parameters, with significant statistical differences (96). This is due

to the chronic systemic inflammatory state caused by T2DM and

the chronic local expression of proinflammatory resistin in the

periodontal tissue (97). Similarly, high levels of resistin can affect

the activity of osteoclasts, thereby affecting the absorption of

alveolar bone. At the same time, T2DM changes the composition

of periodontal bacterial pathogens in patients and activates the host

immune response, resulting in the release of resistin by neutrophils

(98). Therefore, resistin as a potential mediator between T2DM and

chronic periodontitis deserves more attention.

Adiponectin is an anti-inflammatory, while leptin is a

proinflammatory. T2DM can increase the levels of leptin and

decrease the levels of adiponectin (99–101). Recent studies have

found that compared to individuals with systemic health, the

adiponectin level in periodontitis patients with diabetes is

significantly lower and the leptin level is significantly higher (102,

103). Similarly, Kardes ̧ler et al. (104) also showed that, compared to

patients with periodontitis without T2DM, patients with T2DM and

periodontitis had lower adiponectin levels and higher leptin levels.

Adiponectin, leptin, visfatin, and chemerin play an important role

in the occurrence, development, and diabetes-related complications

of T2DM (105). The adiponectin receptor agonist AdipoRon (APR)

can activate the endogenous adiponectin receptors to exert

osteoanabolic effects and reduce osteoclast numbers and alveolar

bone loss significantly. At the same time, APR can enhance stem

cells’ osteogenic differentiation, reduce stromal cell-derived factor 1,

which can promote stem cell migration, and ultimately promote the

repair and regeneration of alveolar bone (106). Adiponectin and its

agonists may be promising potential therapeutic targets for the

clinical treatment of diabetes-related periodontitis, but the potential

mechanism and clinical application need further research (107).

Other adipokines also play a role in the progress of diabetes-

related periodontitis. A recent study found that progranulin in the

saliva of diabetes patients with periodontitis was significantly

reduced after nonsurgical periodontal treatment, considering that
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progranulin might be a target inflammatory marker for diabetes-

related periodontitis (108). Another interventional comparative

study showed that there were significant differences in the levels

of omentin-1 in the saliva and serum of chronic periodontitis

patients with or without T2DM (109). In addition, compared to

periodontitis alone, periodontitis patients with T2DM have higher

levels of plasminogen activator inhibitor-1 (PAI-1) in saliva and

serum, suggesting a possible role of adipokines in the regulation of

glycemic levels and periodontal inflammation (110).
3.2.3 Advanced glycation end products and
their receptor

AGEs are produced by the nonenzymatic oxidation of lipids,

nucleic acids, and proteins caused by hyperglycemia in diabetes and

accumulate in the periodontium, leading to sustained periodontal

tissue destruction (111, 112). Periodontitis patients with diabetes

have higher AGE accumulation levels compared to periodontitis

patients without diabetes (112, 113). The accumulation of AGEs in

the periodontal tissue of diabetes patients will increase the

susceptibility to periodontitis and aggravate the existing

periodontitis, but the exact mechanism is still unclear.

AGEs have been demonstrated to decrease osteoblast-related

molecule mRNA expression, such as type 1 collagen, core-binding

factor alpha 1 (Cbfa1), and osteocalcin, and increase inflammation-

related molecules such as IL-1b and calcium-binding protein

S100A8 (114). Another potential action of AGEs is to influence

bone metabolism and inflammation through the regulation of

sclerostin expression, which has an adverse effect on bone

formation or bone metabolism in osteocyte cells and may

aggravate periodontitis with diabetes (115). AGE2, a form of

AGEs, can respectively upregulate the expression of Toll-like

receptor 2 (TLR2) and RAGE in periodontal tissue and

significantly stimulate the production of sclerotin and IL-6 in

osteocytes. The presence of AGEs can also upregulate the levels of

proinflammatory cytokines TNF-a and IL-6, which will further

exacerbate inflammatory reactions (115).

In addition to its effects on the bone system, further studies

showed that AGEs affected almost all types of cells in periodontal

tissue directly or indirectly by binding to their receptors(RAGEs),

including periodontal ligament stem cells (PDLSCs), gingival

fibroblasts (GFs), gingival epithelial cells (GECs), and periodontal

ligament cells (PDLCs) (80, 80). AGEs can inhibit the osteogenic

differentiation of human periodontal ligament stem cells

(hPDLSCs) by activating the classic Wnt/b-catenin pathway,

reducing osteogenic potential and the regeneration and repair of

alveolar bone (116). The accumulation of AGEs in human gingival

fibroblasts (HGFs) can increase the protein and mRNA expressions

of intercellular adhesion molecule-1 (ICAM-1), RAGE, and ROS

through the NF-kB signaling pathways and MAPK pathways and

aggravate periodontitis (117). It is also shown that AGEs stimulated

the expression of RAGE and TLR2 by activating NF-kB, JNK-
MAPK, and p38 signaling pathways in human gingival epithelial

cells (hGECs), which could lead to increased activation of

calprotectin in human gingival fibroblasts, including S100A9 and

S100A8 (111). In human periodontal ligament cells (hPDLCs),
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the AGE/RAGE system can activate nucleotide-binding

oligomerization domain-like receptors expression, such as

NLRP1-inflammasome and NLRP3-inflammasome, promoting

the inflammatory response through the NF-kB signaling

pathway (118).

High concentrations of AGEs will cause the deterioration of

diabetes periodontitis, and the siRNAs of RAGE can significantly

reverse this result (111, 114, 115, 117, 119). The current research

points to the beneficial effects of the administration of AGE

inhibitors or blockers on periodontal tissue. The use of AGE

inhibitors may improve periodontal inflammation, alleviate the

damage of pathogenic bacteria to periodontal tissue, and

ultimately improve the outcome of periodontal treatment. The

huge potential of this method is obvious through the local

application in periodontal tissue of new drugs such as vitamin C,

which is an antioxidant and immunomodulator, to reduce the

detrimental effect of diabetes mellitus on the periodontal tissue

(120). Meanwhile, the natural antioxidant magnolol can alleviate

periodontal inflammation for diabetes patients with periodontal

disease by reducing the accumulation of AGEs, maybe through the

nuclear factor erythroid 2-related factor 2 (Nrf2) signaling

pathway (121).

In conclusion, chronic hyperglycemia increases the incidence/

severity of periodontal diseases by inducing an exaggerated and

prolonged inflammatory response driven by the accumulation of

AGEs, which are considered to be the main pathogenesis of

diabetes-related complications by inducing immune disorders and

cell damage (122–124). AGEs can expand the release of

proinflammatory mediators, enhance the immune inflammatory

response of periodontal tissue, amplify oxidative stress by

stimulating the production of ROS, and increase the susceptibility

to periodontitis in diabetes patients (80). The administration of

AGE inhibitors or blockers can partially reverse this result.

3.2.4 MicroRNAs
MicroRNAs (miRNAs) are a group of noncoding small RNAs that

function as master protein synthesis regulators that can act directly on

target genes or indirectly on their transcription factors, which in turn

silence the expression of the target gene (125). It has been reported that

more than 60% of the translation of human coding genes is regulated

by these highly conserved single-strandedmiRNAs (126). It is reported

that miRNA expression is tissue-specific, and the imbalance of miRNA

expression is not only closely related to various diseases but also affects

other normal protein expression (127). Therefore, they not only play

an important role in the normal physiological process but also in the

pathological development of various diseases. Much literature has

shown that tissue-specific miRNAs can be used as diagnostic

markers for metabolic diseases such as diabetes and inflammatory

diseases such as periodontitis (128, 129), and most detectable miRNAs

are concentrated in the exosomes (130). As promising disease markers,

miRNAs are confirmed to coordinate immune inflammatory

responses and have a strong upward potential in future research

(131). Although very important, due to the relative novelty of the

field of miRNAs, the role of miRNAs in the pathology and physiology

of diseases needs to be further elucidated (132).
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Some miRNAs may play an important role in the comorbid

pathogenesis of diabetes mellitus and periodontitis. Recent studies

demonstrated that, when compared to the control groups, there was

significant overexpression of miR-223 in chronic periodontitis

patients with or without T2DM (133, 134). MiR-223 can regulate

innate immunity, leading to the recruitment and overactivation of

neutrophils (135); therefore, miR-223 is related to the pathogenesis

of chronic periodontitis and is highly likely to become a diagnostic

marker for periodontal disease. MiR-223 is also helpful in the

differential diagnosis of T2DM combined with periodontitis and

periodontitis alone (133, 134, 136). In addition, miR-223 is

correlated with proinflammatory cytokines TNF-a, anti-

inflammatory cytokines TGF-b and IL-10, and periodontitis

clinical parameters such as probing depth (PD) and clinical

attachment loss (CAL) in varying degrees; it is also highly

correlated with susceptibility to diabetes mellitus and glycemic

control levels (134).

MiR-200b, which is induced by inflammatory cytokines, plays a

key role in the early stages of inflammatory response, mainly

part ic ipat ing in innate immunity and promoting the

differentiation of various immune cells, such as neutrophils and

macrophages (137). Moreover, the study found that in the chronic

periodontitis group of T2DM, there was a significant difference in

the serum level of miR-200b, which was significantly negatively

correlated with IL-10 and positively correlated with TNF-a (133).

Moreover, miR-203 may also play have a connecting effect on

diabetes mellitus and periodontitis and have an additional

characteristic as a specific marker for differential diagnosis of

patients with or without diabetes, as well as distinguishing

diabetes with periodontitis from diabetes without periodontitis

(133, 138, 139). MiR-203 can also reduce inflammation in

periodontal tissue by repressing TNF-a (139).

In addition to the above-mentioned, miR-146a, miR-146b,

and miR-155 are also identified as promising biomarkers for

diabetes mellitus and periodontal diseases (139–142). The gene

targets of these miRNAs involve both innate and acquired

immune responses, including natural killer cells and T

lymphocytes (143), indicating its potential role in immune-

related inflammation diseases such as periodontitis and

metabolic diseases such as diabetes mellitus. MiR-155, miR-

146a, and miR-146b can sense pathogen stimulation through

pattern recognition receptors via the NF-kB signaling pathway

(144). The combination of NF-kB-miRNA-146a and NF-kB-miR-

155 regulatory loops can regulate the duration and intensity of

inflammatory responses, so miR-146 and miR-155 can cross-talk

and provide optimum NF-kB pathway activity and ultimately

reduce inflammation (140, 145). This result was confirmed in

other studies (139, 139, 141, 142). MiR-146a, miR-146b, miR-155,

and miR-203 expression were higher in patients with periodontitis

with or without diabetes; MiR-146a is the only reliable predictor of

periodontitis in diabetes patients, and miRNA-155 is the most

reliable predictor of periodontitis in nondiabetes patients (139).

Since miR-155 is a main regulator of immunity/inflammatory

response, the transcription level of miR-155 can discriminate

between diabetes and nondiabetes conditions (146).
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Another study showed that high glucose related to diabetes

mellitus induced apoptosis of human periodontal ligament cells

through a diminution of miR-221 and miR-222 expression and an

increment of caspase-3, a validated target for these miRNAs, and

had an effect similar to the inhibition of miR-221/miR-222 in

control groups using antagomiRs (147). On the contrary, the

expression levels of miR-214 in the periodontium of diabetes-

associated periodontitis patients were increased (148). In addition,

miR-126 can inhibit the inflammatory response of HGFs caused by

hyperglycemia by directly targeting tumor factor receptor-

associated factor 6 (TRAF6), so it may be a potential therapeutic

target for periodontitis with diabetes (149).

Dysregulated expression of miRNA profiles mediates the

inflammatory stress response by various inflammatory factors, so

miRNAs play an important role in the occurrence and development

of diabetes and periodontitis (150, 151). However, the explicit

regulatory mechanism of miRNA in aggravating periodontitis in

patients with diabetes mellitus is still unclear, and it is a direction

for future research.
3.3 Host immune factors

3.3.1 The pathogenesis of periodontitis
The interaction between periodontal microbiota and host

immunity response is key to the pathogenesis and periodontium

destruction of periodontitis. The size (big or small) of the immune

response of host periodontal tissue in combating dysbiotic

microbiota is very important because it determines the clinical

manifestation of periodontitis and the response to periodontal

treatment (12). Hyperactive immune responses can increase

inflammation and degradation of periodontal tissue (152).

Periodontal pathogenic bacteria are recognized by pattern

recognition receptors such as TLR2, TLR4, TLR7, TLR8, and

TLR9 on the surface of periodontal cells, which can lead to the

response of the proinflammatory cell, activation of neutrophils, and

recruitment of macrophages/lymphocytes through p38 mitogen-

activated protein kinase and NF-kB signaling pathways. Similarly,

prostaglandin E2 (PGE2) released by macrophages and oxidative

stress induced by neutrophils can cause more release of

proinflammatory cytokines such as TNF‐a, IL‐1b, and IL‐6 and

matrix metalloproteinases (MMPs) such as MMP-1, MMP-2,

MMP-8, MMP-9, and MMP-13, which lead to local degradation

of collagen fibers, loss of periodontal attachment, and resorption of

alveolar bone, promote the progression of periodontitis, and enlarge

inflammatory response and periodontal tissue (153–157).

The inflammatory response induced by the dysbiotic

microbiota community includes interleukin-23 (IL-23) (158),

which is produced by both macrophages and dendritic cells

(DCs) in the connective tissue (159), which can increase the

proportion of Th17 lymphocytes and change the ratio of T helper

17/regulatory T cells (Th17/Treg) to tilt the balance toward

proinflammatory Th17 cells (160). IL-17, which is derived from

Th17 cells, also plays an important role in periodontal destruction;

it can cause collagen destruction mediated by neutrocytes, alveolar
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bone loss via RANK/RANKL pathways, and contribute to

periodontitis (161–163).

Host genotype may be closely related to periodontal

susceptibility (164). Moreover, both comorbidities such as

diabetes and environmental factors such as smoking are also very

important (165).

3.3.2 Diabetes mellitus affects the immune
response of periodontium

Diabetes mellitus can affect the innate and adaptive immune

systems of the periodontium; both of them are thought to

contribute to the progression of periodontitis.

Neutrophils are an important component of innate immunity,

forming the first effective line of defense for the host against

periodontal bacteria (166). Neutrophil homeostasis can maintain

a balance between body protection and destruction, and any

imbalance may cause periodontal tissue damage (167). In

previous studies, it was found that the numbers of neutrophils

were enhanced, but the functional activity of neutrophils (such as

chemotaxis, phagocytosis, bactericidal function, and others) was

impaired in periodontitis patients with T2DM (168), which would

give rise to intracellular killing and respiratory burst (166) and

increase the severity of periodontitis in diabetic patients.

Dysfunctional neutrophils may cause periodontal tissue damage

through the release of inflammatory mediators or tissue-degrading

enzymes (169). In diabetic patients with poor glycemic control,

neutrophils can also be activated in advance to increase the

periodontal damage by increasing the activity of protein kinase C

(PKC) (170). Poorly functioning neutrophils can enhance tissue

damage, produce more superoxide and proinflammatory cytokines

as well as chemokines, and increase the number of neutrophils in

periodontal tissue (171, 172). In addition, in diabetes patients,

neutrophils will overexpress a key enzyme, peptidylarginine

deiminase 4 (PAD4), which is a nuclear citrullinating enzyme

that is involved in the release of decondensed chromatin from

neutrophils, inhibit the periodontal defense response and promote

periodontal inflammation, and form the neutrophil extracellular

traps (NETs), which, together with fibrin, are implicated in host

defense against pathogens (173, 174). Furthermore, the levels of

calprotectin (S100A8/A9), the major cytoplasmic protein in

neutrophils, are significantly higher in periodontitis patients with

T2DM than those in chronic periodontitis and healthy

controls (175).

Macrophages are another cell type associated with immune

response and are thought to contribute to periodontitis. Diabetes

can increase the polarization of the M1 proinflammatory phenotype

of macrophages, thus increasing the susceptibility and severity of

periodontal disease, and the number of M2 anti-inflammatory

phenotype macrophages is correspondingly reduced (6). Classic

pathways activate M1 proinflammatory macrophages, which are

involved in the production of inflammation, while M2 anti-

inflammatory macrophages are involved in the downregulation of

inflammation (176). The systemic metabolic changes caused by

diabetes-induced hyperglycemia and insulin resistance can change

the polarization and function of macrophages, enhance
frontiersin.org

https://doi.org/10.3389/fendo.2023.1192625
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1192625
myelopoiesis, and lead to increased release of monocytes, which are

the predecessors of macrophages (177). Li et al. (178) found that

among subjects with diabetes periodontitis, macrophages

stimulated by high glucose would lead to insufficient secretion of

SIRT6 and induce disorder of SIRT6-miR-216/217 axis,

accompanied by neutrophil apoptosis, impeded efferocytosis, and

increased neutrophil extracellular traps, thus aggravating the

inflammatory response of periodontitis. Neutrophils obliterate

periodontal microorganisms by performing phagocytosis or

releasing NETs, later starting apoptosis and immediate

efferocytosis by triggering macrophages to prevent greater damage

to periodontal tissue. However, chronic disunion in patients with

diabetes usually leads to long-term inflammation and the

persistence of neutrophils and macrophages, which will aggravate

the periodontal inflammation (173–178).

Although neutrophils and macrophages play an important role

in host immune response, it is reported that other myeloid cells,

such as T cells, are also important in periodontitis with diabetes

mellitus. The inflammatory environment by maintenance of innate

immune cells, including neutrophils and macrophages, as well as

related inflammatory mediators, can be affected by adaptive

immunity (163). It is conducive to the differentiation of initial

CD4+ T cells in Th17 inflammatory cells in diabetes patients, thus

affecting the balance of the Th17/Treg axis and increasing the

proportion of Th17 cells (160). Since IL-17 cannot only change

the pathogenicity of periodontal microbiota but also lead to

increased inflammation and more periodontal bone loss, the

increase in the Th17/Treg ratio further aggravates the

deterioration of diabetes periodontitis (71, 72).

3.3.3 Host response modulation therapy
Host response modulation therapy aims to restore the balance

between proinflammatory factors and anti-inflammatory

mediators, prevent the development of periodontitis, and repair

periodontal tissue destruction (179, 180).

The main kind of substances used in host response modulation

therapy include nonsteroidal anti-inflammatory drugs (NSAIDs)

(181), anti-cytokine therapy (182), sub-antimicrobial doses of

doxycycline (SDD) (183), and specialized proresolving mediators

(SPM) such as resolvins (184), maresins (185), lipoxins (186),

probiotics (159), and other substances such as resveratrol (187)

melatonin (188), and curcumin (189). Omega-3 polyunsaturated

fatty acids (w-3 PUFA) can change the neutrophil function, reduce

inflammatory reactions, and improve host antioxidant capacity

(190). They are represented by docosahexaenoic acid (DHA),

which is the origin of marines and protect ins , and

eicosapentaenoic acid (EPA), which is related to the resolvin E

series (RvE) (191).

NSAIDs are not an efficient modulation therapy (192).

Systematic analysis also failed to prove that SDD treatment can

bring significant improvement to diabetes patients with

periodontitis (193). The use of w-3 PUFAs can prevent excessive

inflammatory processes by producing specialized proresolving

mediators with effects on glycemic control and lipid profile (194).

Some independent studies also suggested using resveratrol,
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curcumin , or me la ton in as po ten t i a l inflammatory

immunomodulators for patients with diabetes periodontitis (195–

197). However, current data are insufficient to demonstrate its

absolute benefits for treating disease (192).
3.4 Oxidative stress

Oxidative stress (OS) is defined as “an imbalance between

oxidants and antioxidants in favor of the oxidants, leading to a

disruption of redox signaling and control and/or molecular

damage,” and is closely related to the pathogenesis of chronic

metabolic diseases such as diabetes mellitus and chronic

inflammatory diseases such as periodontal disease (198, 199).

Disorders in the redox balance and the resulting cellular

dysfunction make a prooxidant environment that produces more

ROS, while the body’s ability to scavenge free radicals decreases.

Defense systems include antioxidant systems such as catalase

(CAT), glutathione peroxidase (GPx), and Cu–Zn superoxide

dismutase (SOD) and vitamins like vitamins E, A, and C (198,

200, 201).

OS is a common factor that causes the occurrence and

development of diabetes and periodontitis through an

upregulated host immune/inflammatory response and causes

damage to vital biomolecules such as proteins, lipids, and DNA

(198, 201, 202). Because the immune defense of diabetes patients is

damaged, it is difficult to respond to the high level of subgingival

pathogenic microorganisms in periodontitis patients, which will

increase the destruction of periodontal tissue (203). At the same

time, prooxidant states in periodontal tissue can lead to decreased

insulin sensitivity, insulin resistance, and significant systemic effects

(204). The coexistence of diabetes and periodontitis may have a

synergistic effect, leading to more unbalanced redox control (204).

3.4.1 Oxidative stress in diabetes mellitus
The production of ROS and the resulting oxidative stress state

play a crucial role in the pathogenesis of diabetes, which is closely

related to impaired glucose utilization, insufficient insulin secretion,

and insulin resistance and ultimately leads to chronic

hyperglycemia (200). It has been proven that the concentration of

products of oxidative stress related to lipid peroxidation products,

such as malondialdehyde (MDA), protein oxidation products

(nitrotyrosine and carbonyl levels), and DNA oxidation markers

such as 8-hydroxy-2′-deoxyguanosine (8-OHdG), in diabetes

mellitus are a significant improvement, along with reduced

antioxidant enzymatic (such as CAT, SOD and GPx) and

nonenzymatic antioxidants (such as vitamins C and E) activity

(198, 200, 205, 206).

Overproduction of ROS can occur through mechanisms associated

with several pathways, such as polyol pathways, hexosamine pathways,

PKC pathways, and AGE/RAGE pathways. Overactivation of all of the

above signaling pathways ultimately leads to increased intracellular

oxidative stress (207–209). The excessive production of ROS induced

by hyperglycemia is conducive to inducing the polarization of M1-type

proinflammatory macrophages, and activated polarized M1
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macrophages are recruited to the inflammatory site where neutrophil-

mediated respiratory burst occurs, where more proinflammatory

mediators are released, which will produce more ROS and exacerbate

the severity of oxidative stress (210). The bigger the OS that can cause

damage to cellular macromolecules becomes, the greater the intensity

of inflammatory reactions and mitochondrial dysfunction, ultimately

leading to less insulin secretion and more insulin resistance (207, 209).

Studies have shown that excessive ROS can be produced

through both nonmitochondrial pathways and mitochondrial

inner membrane. Mitochondrial dysfunction may lead to

intracellular calcium homeostasis disorders and ultimately reduce

insulin sensitivity reduction in T2DM patients (211). ROS leads to

the inhibition of antioxidant enzymes and the reduction of

nonenzymatic antioxidants in systemic tissues, leading to the

enhancement of chronic OS and aggravating the systemic

symptoms of diabetes (212). Therefore, the excessive production

of ROS induced by hyperglycemia, in addition to diluting the body’s

antioxidant response, can also trigger a vicious cycle including

hyperglycemia, oxidative stress, metabolic damage, and reduced

insulin secretion or insulin resistance.

3.4.2 Oxidative stress in periodontitis
Multitudinous experimental studies have shown there is a close

relationship between periodontitis and OS (198, 213, 214). An

increasing number of reports also have also shown that increased

oxidative stress markers and total oxidation levels have been detected in

the blood, saliva, and gingival crevicular fluid of patients with

periodontitis, further confirming the link between periodontal tissue

inflammation and OS (214, 215). Periodontitis can induce a sustained

low-level inflammation of periodontal tissue, thereby increasing the

overproduction of ROS and creating an environment with reduced

antioxidant capacity. Nonsurgical periodontal treatment can reduce the

level of OS markers in periodontal tissue (216).

Periodontal microbial pathogens activate the host immune

response, leading to the recruitment of leukocytes, predominantly

polymorphonuclear neutrophils and macrophages, from the

bloodstream to the site of periodontal infection (217). The

neutrophils bind to periodontal pathogenic bacteria by cell

surface pattern recognition receptors such as TLR2 and TLR4,

and subsequently, periodontal pathogens are eliminated through

functional activity change of neutrophils such as phagocytosis and

bactericidal and the formation of NETs. This process involves a

powerful intracellular killing and respiratory burst of neutrophils,

with excessive release of ROS, leading to subsequent microbial

killing. ROS and its induced excessive activation of oxidative stress

can have a destructive effect on host cells and are therefore

considered a double-edged sword (217–220).

Consistent with the effect of OS on diabetes, OS in periodontal

tissue can also promote the release of proinflammatory factors and

activate the NF-kB signal pathway (221, 222). ROS exerts

antimicrobial activities by exacerbating nucleic acid damage,

protein misfolding, lipid peroxidation, and endoplasmic reticulum

stress, or mitochondria stress, thereby accelerating autophagy and

apoptosis of defective cells (223). Moreover, ROS can also play an

indirect role in the destruction of alveolar bone caused by
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periodontitis and function as signaling molecules intercellularly or

intracellularly in the osteoclastogenesis of periodontal ligament

stem cells. Therefore, the excessive production of ROS can trigger

the inflammatory mechanism and osteoclast formation, leading to

periodontal inflammation and alveolar bone loss during the

progression of periodontitis (224, 225).

3.4.3 Diabetes mellitus increased periodontitis
susceptibility via oxidative stress

In addition to the inflammatory reaction mediated by

periodontal pathogens and the subsequent production of

excessive ROS caused by neutrophils, several pieces of evidence

show that hyperglycemia caused by diabetes can also lead to the

accumulation of oxidative stress products in periodontal tissue.

High glycemic levels induce ROS by overactivating polyol pathways,

hexosamine pathways, PKC pathways, and AGE/RAGE pathways,

increasing AGE formation, mitochondrial dysfunction, and a

significant OS increment (226–228). The preexisting periodontal

disease together with these pathologic mechanisms in diabetes, with

increased OS and aggravated release of proinflammatory mediators,

may be the reason why diabetes patients have more periodontal

damage, and it also partly explains the current situation that

diabetes patients are more susceptible to periodontitis.

As one of the main disease mechanisms, AGEs are a major link

between diabetes and its complications. Research shows that in

chronic periodontitis associated with diabetes, the accumulated

AGEs in the periodontium increase (229). The synergistic effect

of ROS and AGE/RAGE axes can lead to excessive periodontal

damage related to diabetes (230). In addition, in the presence of

AGEs, ROS can enhance cell autophagy by activating the ERK

pathway and change the oxygen diffusion state by altering the

permeability and structure of cell membrane, resulting in increased

OS in periodontal tissue (231). Another study has proved that under

the condition of diabetes, AGEs accumulated in periodontal tissue

induce OS by inhibiting the Sirt1/Nrf2/HO-1 signal axis through

RAGE and further promoting the production of IL-6 and IL-8

(232). AGEs in synergy with TNF-a can promote stronger OS in

hPDLSCs in vitro and exhibit greater damage to periodontal tissue

(233). AGEs can also reduce osteogenic differentiation of PDLSCs

through OS (234). Another study shows that the excessive

accumulation of ROS in periodontal tissue caused by diabetes will

produce an extended oxidative environment, leading to the

telomere damage of PDLSCs and ultimately damaging the

mechanism of periodontal tissue repair and regeneration (235).

The products of OS and markers of the antioxidant system have

been used to research the pathogenesis of diabetes and periodontitis

and the interaction between them, but no consistent conclusion has

been reached until now. Studies have shown an increase in total

antioxidant capacity in periodontitis patients with T2DM (236).

Along the same lines, the level of malondialdehyde in the

periodontal tissue of T2DM patients was also significantly

increased (237). On the contrary, another study concluded that

the OS markers (8-OHdG) and periodontal clinical parameters of

the patients affected by T2DM and periodontitis had a significant

reduction (238). A case-control study showed that the activity of
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SOD decreased in patients with periodontal disease alone and

increased in periodontitis patients with T2DM (239); however,

the level of GPx was upregulated due to periodontitis and

independent of the individual’s diabetes status (240), suggesting

that diabetes increases gingival activity as an adaptive mechanism.

3.4.4 Antioxidants
An effective approach to improving the defense against OS is to

supplement antioxidants, including vitamins C and E and carotenoids

(241), lycopene (242), a- and g-tocopherol, b-cryptoxanthin, N-
acetylcysteine (NAC) (243), polyphenolic compounds (244), such as

flavonoids (245), zeaxanthin, and lutein. It has been reported that NAC

alone has limited antioxidant effects, but when used together with

glycine, GlyNAC can synergistically improve mitochondrial

dysfunction and insulin secretion reduction, increase GPx synthesis,

and reduce OS (241, 243).

Nrf2 is an inflammatory-related transcription factor that is

crucial for balancing oxidative stress damage and the regulation

of antioxidant responses. So the targeted treatment of the Nrf2/HO-

1 axis can improve the periodontal injury caused by oxidative stress

reaction and the subsequent amplified inflammatory response in

diabetes patients with periodontitis (246, 247). Magnolol is derived

from Magnolia officinalis and is beneficial for the improvement of

diabetic complications. It has been shown to have antioxidant and

anti-inflammatory properties and have a protective effect against

periodontitis by activating the Nrf-2/HO-1 signaling axis

(248, 249).

However, there is no sufficient evidence to prove that the use of

antioxidants alone can produce perfect treatment results, but the

use of antioxidants can improve the prognosis of diabetes

periodontitis and help periodontal tissue elevate its response to

periodontal basic treatment (250).
3.5 Alveolar bone resorption damage

Compared with periodontitis alone, periodontitis with diabetes

causes more serious damage to periodontal tissue, especially the

alveolar bone. The potential pathogenesis of increased periodontal

tissue destruction in diabetes patients includes decreased collagen

production, increased collagen decomposition activity, RANKL-

mediated increased osteoclastogenesis, and diminished bone

regeneration (30). Alveolar bone resorption is mainly mediated by

RANKL through its receptor RANK, and osteoprotegerin (OPG) is

an antagonist of RANKL, which can inhibit the generation of

osteoclasts and play an important role in bone protection. The

ratio of RANKL/OPG determines their impact on bone metabolism.

The RANKL/OPG pathway plays a major role in diabetic

periodontal inflammation and periodontal tissue destruction (251).

Santos et al. (252) found that the RANKL level and RANKL/

OPG ratio in the gingival crevicular fluid of periodontitis patients

with poorly controlled diabetes were higher than those of
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periodontitis patients with well-controlled diabetes. Another

study showed that oral infection stimulated RANKL expression in

osteocytes, causing obvious bone loss and increasing the functional

activity of osteoclast, which were further enhancements by diabetes

mellitus, but there was no bone loss or increment of

osteoclastogenesis detected in diabetic transgenic mice in

RANKL-deletion osteocytes (253). In periodontitis rats with

T1DM, TNF-a could induce increased expression of sclerotin and

RANKL in alveolar osteocytes, leading to further alveolar bone

resorption and bone loss (254). Another study showed that

hyperglycemia caused by diabetes could damage the function of

PDLSCs, affect the ability of osteogenic differentiation, and have an

adverse effect on the regeneration of alveolar bone (235).
3.6 Epigenetic changes

The host’s susceptibility to periodontitis depends not only on

the influence of periodontal microorganisms but also on other

factors such as genetic environmental factors, lifestyle, and so on. In

recent years, it has been gradually noticed that diabetes affects the

occurrence and development of periodontitis by changing the

epigenetics of periodontal tissue (255).

A recent study shows that hyperglycemia caused by diabetes can

cause 1,163 genes’ epigenetic changes in gingival tissue,

accompanied by histological changes. The epigenetic and

morphological changes of periodontal tissue may increase the

susceptibility of periodontal disease in diabetes patients (19).

Another study on people in South India shows that the

polymorphism of the RAGEG82S gene may be a risk factor for

periodontitis when diabetes is combined (256).
4 Conclusions and perspective

There is a positive association between diabetes mellitus and

periodontitis; they promote the incidence of each other and are

related to disease severity. Diabetes mellitus is a main risk factor for

periodontitis and can increase the pathogenicity of the

periodontal microbiota.

Animals with T2DM exhibit significant changes in the

composition of the microbiota and a significant decrease in

microbial diversity. At the same time, the shift from normal to

dysbiotic microbiota in healthy individuals is greater than in diabetes

patients, suggesting that diabetes mellitus can increase the

inflammatory response to oral bacteria via cytokines, adipokines,

AGE/RAGE, and miRNAs. Diabetes mellitus magnifies and

strengthens the inflammatory response of bacterial attack in all

aspects. The magnitude of the host immune response of periodontal

cells in resisting the activity of the dysbiotic microbiota determines the

host susceptibility and the more severe destruction of the

periodontium. Moreover, hyperglycemia induces the production of
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ROS and enhances OS by AGEs/RAGEs, exacerbating periodontal

destruction in diabetics. Furthermore, decreased collagen production,

increased collagen decomposition activity, the RANKL/OPG ratio-

mediated alveolar bone resorption damage, and the epigenetic changes

in periodontal tissue induced by diabetes may also contribute to an

increased susceptibility to periodontitis in diabetes mellitus patients. All

the above biological processes that promote the susceptibility of

diabetes mellitus to periodontitis are shown in Figure 1.

The reverse is also true; periodontitis is highly correlated with

poor glycemic control in diabetes patients (10, 21–24). In addition,

a prospective study showed that the occurrence of new diabetes was

negatively related to the improvement of oral health (257). The

mechanism of periodontitis affecting glycemic control in diabetes

mellitus involves periodontal pathogens destroying the balance of

intestinal microbiota, the spread of inflammatory mediators

exacerbating systemic inflammation and metabolic damage,

periodontal pathogens entering the blood causing bacteremia (30,

258–261), and periodontal pathogens reducing insulin production

(262) or insulin resistance (263). Periodontal treatment can

improve glycemic control of diabetes, but the evidence is still

insufficient, and more clinical data are needed (25–29). New

research showed that there was a direct relationship between the

enhanced glycolysis of macrophages induced by hyperglycemia and

training immunity (263), which may provide a theoretical basis for
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the two-way relationship between diabetes and periodontitis, and

this new research field needs more exploration.

Furthermore, a better understanding of the mechanistic links

between diabetes mellitus and periodontitis will benefit the

identification of novel potential therapeutic targets, such as pro-

resolution pathways, host response modulation therapy, Th17/Treg

imbalance, antioxidant therapy, trained immunity, and gene

modification. At the same time, there needs to be an

interprofessional collaborative sense between endocrinologists and

stomatologists while managing periodontitis patients with diabetes

mellitus; endocrine physicians need to take care of periodontal

diseases caused by diabetes and their effect on glycemic control; and

patients with periodontitis should be counseled regarding their

elevated risk of diabetes. In fact, studying the pathogenesis of the

intersection network of diabetes mellitus and periodontitis can

better explain the cross-interference of metabolic diseases and

inflammatory diseases and provide a theoretical basis for new

systemic holistic treatments.
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141. Roganović JR. microRNA-146a and -155, upregulated by periodontitis and
type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptor genes.
J Periodontol (2021) 92:35–43. doi: 10.1002/jper.20-0623

142. Bachtiar BM, Bachtiar EW, Kusumaningrum A, Sunarto H, Soeroso Y, Sulijaya
B, et al. Porphyromonas gingivalis association with inflammatory markers and
exosomal miRNA-155 in saliva of periodontitis patients with and without diabetes
diagnosed with COVID-19. Saudi Dent J (2023) 35:61–9. doi: 10.1016/
j.sdentj.2022.12.002

143. Duval M, Cossart P, Lebreton A. MamMalian microRNAs and long noncoding
RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol (2017) 65:11–9.
doi: 10.1016/j.semcdb.2016.06.016

144. Schulte LN, Westermann AJ, Vogel J. Differential activation and functional
specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res
(2013) 41:542–53. doi: 10.1093/nar/gks1030

145. MannM, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, et al. An NF-
kB-microRNA regulatory network tunes macrophage inflammatory responses. Nat
Commun (2017) 8:851. doi: 10.1038/s41467-017-00972-z

146. Mahesh G, Biswas R. MicroRNA-155: A master regulator of inflammation. J
Interferon Cytokine Res (2019) 39:321–30. doi: 10.1089/jir.2018.0155

147. Monteiro MM, Lima CR, Gomes CC, Cruz MC, Horliana A, Santos MF.
Lowered expression of microRNAs 221 and 222 mediate apoptosis induced by high
Frontiers in Endocrinology 16
glucose in human periodontal ligament cells. Cell Biochem Biophys (2020) 78:391–8.
doi: 10.1007/s12013-020-00932-3

148. Ou L, Sun T, Cheng Y, Huang L, Zhan X, Zhang P, et al. MicroRNA-214
contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated
periodontitis. J Cell Biochem (2019) 120:14791–803. doi: 10.1002/jcb.28740

149. Wu Y, Song LT, Li JS, Zhu DW, Jiang SY, Deng JY. MicroRNA-126 regulates
inflammatory cytokine secretion in human gingival fibroblasts under high glucose via
targeting tumor necrosis factor receptor associated factor 6. J Periodontol (2017) 88:
e179–87. doi: 10.1902/jop.2017.170091
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