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Álvarez-Mardonez, Vallejos, Méndez, Bueno,
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Santiago, Chile, 6Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida,
Universidad Andrés Bello, Santiago, Chile, 7Departamento de Endocrinologı́a, Facultad de Medicina,
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Thyroid disorders are clinically characterized by alterations of L-3,5,3’,5’-

tetraiodothyronine (T4), L-3,5,3’-triiodothyronine (T3), and/or thyroid-

stimulating hormone (TSH) levels in the blood. The most frequent thyroid

disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These

conditions affect cell differentiation, function, and metabolism. It has been

reported that 40% of the world’s population suffers from some type of thyroid

disorder and that several factors increase susceptibility to these diseases. Among

them are iodine intake, environmental contamination, smoking, certain drugs,

and genetic factors. Recently, the intestinal microbiota, composed of more than

trillions of microbes, has emerged as a critical player in human health, and

dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect

host physiology by producing metabolites derived from dietary fiber, such as

short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can

affect the central nervous system and immune system. Modulation of SCFAs-

producing bacteria has also been connected to metabolic diseases, such as

obesity and diabetes. In this review, we discuss how alterations in the production

of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The

studies reviewed here may be of significant interest to endocrinology

researchers and medical practitioners.

KEYWORDS

thyroid disorders, metabolic diseases, gut microbiota, dysbiosis, metabolism and
endocrinology, Short-chain Fatty Acids (SCFAs)
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Introduction

Thyroid dysfunction is a worldwide health problem affecting an

average of 20 million Americans (1, 2). The most common conditions

related to thyroid dysfunction are hypothyroidism (overt and

subclinical) and hyperthyroidism (overt and subclinical) (3, 4).

These conditions are often associated with the development of

other pathologies (5) such as depression (6) and chronic metabolic

conditions like type 1 diabetes and type 2 diabetes mellitus (4, 7).

Importantly, thyroid disorders are common during pregnancy (8).

The prevalence of hypothyroidism during pregnancy varies between

2.5% and 11% (9). The main cause of thyroid disorders is iodine

malnutrition (iodine deficiency or excess). However, genetics,

smoking, alcohol consumption, infections, drugs, and gender are

also important factors influencing thyroid disease development (1,

10). Maintaining a healthy lifestyle, manage thyroid and metabolic

diseases, and having a balanced gut microbiome depend on

appropriate nutrition (11). In this review, we discuss how having a

healthy gut microbiota will facilitate the availability of essential

minerals for the thyroid gland, such as iodine (12). Microbial

fermentation transforms the dietary fiber into short-chain fatty

acids (SCFAs) (13–15), which have beneficial effects on the host

(16, 17). SCFAs enhance ATP synthesis affecting cell metabolism and

supplying the gut epithelium with energy (18), and controlling the

immune system (19), for example, by generating a more tolerogenic

environment (20–22). Dysbiosis, or changes in the composition of the

intestinal microbiota, can have an impact on the metabolism and the

production of SCFAs, which can influence disease progression (23),

among them are thyroid diseases. This review also provides new

perspectives on SCFAs detection for improving the quality of

patients’ lives.
Thyroid hormones: an overview of
normal physiological context and
thyroid-related disorders

Synthesis of thyroid hormones

Thyroid hormones (THs) L-3,5,3’,5’-tetraiodothyronine (T4)

and L-3,5,3’-triiodothyronine (T3) are biological molecules that

contain iodine in their structure and play crucial roles in

mammal physiology like growth, neuronal development,

reproduction, and cell energy metabolism (24). THs are

synthesized and secreted by the thyroid gland, an endocrine gland

located in the front of the neck (24, 25). Thyroid cells, called

thyrocytes, are arranged into spherical structures forming the

thyroid follicles, which are functional units of the thyroid gland.

Each follicle surrounds a colloid mainly composed of a glycoprotein

named thyroglobulin (Tg), which is the precursor of THs (24, 25).

For THs synthesis, thyrocytes actively uptake inorganic iodide (I-)

from circulation by its active transport through the Na+/I-

symporter (NIS), which is located at the basolateral side of the

follicles (26). Then, I- diffuses through the cytosol towards the apical

membrane, and it passively crosses to the apical side of the plasma
Frontiers in Endocrinology 02
membrane through several molecules, including Pendrin and the

human apical iodide transporter (IT) (27, 28). On the apical side of

the plasma membrane are located the nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase (NOX) family of

oxidoreductase enzymes, dual oxidase 1 (DUOX1) and dual

oxidase 2 (DUOX2) (29–31). The primary purpose of these

enzymes is to protect thyrocytes from oxidative stress as they

generate hydrogen peroxide (H2O2) (30, 32). This action is not

trivial because once I- has been transported into the colloid, the

thyroperoxidase (TPO) enzyme (in the presence of H2O2) catalyzes

its oxidation (generation of I2) and its subsequent covalent

incorporation into a tyrosyl residue at Tg (32, 33). The products

of this reaction are 3-iodotyrosine or monoiodothyronine (MIT)

and 3,5-diiodotyrosine or diiodotyrosine (DIT). The TPO enzyme

can combine two DIT residues to form T4 and one DIT residue with

one MIT residue to form T3, both reactions occur in the presence of

H2O2 as oxidizing agent (32). When the thyroid gland is stimulated

by TSH, the Tg is endocytosed by the thyrocytes into endosomes,

which fuse with lysosomes causing the release of lysosomal enzymes

that catalyze the hydrolysis of Tg residues into T4 and T3 and later

will be released T4 and T3 into the bloodstream, where the majority

of the THs produced in a ratio around 10:1 (T4/T3), are transported

coupled to proteins such as thyroxine-binding globulin (TBG),

transthyretin (TTR), and human serum albumin (HSA) (30, 33–

36) (Figure 1).
THs regulation and action mechanisms

T4 comprises the majority of the THs produced and is considered

the reserve hormone, whereas T3 is the main active biological TH (24,

37–39). THs’ production and release into the circulation are tightly

regulated by the Hypothalamus-Pituitary-Thyroid (HPT) axis. Here,

neurons at the hypothalamic paraventricular nucleus produce and

secrete the thyrotropin-releasing hormone (TRH), which prompts

the pituitary to release thyroid-stimulating hormone (TSH) (40).

TSH promotes the release of T4 and T3 into the bloodstream by

binding to its receptors located at the thyroid gland, stimulating the

THs secretion and NIS, Tg, and TPO gene expression (40, 41)

(Figure 2). An increase of THs in the bloodstream triggers negative

feedback in the HPT axis, decreasing the production of TSH (42). T4

is converted into T3 that binds its nuclear receptor to down regulate

the transcription of TSH mRNA (24, 38, 43). The conversion of T4

into T3 is mediated by deiodinases 1, 2 and 3 (D1, D2 and D3

respectively), which are selenoproteins with iodothyronine

deiodinase capacity (44). In general, D1 and D2 convert T4 into T3

and reverse T3 (rT3; 3,3′,5′-triiodothyronine) into T2 (3,3′-
diiodothyronine). D3 inactivates T4 by converting it into rT3 or T2

(44). Even though THs are lipophilic molecules, they are uptaken

from the bloodstream by passive transport (37, 45). They can also,

entry into cells by several transporters, such as monocarboxylate

transporters (MCT), particularly MCT 1, 4, 8, and 10, and sodium-

coupled monocarboxylate transporter 1 (SMCT1) (44). Additionally,

organic anion transporters (OATP1A2 and OATP1C1) and L-type

transporters 1 and 2 (LAT1/2) have also been identified as active

transporters of THs (37, 45). THs can exert a genomic action via
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intracellular receptors for T3 (TRs), which are nuclear proteins

known as TRa and TRb, that act as transcription factors

modulating gene expression (46, 47). TRs recognize specific

nucleotide sequences of DNA called thyroid hormone response
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elements (TREs) (46, 47). These receptors are known to form

complex structures with other proteins, such as the retinoic acid

receptor (RXR) (46, 47). In addition to their effects on gene

regulation, THs exert non-genomic mechanisms of action by

binding to the transmembrane protein aVb3 integrin, which

interacts with extracellular matrix proteins (48), initiating an

intracellular signaling cascade through the phospholipase C (PLC)

pathway and the Ca protein, which activates MAPK proteins

regulated by extracellular signals (48). Once activated, MAPK is

translocated to the nucleus and phosphorylates the TRba receptor,

thereby modulating gene expression (49).
Thyroid disorders

Thyroid disorders are conditions in which the function of the

thyroid gland is impaired, and they are clinically characterized by

alterations in blood THs levels (1). Hypothyroidism and

hyperthyroidism are common health problems whose prevalence

has been reported in 110 nations worldwide (1). In Europe, 4.94% of

hypothyroidism and 1.72% of hyperthyroidism remain

undiagnosed (3). A Brazilian longitudinal study showed an

incidence of 1.98% for overt hypothyroidism, 0.19% for overt

hyperthyroidism, 3.99% for subclinical hypothyroidism, and

0.54% for subclinical hyperthyroidism, showing a higher

incidence of hypothyroidism in the country even when is a

country with adequate iodine intake (10).
Hyperthyroidism

Hyperthyroidism, clinically diagnosed by high T3 and T4 and

low TSH blood levels (50), is characterized by heat sensitivity,
FIGURE 1

Thyroid hormone synthesis. The thyroid gland is composed of thyroid follicles which are constituted by thyrocytes, surrounding the colloid that
contains thyroglobulin (Tg) the precursor of THs. Thyrocytes uptake the inorganic iodide (I-) through the Na+/I- symporter (NIS), located at the
basolateral membrane, diffuse and cross towards the apical membrane by the anion transporter Pendrin and the human apical iodine transporter (IT).
In the apical membrane, are located the dual oxidase 1 and 2 (DUOX) enzymes which are NADPH oxidases generating hydrogen peroxide (H2O2).
Then in the colloid the thyroperoxidase (TPO) catalyzes I- oxidation and its covalent incorporation into a tyrosyl residue at the Tg, producing
monoiodotyrosine (MIT) and 3,5-diiodotyrosine (DIT) all in the presence of H2O2. TPO also combines two DIT residues to form T4 and one DIT
residue with one MIT residue to form T3 (coupling reaction). Finally, THs are endocytosed by the thyrocytes into endosomes, hydrolyzed and later
released as T4 and T3 into the bloodstream. Created with Biorender.com.
FIGURE 2

Regulation of thyroid hormone secretion and synthesis by the
hypothalamus, pituitary, and thyroid gland axis (HPT axis). The
hypothalamus produces and secretes thyrotropin-releasing
hormone (TRH), which induces the release thyroid-stimulating
hormone (TSH) by the pituitary gland. TSH stimulates the synthesis
and production of T3 and T4 in the bloodstream. An increase of T3
and T4 serum levels activates a negative feedback loop over the
hypothalamus and pituitary gland decreasing the production of TRH
and TSH, thereby reducing the plasmatic levels of thyroid hormones
(THs) (40, 42).
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weight loss, changes in appetite, irritability, and poor fertility (50).

Among the risk factors for developing hyperthyroidism are

nutritional selenium and iodine status, family history of thyroid

conditions like Grave’s disease (GD), and other chronic illnesses,

like pernicious anemia, primary adrenal insufficiency, and recent

pregnancy, which increase the predisposition to thyroiditis (51). In

America and Europe, the prevalence of overt hyperthyroidism

ranges from 0.5% to 1% (3, 52). Although several therapies are

available, the most effective is the use of antithyroid drugs that

interfere with THs synthesis, radioiodine therapy, and surgery to

eliminate a portion of the gland; however, this treatment may result

in permanent hypothyroidism (53, 54). Moreover, subclinical

hyperthyroidism is characterized by THs normal levels with

below-normal TSH values, causing important clinical

consequences like cardiovascular disease and bone loss (55).
Hypothyroidism

Hypothyroidism is diagnosed by low blood levels of T3 and T4,

with high blood TSH levels (56). Typical symptoms include fatigue,

cold sensitivity, constipation, weight gain, and even more severe

consequences, such as hyperlipidemia (50), most of which are

consequence of a reduced metabolic rate (50, 57). One of the main

causes of hypothyroidism is insufficient iodine consumption.

Hashimoto’s thyroiditis (HT) is the most prevalent autoimmune

thyroid condition characterized by the development of anti-thyroid

antibodies, is also described as a frequent cause of hypothyroidism

(58, 59). Interestingly, iodine-rich foods can serve as stressors for the

thyroid gland by increasing iodine levels inside the gland and causing

the production of reactive oxygen species (ROS). This results in the

development of autoantibodies directed against the gland, such as

TPO antibodies (TPO-Ab+), which is the most common trait used for

the diagnosis of HT (58, 59). Globally, HT primarily affects men

(approximately a 4-fold increase). However, there are variations

across areas with varied economic status, which are more common

in low and middle-income regions, particularly in Africa (58, 59). HT

is the most common cause of subclinical hypothyroidism (60), which

is characterized by normal THs levels with elevated TSH levels (4, 61).

Subclinical hypothyroidism is a mild condition that could go

unnoticed by the patient (60).
Hypothyroxinemia

Hypothyroxinemia (HTX) is a frequent worldwide thyroid

condition that is clinically relevant during pregnancy due to the

essential role of maternal T4 for fetal development (62). HTX is

clinically defined as low levels of blood T4 with normal T3 and TSH

levels (62). Gestational HTX is 200 times more frequent than

congenital hypothyroidism (63, 64). It has been reported that

early in pregnancy, the maternal thyroid gland requires more

iodine to supply mother and fetal THs (8). This THs demand can

be a stress factor for the maternal thyroid gland, and the mother will

compensate by reducing the level of T4 to maintain normal T3

levels. If this condition persists, the pregnant woman can develop
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hypothyroidism (8, 62, 65). Factors associated with HTX incidence

are iodine deficiency, stress, smoking, and particulate matter

(PM2.5) exposure in the air (66, 67).
Gestational hypothyroxinemia

Gestational HTX has been linked to harmful effects on fetal

development (68) due to the pivotal role of maternal T4 on fetal

neurodevelopment (8, 62, 65). The neurodevelopmental disorders

in the offspring associated with these conditions are schizophrenia,

autism, bipolar disorder, and attention-deficit/hyperactivity

disorder (ADHD), as well as impairments like low intelligence

quotient (IQ), neurocognitive disabilities, and auditory

impairments (68–74). In humans, the consequences of gestational

HTX are concentrated in the CNS; however, in animal models, the

consequences surpass the CNS, reaching the immune response (75,

76). The offspring gestated in HTX (HTX-offspring) have an

increased predisposition to develop more severe and premature

autoimmune disease in comparison to the euthyroid-gestated

offspring (75). Thus, thyroid disorders are a major global health

problem, and they are particularly important in pregnancy and

childhood for their impact on CNS development (77). The

prevalence of numerous types of thyroid disorders calls for the

development of novel and less invasive treatments and additional

support for diagnosis. Appropriate iodine nutrition is essential for

thyroid health, and regardless of cultures, ethnicities, and/or

socioeconomic status, people can be affected by iodine deficiency

or excess (77, 78). However, it has been difficult to make a

comparison between different countries and draw conclusions

about several aspects of thyroid diseases due to differences in

diagnostic thresholds, assay sensitivities, population selection, and

variations in iodine intake (1).
Nutrition and the benefits for thyroid
function and gut microbiota

Nutrition and iodine status

Many essential nutrients must be consumed in the diet; for

example, iodine is an essential element for the function of all

mammals’ thyroid glands and as is part of the structure of THs

(79). Therefore, iodine nutrition determines thyroid function

worldwide (1). Deficiency or excess of iodine in the diet can have

severe consequences for fetal development, impairing central

nervous system (CNS) function and body growth (80). In

addition, in both infants and adults, the lack of iodine can

strongly affect metabolic processes, generating hypothyroidism

and goiter, whereas iodine excess can trigger thyroiditis,

hyperthyroidism, and hypothyroidism (81). Consumption of

foods containing iodine is the only way to obtain this

micronutrient, which is present in foods such as seaweed, marine

fish, and seafood (82, 83). However, historically, iodine deficiency

has been supplied in many countries through the fortification of

foods with massive consumption, such as table salt (78). Although
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this fortification succeeded in restoring normal levels of iodine

intake in several countries that adhered to iodination policies. The

western diet includes a low dietary fiber intake along with a high

amount of ultra-processed foods containing high amounts of

refined sugars, saturated fats, trans fats, salt, and alcohol (78).

These components of processed foods are harmful to health and

contribute to the development of diseases such as obesity, diabetes

(84), metabolic syndrome (85), cardiovascular disease (86),

dysbiosis (87), cancer (88), and other inflammatory diseases like

inflammatory bowel disease (IBD) and asthma (89). Regarding

iodine status in people who follow a western diet, some studies

have indicated that normal iodine intake values decrease in this type

of diet by not including key foods such as seaweed or fish, which

also affects other essential micronutrients such as vitamins,

selenium, iron, among others (90). On the other hand, some

studies indicate that iodine intake does not decrease because of

the high amounts of iodized salt used in fast and ultra-processed

food preparations, but it could even deliver an excess intake of

iodine, which is harmful when combined with excess fat (91). In

either case, the amount of iodine ingested is not adequate, which is

detrimental, especially since it is not known whether the current

supplementation of table salt is beneficial. In addition, this intake is

coupled with low-quality nutrients and elements (92), which not

only harm the role of iodine in the body but can also affect the

proper functioning of other organs besides the thyroid and cause

diseases such as those previously mentioned. Therefore, more

studies are required in this field because this type of diet could

have more serious consequences than those currently known (93).
Dietary fiber and their processing into
beneficial products

Diet can modulate the maturation of the microbiota (94, 95) by

consuming whole grains, fruits, and vegetables that provide

antioxidants and fiber (96). Dietary fiber is one of the most

important elements for the nutrition of microorganisms present

in the intestinal microbiota, as well as for the fermentation of these

compounds, by producing beneficial metabolites such as, vitamins,

precursors of neurotransmitters, among others (18, 97). The

metabolites produced by the intestinal microbiota can be

classified as: 1) metabolites derived directly from the metabolism

of dietary compounds; 2) metabolites synthesized by the host and

transformed from the gut microbiota; 3) metabolites produced de

novo by the gut microbiota (98). The metabolites modulated by

dietary compounds are bile acids, branched-chain amino acids,

trimethylamine, tryptophan, indole metabolites and SCFAs (98).

Low fiber intake might affect intestinal barrier integrity and

immunity (99). Fiber is an essential nutrient (11), described as a

carbohydrate polymer with ten or more monomeric units that

digestive enzymes cannot hydrolyze and could have a prebiotic

effect (100). Dietary fibers and their different structures can elicit

different microbial responses and the production of metabolites,

such as SCFAs, which are one of the most studied (101, 102). SCFAs

are carbohydrates with 1-6 carbon atoms. These are the final

products of microbial carbohydrate fermentation by bacteria with
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polysaccharide-degrading enzymes, producing 90-95% of the most

abundant SCFAs subtypes in the colon, including acetate (C2),

propionate (C3), and butyrate (C4) (103, 104). These metabolites

participate in various cellular processes and are important for

maintaining intestinal and immune homeostasis (105).
The intestinal microbiota in balance

Mothers’ health and the microbiota inherited by their offspring

through gestational time, birth method, and breastfeeding influence

their later adult health status (106–108). Besides, the human gut

microbiota is constantly changing and maturing with its host (109).

Environmental factors such as antibiotics, dietary supplements,

probiotics, hygiene, and contact with pets in early life influence

the offspring’s microbiota, disrupting microbial homeostasis, and

increasing the risk of developing several diseases (110, 111).

Subsequently, the composition, quantity, and activity of these

microbial communities along the entire digestive tract can vary

depending on circadian networks related to intestinal IgA (112),

diet, host age, or preferential localization in the intestinal tract due

to changes in pH and oxygen levels (113–115). The microbiota

varies along the digestive tract, and the oral cavity is remarkably

diverse and abundant (116). In mammals, the stomach harbors the

lowest concentration of bacteria per gram of content (101 cells/

gram), followed by an increase in concentration from the

duodenum to the ileum (103 to 107 cells/gram) and a substantial

concentration in the colon (1012 cells/gram) (117, 118). A balanced

microbiota helps in the proper development of physiological

functions such as nutrient transport in the small intestine (119).

Due to its anatomical location, the small intestinal microbiota has

been difficult to research, despite being essential for the synthesis

and assimilation of essential micronutrients, including vitamin K

and B12, bile acid physiology, and digestion of carbohydrates and

fats (120, 121). Most of the microbiota present in the small intestine

resembles the oral cavity microbiota, with a low abundance of strict

anaerobes and the most enriched bacterial species, including

Veionella, Rothia, Streptococcus, Actinomyces, Clostridium, and

Lactobacillus species (122, 123). The colon is inhabited by

trillions of microbes that include at least 1000 distinct species that

contribute enzymes that enhance human metabolism (124).

The microbiota from the colon lives in an anaerobic enviroment

coevolving with their host and can transmit genetic and metabolic

characteristics to individuals (125). Within the principal

metabolites produced by the this microbiota are acetate,

propionate and butyrate principal SCFAs that are produced in a

molar ratio of 60:20:20 respectively (Figure 3) (97, 126, 129).

Regarding SCFAs, acetate production has been characterized in

species such as Coprococcus sp. Strain L2-50 is dependent on the

activities of butyrate kinase, acetate kinase, and butyryl-CoA:

acetate-CoA transferase (130). The abundance of Ruminococcus

and Ruminiclostridium genera has also been linked to fecal acetate

production, where the majority is processed and absorbed in the

liver, and the remaining amount of fecal acetate can be correlated

with serum acetate levels (131). The pathways involved in acetate

production are pyruvate via acetyl-CoA and the Wood-Ljungdahl
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pathway (132). Acetate can also be used as a substrate by butyrate-

producers like B. fibrisolvens that have enzymes like butyril-CoA:

acetate-CoA transferase; therefore, its contribution can favor

butyrate production (130).

Propionate-producing bacteria harbor key enzymes for the

succinate pathway or propanediol pathway (133), and the

primary genera producing propionate include Bacteroides,

Ruminococcus, Veionella, Lactobacillus, and Propionibacterium

(131, 133, 134), using carbohydrates, organic acids, and amino

acids as primary sources (133). The predominant bacteria in the

colon belong to the phylum Firmicutes (135), including most

members of the Clostridia class (135), such as Clostridia cluster

XIV and Faecalibacteria (136), Bacteroidetes, and Proteobacteria

(135), the majority of Gram-positive Firmicutes, which make up

between 5-14 percent of the total bacteria found in healthy human

feces, are colonic butyrate producers (137–139). The main producer

of this metabolite are Clostridium cluster IV (Faecalibacterium

prausnitzii) and Clostridium cluster XIVa (Eubacterium rectale/

Roseburia spp.) (137, 138). Butyrate can be produced by the

condensation of two molecules of acetyl-CoA with a later

reduction to butyryl-CoA (132). Other pathways that include

bacterial butyryl coenzyme A (CoA): acetate-CoA transferase and

acetate kinase activities are also involved (130), using and as

substrates carbohydrates, organic acids, glutamate, and lysine (133).
Transporters and signaling of SCFAs
through G-protein-coupled receptors

SCFAs are essential fecal anions absorbed in the intestinal

epithelia that stimulate Na+-dependent fluid absorption via a

cyclic AMP-independent process (140). Non-saturable diffusion
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of the undissociated acid (HSCFA) can occur through coupled

electroneutral NaCl- transport proteins expressed in the intestinal

epithelia, enabling the exchange of Cl− and HCO3-, as well as

acetate−, propionate−, and butyrate− (141).

The expression of transporters involved in the effective entry of

SCFAs is critical for their local and systemic beneficial effects (142).

Colonocytes preferentially obtain SCFAs via low-affinity H+

dependent monocarboxylate transporters (MCTs) or sodium-

coupled monocarboxylate transporters (SMCTs) (142). SMCTs

are high-affinity transporters, among them, SMCT1 (SLC5A8)

and SMCT2 (SLC5A12) are expressed in the apical membrane

and have electrogenic and electroneutral transport functions that

regulate the luminal concentrations of SCFAs (143). Along the

length of the human gut, MCT1 and MCT4 expression vary,

increasing towards the distal colon (144). The transporter MCT4

(SLC16A3) present in the basolateral membrane of colonocytes,

and the transporter MCT1 (SLC16A1), present in both the apical

and basolateral membranes of colonocytes, are the principal

transporters of SCFAs (143). Previous studies have shown that

dietary fiber content may regulate the expression of MCT1, as

inadequate expression levels of this transporter can be found in low-

fiber diets (145). Fiber fermentation products, such as butyrate, play

a critical role in regulating MCT1 gene transcription and the

stability of its transcripts (146), but the expression of SMCT1 has

been directly related to the modulation of the intestinal

microorganisms’ producers of SCFAs (143). In vitro studies

showed that in the presence of enteric pathogens such as

Escherichia coli, the entry of butyrate can be altered not only by

the modulation of Na+/H+ and Cl-/HCO3- exchange but also by

reducing the expression of the MCT1 transporter (147).

Furthermore, since MCT1 has a basolateral distribution in

enterocyte membranes, it can affect the efflux of SCFAs and
FIGURE 3

Thyroid function related to changes in gut microbiota. The figure shows how thyroid diseases influence the gut or vice-versa. Studies in individuals
with normal THs levels or in euthyroidism (1), they share a gut microbiota in balance (2), with a normal production of SCFAs being acetate,
propionate and butyrate produced in a molar ratio of 60:20:20 respectively (126), and when their microbiota is compared with the microbiota of
patients with thyroid disorders (3), these patients shows intestinal dysbiosis with an increase in the abundance of pathogenic bacteria there is an
increase in the abundance of pathogenic bacteria with a reduced abundance of commensal bacteria and reduced abundance of commensals that
share functions such as SCFAs production, as it has been found in patients with Grave’s disease (127, 128).
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monocarboxylate metabolites and the maintenance of colonic

homeostasis (148, 149).

SCFAs can facilitate signaling events involving G protein-

coupled receptors (GPRs), on the cell surface (150, 151). Acetate,

propionate, and butyrate are among the ligands shared by some

GPRs (152, 153). Within these receptors, we can find GPR109a (also

known as hydroxycarboxylic acid receptor 2 or HCA2) expressed in

the apical side of intestinal cells, adipose tissue, and immune cells

(154), and in different tissues and cells of mammals can be found

the free fatty acid receptor 2 (FFAR2; also known as GPR43) and the

free fatty acid receptor 3 (FFAR3; also known as GPR41) (155, 156).

The production of SCFAs by the gut microbiota can modulate

immune cell responses (157). Different immune cells, such as

neutrophils and leukocytes, predominate the expression of FFAR2

(158, 159) and have been described to be involved in the inhibition

of inflammatory pathways (152, 153), and protective effects by

diminishing the susceptibility to bacterial infections with Klebsiella

pneumoniae, Citrobacter rodentium, and Staphylococcus aureus, but

also by viruses such as respiratory syncytial and influenza viruses

(159). Its protective effects can be compromised by inadequate fiber

intake or a deficiency of FFAR2 (160). FFAR3 is expressed in

neurons that allow neuronal links (155), blood vessel endothelial

cells, and adipose tissues (158). FFAR2/3, besides regulating the

immune and nervous systems, is also found in enteroendocrine cells

(155). Moreover, they can activate signaling pathways related to

energy metabolism, appetite control, adipogenesis, and intestinal

health (156, 161), in addition to inducing signaling pathways that

involve cytoprotective roles by involving nuclear erythroid 2-

related factor 2 (Nrf2), contributing to the maintenance of redox

homeostasis under physiological conditions, and suppressing

carcinogenesis by antiproliferative properties (162).
Effects of SCFAs in the intestinal epithelia

Intestinal fermentation of carbohydrates results in physiological

concentrations of SCFAs between 10 and 100 mM in the gut lumen

(163). SCFAs, such as butyrate and propionate, protect intestinal

barrier integrity by influencing the expression of MUC2 mRNA

levels (164). This effect is advantageous because butyrate at

physiological concentrations cannot reach the epithelial stem cells

in the intestinal crypts (165), since the majority is used as an energy

source by differentiated intestinal epithelial cells of the villus (166,

167). It could also act as a proliferation suppressor and affect

epithelial renewal, an effect not observed for propionate and

acetate (165). Propionate can generate motor activity in the

intestinal epithelia by enhancing the colonic flux of Cl- (168).

Therefore, a reduced production of SCFAs led to an increased

release of lipopolysaccharide (LPS) into the bloodstream, as it has

been observed in patients with hypothyroidism (169). The increase

in bloodstream LPS could be related to increased thyroglobulin

protein levels (170). Consequently, dysbiosis, and a decreased

phylum of Firmicutes along with increased Bifidobacterium and

Lactobacillus contribute to the inflammation in AITD (171).
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Effects of SCFAs in cellular metabolism

The intestinal microbiota has a substantial impact on energy

homeostasis through SCFAs, which can act directly as the primary

source of the energy produced in eukaryotic cells in the through

major biochemical pathways, such as the tricarboxylic acid (TCA)

cycle, oxidative phosphorylation (OXPHOS), and mitochondrial

fatty acid b-oxidation (FAO) (172). FAO is a key source of energy

for fatty acids metabolism based on the individual’s cellular energy

requirements (173). Butyrate is the principal SCFA involved in the

maintenance of energy homeostasis. When glucose is unavailable,

fatty acids serve as the body’s main source of energy (174). Butyrate

was found to increase FAO in keratinocytes (99) due to its ability to

regulate FAO-related enzymes such as acyl-CoA dehydrogenase. In

colonocytes, butyrate has a function as an energy source rather than

an inhibitor of histone deacetylases (HDAC) supporting energy

homeostasis and preventing autophagy (166). The mechanism of

butyrate can be due to its incorporation to the TCA cycle (especially

in citrate) and OXPHOS, producing Acetyl-coenzyme A (acetyl-

CoA) to generate ATP (99, 165, 175). Butyrate can produce

metabolic reprogramming and affect the behavior of immune

cells. In macrophages, butyrate increases OXPHOS for alternative

cell activation and anti-inflammatory effects (176). Moreover, it

induces the peripheral inducible T regulatory cells (iTreg) by the

transformation of butyrate by acyl-CoA synthetase short-chain

family member 2 (ACSS2) producing butyryl-CoA (BCoA), which

plays a critical role in enhancing FAO stress (177). Additionally,

butyrate has been linked to the gut-brain neuronal circuit,

improving plasma lipid metabolism and insulin sensitivity,

promoting fat oxidation and activating brown adipose tissue

(BAT) by inhibiting orexigenic neuron NPY activity in the

hypothalamus (178). White adipocytes also take part in several

immunological and metabolic processes (179). These cells express

SCFA receptors, and it has been suggested that adipocyte

metabolism of adipocytes may be influenced by these products

(156, 158). In vitro studies have shown that SCFAs may affect

glucose metabolism by increasing glucose uptake, fatty acid

synthesis (180). It has been reported that, oral administration of

propionate and butyrate can improve glucose and insulin tolerance

in rats (181, 182). Additionally, several studies conducted in mice

orally fed with acetate or butyrate showed a reducion in body fat

content due to improved energy expenditure and fat oxidation (181,

183). The evidence available in the literature strongly suggests that

SCFAs play a beneficial role in host metabolism; however, there are

not enough in vivo studies conducted in humans to support the

physiological effects of SCFAs. More studies are needed to

understand the impact of SCFAs on glucose and fat metabolism

and insulin sensitivity, particularly in adipose tissue.
Regulation of immune function by SCFAs

The majority of immune cells, including B cells, CD4 T cells,

CD8 T cells, macrophages, dendritic cells (DCs), innate lymphoid

cells (ILCs), and polymorphonuclear leukocytes, express one or
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more of the GPRs. Thus, SCFAs can bind to these receptors on

immune cells to modulate their function. CD4 regulatory T cells

(Tregs) are a subset of CD4 T cells that express FoxP3 and/or

produce IL-10 and are responsible for the regulation of

proinflammatory IFN-ϒ producing Thelper-1 (Th1) and IL-17

producing Th17 cells. The intestine has a large Treg population

that maintains homeostasis at the mucosal surfaces, where intestinal

bacteria and metabolites play an important role in the generation or

maintenance of this Treg population. SCFAs are one of the major

bacterial products linked to the expansion and suppressive function

of Treg (184, 185). For example, SCFAs from chloroform-resistant

fecal bacteria were established as the main bacterial metabolite

responsible for the induction of Tregs and suppression of

inflammation in a murine model of colitis (186, 187).

Although the precise mechanism through which SCFAs

influence Tregs is unknown, SCFAs are thought to enhance the

suppressive function of Treg cells (184, 185). Administration of

dietary fibers, SCFAs, and gut bacteria with SCFAs-producing

ability has been shown to induce Treg cells, and it has been

implicated in this by histone deacetylation function of SCFA.

HDACs can modify chromatin structure and control genes by

removing acetyl groups from specific lysine residues in histone

and non-histone proteins (188), which is linked to the regulation of

the expression of FoxP3 and IL-10 genes during steady state. Thus,

the regulatory vs. inflammatory effects of SCFAs might be context

dependent and in steady state, SCFAs will promote the expansion of

regulatory cells such as Tregs; however, during chronic

inflammatory stages or at super high levels, they might promote a

proinflammatory Th1/Th17 response. SCFAs can influence the

functions of APCs by modulating their cytokine production and

antigen presentation function through GPR and HDAC activation.

Butyrate can affect differentiation, maturation, and function of DCs

(189–191).

SCFAs can also regulate Treg expansion and function indirectly

through modulation of antigen presenting cells (APCs), such as

DCs and macrophages. Consequently, during the steady state,

SCFAs can boost Treg expansion and function. However, SCFAs

have also been shown to induce pro-inflammatory Th1 and Th17

cells during an active immune response. Park et al, showed that

SCFAs can induce both effectors as well as Tregs through histone

modification (192, 193).

Butyrate, can signal through the receptor for SCFAs GPR109a

in macrophages promoting the expansion of Tregs by DCs (194).

Similarly, intestinal macrophages treated with butyrate showed

reduced levels of LPS induced nitric oxide, IL-6, and IL-12 (195),

and can also induce IL-10 producing regulatory B cells, especially

IL-10+ IgM+ CD138high plasma cells (196), both ex-vivo and in-vivo.

SCFAs, particularly butyrate and propionate, can enhance class-

switch DNA recombination at low doses but decrease at higher

doses, suggesting a dual dose-dependent effect of SCFAs on B cell

class switch (197). These studies highlight that SCFAs, especially

butyrate can have significant effects on B cell function and antibody

production. Besides these immune subsets, SCFAs can also

influence ILCs by increasing ILC-3 activity while downregulating

ILC-2 activity, which has been discussed in detail elsewhere (19).

Thus, SCFAs can regulate the generation and function of most of
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the immune cell population; however, further studies are required

to understand the precise mechanism through which SCFAs

regulate different immune subsets.
Dysbiosis, a common finding in
metabolic and thyroid disorders

According to (198), dysbiosis is an imbalance between

commensal and pathogenic microorganisms in the microbiome.

Dysbiosis can be divided into three main categories: first as a bloom

of pathobionts or low relative abundance of bacteria caused by

abnormalities in the intestinal ecosystem; second as the loss of

commensals due to microbial death or deduced bacterial

proliferation; and third as a reduction of alpha-diversity or

richness of species within a site associated with different

pathologies (199).
Dysbiosis is linked to metabolic conditions

Changes in the composition and balance of the main intestinal

microorganisms are associated with an increased risk of obesity

(200), IBD (201), and the pathogenesis of irritable bowel syndrome

(202). Recent studies have shown a connection between the gut-

thyroid axis due to the role of gut microbiota in thyroidal

metabolism (203). Patients treated for Hypo or Hyperthyroidism

share gut microbiota traits that are consistently associated with

diseases such as depression, migraine, gout, type 2 diabetes, cardiac

diseases, food allergies, constipation, and IBD (204).

The intestinal microbiota is not the only one that can be

affected; in a study performed on patients with high TSH levels

and insulin resistance, their oral microbiome showed more bacterial

richness and prevalence of microorganisms from the genera

Granulicatella, Treponema, and Streptobacillus, with functional

profiles related to carbohydrate metabolism, nucleotide, amino

acid and energy metabolism (205). Thyroid hormones play a key

role in several signaling pathways (40), and are implicated in

regulating body temperature by stimulating fatty acid b-oxidation,
mitochondrial respiration, biogenesis, and autophagy activity in

brown adipose tissue (BAT) and white adipose tissue (WAT) (206,

207), may influence free fatty acid (FFA) and its uptake in the liver

(208). More specifically, FT4 and TSH have also been implicated in

weight regulation (209), as it has been observed how HDL

cholesterol level and waist circumference in patients with

metabolic syndrome have been linked to thyroid function (210).

Thyroid dysfunction is also prevalent in obese subjects and is an

important risk factor for cardiovascular disease and diabetes (211).

In a study, it was shown that among thyroid disorders, 27.6% of

patients had type 2 diabetes (T2D) and 38.7% had type 1 diabetes

(T1D) (4). A cross-sectional study reported an increased risk of

overt hypothyroidism and TPOAb positivity among adult Iranian

overweight and obese individuals (212).

Dietary fiber intake is associated with a reduced risk of non-

communicable chronic diseases (213), and the American Diabetes

Association (ADA) recommendations have been associated with
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significantly lower blood pressure in adult patients with T1D (214),

whose pathogenesis involves the action of autoreactive T cells

through islet ß-cells, which can be regulated by acetate (150). In

the cases of T2D and obesity, both conditions show complex

alterations in SCFAs levels, leading to diverse outcomes. For

instance, increased butyrate production improves insulin

sensitivity, whereas aberrant propionate production or absorption

increases the risk of T2D (215). Demonstrating that SCFAs balance

is also necessary. On the other hand, obesity is a disease with

increasing prevalence, and it is characterized by an excessive

accumulation of white adipose tissue that leads to negative effects

on health (179, 216). It has been described that both, the

composition of the gut microbiota and the availability of THs

play a key role in the regulation of metabolism and whole-body

energy expenditure (18, 217). Therefore, it is believed that gut

microbiota products, particularly SCFAs, together with THs may

modulate the progression of diseases like obesity through

modifications of the host’s metabolism. The majority of WAT is

made up of white adipocytes, a type of cell that is particularly adept

at storing energy, primarily in the form of triglycerides. White

adipocytes modulate several immunological and metabolic

processes through the secretion of various hormones, cytokines,

and adipokines (179). It has been shown that the SCFA receptors

GPR41 and GPR43, both of which may regulate cell metabolism

and function, are expressed by white adipocytes (156, 158). In line

with this, it has been described that SCFAs mediate energy balance

through the adipose tissue by increasing energy expenditure and fat

oxidation (180, 218). Furthermore, T3 regulates the whole

machinery responsible for the balance between lipogenesis and

lipolysis in WAT (219). Nevertheless, the link between SCFAs,

thyroid function, and obesity remains under discussion. It has been

described that the microbiota from animals fed a western diet (high

fat and high sugar diet) together with sedentarism result in a

predominance of Firmicutes over the phyla accompanied by a

lower degree of diversity when compared to a low fat, high

polysaccharide diet (220). Obesity-induced changes in the

microbiota enrichment may thus be suggested as an additional

factor to explain the reported correlation between thyroid diseases

and obesity.

Once established that a patient suffers from type 1 or 2 diabetes,

prediabetes and gestational diabetes mellitus, a fundamental

approach in the therapy is a change in lifestyle, and the ADA

recommends not only physical activity, smoking cessation, and

psychosocial care, but also medical nutrition therapy, emphasizing

nutrient-dense carbohydrate sources high in fiber (221). With

recommended fiber intake of 14 g per 1,000 kcal (222). It has been

described that insulin secretion by pancreatic islets was related to

increased degradation of GABA modulated by 4-aminobutanoate

degradation V microbial pathway, the pathway of 4-aminobutanoate

(GABA) degradation pathway have been related to the production of

butyrate and acetate, associated with the abundance of species like

Eubacterium rectale and Roseburia intestinalis (215). In addition,

human islet ß-cell function can be beneficially changed by propionate

as an acute effect to protect these cells from apoptotic stimuli (105). A

study conducted on monozygotic twin pairs reported a negative

correlation between fecal SCFAs and adiposity parameters, and
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individuals with visceral obesity had a lower abundance of

Bacteroides and Collinsella (223). Interestingly, Jiang et al., reported

a decrease in Collinsella but not in Bacteroides in individuals with

Graves’ disease (224). In a case-control study, it was found that most

patients with metabolic syndrome (37%) had subclinical

hypothyroidism (SCH) more frequently than overt hypothyroidism

(12%) and overt hyperthyroidism (2%) (225). Currently, most case-

control studies have reported an association between obesity and high

levels of SCFAs but not gut microbiota richness, at least at the phylum

level (226). Additional efforts and studies are needed to understand

how the thyroid-gut axis participates in the development of metabolic

disorders such as obesity, diabetes, and metabolic syndrome.
Intestinal dysbiosis in hypothyroidism

An unbalanced microbiota present in the small intestine could

have an impact on gastrointestinal function, such as the absorption of

key elements for thyroid hormone production or even other nutrients

important for fetal growth in pregnant women. Alterations in thyroid

gland metabolism caused by hypothyroidism or levothyroxine

therapy, as well as diabetes mellitus, are significant contributors to

the development of dysbiosis characterized by an increase in bacterial

colonization in the small bowel, known as small intestinal bacterial

overgrowth syndrome (SIBO), a condition with symptoms such as

abdominal discomfort and pain, diarrhea, and weight loss, primarily

detected by the lactulose hydrogen breath test (LHBT) where

lactulose is a disaccharide that reaches the colon before its

absorption, or by the glucose hydrogen breath test (GHBT), where

glucose is a monosaccharide absorbed in the first portion of the small

intestine (227, 228). These tests have been used to detect SIBO in

patients with overt hypothyroidism, revealing an increased incidence

of abdominal distention, and treatment of this condition showed

improved gastrointestinal symptoms (229). Positive LHBT and

GHBT test results were found in pregnant women with subclinical

hypothyroidism, a common condition during pregnancy. These

patients showed increased levels of TPOAb compared to patients

without SIBO; however, it is still unclear whether the dysfunctional

flora and its metabolites play a role in inflammatory and immune

pathways (228). The relationship between thyroid hormones and

intestinal motility is important because it could lead to dysbiosis, as it

has been observed in hypothyroidism and its association with altered

gastrointestinal motility, which increases the risk of developing

SIBO (230).

SCFAs are important for maintaining the health status of the

host; however, new studies related to the gut thyroid axis have

shown interest in the composition of the intestinal microbiota, and

the effect of the products of these metabolites on thyroid disorders

remains unknown. Because of the direct or indirect effects of the gut

microbiota and its metabolites, they should be considered in the

pathogenesis of thyroid disorders (231). In patients with subclinical

hypothyroidism, receiving different doses of L-thyroxine showed

variations in the relative abundance of certain species from genera

with hydrolytic activities, such as the hydrolysis of glucoronate and

sulfated iodothyronines like Odoribacter, and Alistipes (203). The

treatment prescribed for this condition is based on hormone
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replacement, and at least 3.8% of patients are chronic levothyroxine

users (232). As the gastrointestinal system is crucial for the

absorption of levothyroxine (233), little is known about the effect

of these chronic treatments on the intestinal microbiota of patients

(232). In addition, the microbiota of women with subclinical and

overt hypothyroidism has been evaluated, and both studies found

an altered abundance of Prevotella genera (234–236), and altered

abundances of other commensals and opportunistic pathogens have

also been observed in metabolic diseases (Table 1). In hypothyroid

Hashimoto’s thyroiditis, is hypothesized that intestinal microbes

play a role in triggering the pathogenesis of this autoimmune

thyroid disorder (255, 256). Various studies have shown marked

dysbiosis in these patients, with reduced bacterial richness and

diversity (257), for example, Ishaq et al. found a reduced abundance

of Prevotella and Dialister, with an important overgrowth of

Bacteroides, Escherichia-Shigella and Parasutterella genera, with

the increased prevalence of opportunistic gut bacteria Bacteroides

and other species in HT patients (255). Su et al. found a decreased

abundance of Prevotella and Fecalibacterium, Bacteroides, and

Lachnoclostridium genera, which were enriched in healthy

patients, indicating that the composition of the microbiome could

be related to the clinical parameters of these patients (256). Animal

studies suggest that the microbiota from hypothyroidism patients

can cause changes in the thyroid function of mice, which could be

related to the reduced abundance of SCFAs-producing bacteria

(169). The microbial metabolic processes (energy, carbohydrate,

and amino acid metabolism) performed by beneficial

microorganisms in patients with HT are affected by the reduced

relative abundance of commensals (258), and it is unknown how the

levels of SCFAs are in these patients. Where female patients tend to

show a different dysbiosis certain microorganisms were more

abundant than in male patients, indicating that gender is a factor

that should be considered in the dysbiosis found in thyroid diseases

(258) (Table 2).
Intestinal dysbiosis in hyperthyroidism

In patients with Graves’ disease (GD), an autoimmune disease

of the thyroid gland, a clearly altered composition of the gut

microbiota has been described (272). At the phylum level, GD

patients had a significantly lower proportion of Firmicutes and a

significantly higher proportion of Bacteroidetes compared with the

controls. This indicates that thyroid hormones may also affect the

composition and function of the microbiota, which in turn leads to

changes in a person’s weight (224). At the genus level, GD patients

had an altered abundance of Faecalibacterium, Bacteroides,

Prevotella, and Bifidobacterium and lower numbers of Blautia,

Subdoligranulum, Eubacterium species, compared to controls. The

functional prediction has revealed that Blautiamay be an important

microbe in certain metabolic pathways that occur in the

hyperthyroid state (224). Another study showed an altered and

significantly decreased abundance of metabolic abilities in fatty acid

biosynthesis, creatinine degradation, pyruvate fermentation to

hexanol, anaerobic energy metabolism, and gluconeogenesis

(128). These patients with GD showed reduced levels of SCFAs
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(127, 128), which could be related to the susceptibility of these

patients to intestinal epithelial cell injury and increased intestinal

permeability by alterations in the tight junctions in the intestinal

epithelial cells, according to studies in patients with GD who had

significantly higher serum levels of serum LPS, intestinal fatty acid-

binding protein (I-FABP), zonulin, and D-lactate (273).

Other authors have related the increased abundance of

Bacteroides to its ability to produce SCFAs other than butyric

acid, including succinate, propionate, and acetate, indicating that

it might be implicated in the impairment of intestinal barrier

function because these metabolites do not induce mucin

production (224), resulting in the release of a large number of

pro-inflammatory factors outside the intestine and causing immune

dysfunction (224). A study evaluating the combination of the

treatment for GD, methimazole (MI) in combination with

potential prebiotic berberine supplementation, showed an

improved abundance of beneficial species like Lactococcus lactis

while decreasing the abundance of pathogenic bacteria like

Enterobacter hormaechei and Chryseobacterium indologenes, and

also improved FT3 and TSH indices to normal levels, relating TSH

to Faecalibacterium prausnitzii and enterobactin biosynthesis, and

with Lactococcus lactis were positively correlated with the three

metabolic pathways of vitamin K2 synthesis, whereas MI alone

restored only FT3 and had no modifications on the microbiota

(274), demonstrating the importance of evaluating the combination

of treatments that could provide benefits for the host microbiota

and how to ameliorate the symptoms of the disease. Other studies

found an increase in pathogenic bacteria and opportunistic

pathogens in these patients, which are related to significant

differences in the reduced abundance of acetic, propionic, and

butyric acids with an increased abundance of cholate and

chenodeoxycholate (128). Even when these metabolites were

detected in silico (275), their identification is considered a

potential biomarker for the disease. In both autoimmune thyroid

diseases (AITDs), besides showing differences in the core

microbioma of GD and HT patients, in both were found concrete

bacteria that could be related to their reduced tolerance to self-

antigens (276) (Figure 3). Therefore, evidence suggests a key role of

microbiota status in thyroid diseases, where metabolic changes and

dysbiosis are related to an altered composition of SCFAs producers

and an increased abundance of pathogens (Table 3).
SCFAs and Thyroid function

There is limited information available of the thyroid gut-axis

besides knowing the dysbiosis found in thyroid disorders as it was

described in the previous section, highlighting new findings related

to the content of SCFA of these patients. Nevertheless, little is

known about how SCFA affect thyroid function or how they

cooperate (289). However, it is important to revisit that a primary

contribution of SCFA’s to cell homeostasis is the regulation of

HDAC (251), especially butyrate and propionate can inhibit HDAC

(184), preventing the removal of acetyl groups on certain lysine

residues in histones and non-histone proteins that control gene

expression (188). Other described epigenetically active mechanisms
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TABLE 1 Microbial changes related to subclinical and overt hypothyroidism, and the relation of the altered microbiota to metabolic diseases.

Thyroid
disorder
(Ref)

Method of evalu-
ation

Changes in gut microbiota
compared to control

Microbial functions Microorganism also
related to metabolic

diseases

References

Subclinical
Hypothyroidism
(203)

Male/Female stools,
16S rDNA V3-V4
regions sequenced with
Illumina Hiseq PE250
platform

Increased relative abundance of the
genera Odoribacter and Enterococcus
in high and middle dosage of L-
thyroxine.

-Starch and glucose
metabolism, production of
isobutyric and isovaleric acid:
Some Odoribacter species
-Production of acetate:
Enterococcus species
-Potential opportunistic
pathogens.
Genera Odoribacter, and
Enterococcus.

-Individuals with
Hypercholesterolemia
Odoribacter.

(237, 238)

Subclinical
hypothyroidism
in pregnant
women (236)

Pregnant women
stools, 16S rRNA V3-
V4 regions sequenced
with Illumina NovaSeq
platform.

Subclinical Hypothyroidism pregnant
women
(20-23+6 weeks)
* TPOAb- patients: Increased
abundance of Prevotella
* TPOAb+ LT4

- patients: Increased
abundance of Prevotella and reduced
Gammaproteobacteria,
Enterobacteriaceae

* TPOAb+ LT+
4 patients: Reduced

abundance of Bacteroidia and
Prevotella.
Subclinical Hypothyroidism pregnant
(28-33+6 weeks)
* TPOAb- patients: Increased
abundance of Blautia and
Agathobacter genera. Reduced
abundance of Dorea formicigenerans
and Bifidobacterium longum
* TPOAb+ LT4

- patients: Increased
abundance of Blautia, and
Agathobacter. Reduced abundance of
Actinobacteriota, Coriobacteriia,
Actinobacteria, Bifidobacterium,
Dorea formicigenerans, and
Bifidobacterium longum
* TPOAb+ LT4

+ patients: Increased
abundance of Blautia, Agathobacter,
Streptococcus salivarius, and
Bifidobacterium longum.

-High fiber utilizing capacity
compared to Bacteroides.
Prevotella.
-Propionate production:
Bacteroides, and B. longun.
-Acetate production:
Some Blautia species
-Butyrate production:
Agathobacter.

-Related to T1D:
¯Bifidobacterium
Streptococcus
-Related to T2D:
Prevotella
-Related to insulin resistance
Prevotella
-Related to protective
function against Bacteroides-
induced glucose intolerance:
Prevotella
-Related to visceral fat
accumulation:
Blautia
-Inflammatory and metabolic
regulation:
Streptococcus salivarius.

(18, 239–248)

Hypothyroidism
in pregnant
women (235)

Pregnant women saliva
and stools, 16S rRNA
V3-V4 regions
sequenced with
Illumina Hiseq 2500.

Oral microbiota
Increased Gammaproteobacteria
class, Streptococcus, Neisseria,
Prevotella and Pasteurellaceae.
Intestinal microbiota
Increased abundance of Roseburia,
Pasteurellales, Lachnospira,
Prevotella, and Parabacteroides.

-Butyrate production:
Roseburia
-Acetate production:
Prevotella

-Related to Weight gain:
Gammaproteobacteria,
Pasteurellaceae in the oral
cavity and
Porphyromonadaceae
in the intestine.
-Related to non-alcoholic
fatty liver disease:
Gammaproteobacteria and
prevotella
- Related to increased body
mass index Prevotella in
saliva.

(249–252)

Hypothyroidism
in pregnant
women (234)

Pregnant women
stools, 16S rRNA V3-
V4 regions, sequenced
with Illumina MiSeq
platform, and lipid
profile determination
by LC-MS.

Increased abundance of Prevotella
and Haemophilus
Reduced abundance of Blautia

-Acetate production:
Some Blautia species

-Related to plasmatic levels of
phosphatidylcholine and
sphingomyelin
¯Blautia
-Might participate in
promotion of chronic
inflammation:
Prevotella strains.
-Some strains related to high
fecal SCFAs, obesity and
cardiometabolic risk:
Haemophilus

(131, 253,
254)
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used by SCFAs are histone butyrylation (by the conversion of

butyrate to butyryl-CoA) or propionylation (by the converting

propionate to propionyl-CoA) (290). Histone acetylation may be

crucial for the control of hormone-mediated transcriptional

regulation (291), and some studies have shown that butyrate can

regulate thyroid hormone receptors levels through the acetylation of

chromatin-associated proteins in rat cells (292–294), promoting the

expression of the growth hormone (GH) which is regulated by T3

and retinoic acid receptors, as result of the accumulation of

hyperacetylated histones (291). Moreover, it has been described

that the treatment of these animals with n-butyrate, could modulate

gene expression by increasing the binding capacity of T3 on nuclear

thyroid hormone receptors in the rat liver (295).

Even when the in vivo and in vitro studies about the evaluation of

thyroid hormone receptors and butyrate here mentioned are at least

40 years old. It is important that new studies of the gut-thyroid axis,

could generate new information that laid the foundations for the role

of the microbiota and its metabolites in thyroid function, which is

quite useful for developing potential treatments for thyroid-

associated diseases (296), especially considering that autoimmune

diseases like HT have increased inflammation that could be related to

dysbiosis that leads to altered levels of SCFAs (297), and the bacterial

metabolites have an important role in maintaining a balance the pro-

and anti-inflammatory environment (184).
Methods and insights on the detection
of SCFAs

Technologies and approaches in the
detection of SCFAs

Given the great importance of SCFAs as bacterial metabolites

produced by components of the microbiota and their relevance in

processes including regulation of metabolism, immune system

development and activation, improving gut barrier function, and

their role in the occurrence of metabolic diseases such as thyroid

diseases (132), it is essential to have one or more robust methods to

measure the levels of these molecules in biological samples such as

feces, luminal contents, or serum. Evidence has suggested that for

detecting SCFAs, it is necessary to perform a meticulous analysis of

these SCFAs with an accurate extraction and sample preparation

process to guarantee the correct SCFAs profiling (298, 299). In this

context, several methods of SCFAs extraction, purification, and

treatment of biological samples have been described, including

techniques of sample derivatization and methods of purification to

obtain a fast sample preparation (300). The unique physicochemical

properties of SCFAs, such as their high polarity, low vapor pressure,

high volatility, and complex matrix of biological samples, require

highly sensitive, selective, and accurate methods for their

determination (299). In this sense, diverse methods have been

developed to detect SCFAs in biological samples (300), including

separation-based techniques such as gas chromatography (GC), high-

performance liquid chromatography (HPLC), or mass spectrometry

(MS), and their hyphenation with MS (GC/MS or HPLC/MS) the

most common methods (301–305). Nevertheless, techniques such as
Frontiers in Endocrinology 12
capillary electrophoresis (CE) or nuclear magnetic resonance (NMR)

are frequently used (306, 307). Within the analytical methods for

SCFAs, the GC remains the most commonly used technique because

of its high resolution and sensitivity (299), in addition to the

advantage of being able to be attached to a flame ionization

detector (FID) (308, 309) or to a mass spectrometer (MS) (303,

310–312), that can further enhance the selectivity and sensitivity of

the method. However, the HPLC technique is also favored for its

sensitivity and ability to handle complex samples (313), as well as the

advantages of coupling fluorescence, ultraviolet–visible light (UV–

VIS) (304), electrochemical detection (ECD) (314) and MS detectors

(315, 316). Both methods involve the separation of SCFAs based on

their physical and chemical properties, followed by the detection and

quantification of these metabolites. Although the GC/MS and HPLC/

MS methods offer excellent SCFAs analysis alternatives, they often

require a sample chemical derivatization process with specific

techniques according to the method to be used, to improve their

volatility and/or retention properties in the column of equipment

(300). However, it is necessary to carry out an extraction and

purification process before SCFAs derivatization and analysis

because for some samples the detection of small concentrations of

SCFAs can be challenging due to high concentration of other

biological constituents, which complicates the precision and

reproducibility of the method and results in instrumental

contamination, which makes it challenging to analyze and quantify

SCFAs. As a result, it is crucial to perform a selective extraction and

correct derivatization of SCFAs.

Several physical pretreatments are used to enhance and accelerate

SCFAs extraction processes, such as filtration, ultrafiltration, or

centrifugation, which are fast and simple, but, despite the rapidity of

these extraction methods, have the drawback that a large number of

impurities may also be extracted, leading to incomplete separation of

the SCFAs and therefore contaminating the chromatographic column

reducing its useful life (310, 317, 318). The use of steam distillation and

vacuum distillation, which are carried out at low temperatures and

pressure, are other methods for the separation of SCFAs, however,

over a long period can generate the possibility of a loss of volatile acids

(319, 320). One extraction strategy widely used is the acidification of

these compounds, which enhances the hydrophobicity and therefore

facilitates extraction with apolar organic solvents, which could be

complemented with a liquid-liquid extraction (LLE) (321, 322). In this

same context, extraction in the absence of solvent employing a solid

phase microextraction device (SPME) taking advantage of the

volatility of SCFAs is a technique that is increasingly used due to its

speed, selectivity, and sensitivity (308, 312).

On the other hand, as previously mentioned, a frequently used

approach for the quantification of SCFAs involves chemical

derivatization followed by analysis using separation-based

techniques. The derivatization strategies allow the change in the

SCFAs properties and have been used to enhance the compound’s

separations and increased resolution allowing for more accurate and

sensitive measurement. The most common techniques for the

derivatization of SCFAs are the conversion of SCFAs to their

corresponding fatty acid esters or the corresponding methyl esters,

derivatives that enhance their volatility and improve detection by gas

chromatography (GC) or mass spectrometry (MS) (300, 323). In
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contrast, converting SCFAs to their corresponding 2,4-

dinitrophenylhydrazine derivatives or Trifluoroacetic acid (TFA)

treatment are derivatization strategies used to be easily quantified

using high-performance liquid chromatography (HPLC) (304, 324).

It is important to note that each derivatization technique has its own

set of advantages, and the choice of an adequate method will depend
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on the specific application and the analytical requirements. Finally,

another alternative SCFAs determination method is enzymatic

detection. This technique involves the use of specific enzymes to

convert SCFAs into a detectable product, which can then be

quantified using various methods, such as UV spectrophotometry.

In addition, the direct detection method for SCFAs is the ELISA
TABLE 2 Microbial changes related to Hashimoto’s Thyroiditis, and the relation of the altered microbiota to metabolic diseases.

Thyroid
disorder
(Ref)

Method of
evaluation

Changes in gut microbiota compared to control Microbial
functions

Microorganism
also related to
metabolic
diseases

References

Hashimoto’s
Thyroiditis
(257)

Female stools, 16S
rDNAV4 region,
sequenced with
Illumina HiSeq
platform.

Changes in HT patients with normal thyroid function:
Increased abundance of Lachnospiraceae incertae sedis,
Lactonifactor, Alistipes, and Subdoligranulum
Changes in HT patients with abnormal thyroid function
Increased abundance of Bacteroidetes
Phascolarctobacterium and prevotella

-Butyrate
producers:
Lachnospiraceae
incertae sedis,
Subdoligranulum
-Acetate and
propionate
producer:
Phascolarctobacte-
rium species.

-Considered
pathobiont
promoting chronic
inflammation:
Some Prevotella
species.
-Related to T2D:
Subdoligranulum
-Related to
metabolic syndrome:
Bacteroidetes
-Related to heart
rate variability
(HRV)
Lachnospiraceae
species.

(253, 259–
263)

Hashimoto’s
Thyroiditis
(258)

Male and Female
stools,
16S rDNA V3-V4
regions, sequenced
with Illumina Miseq
PE300 platform

Changes in HT patients with normal thyroid function
Increased abundance of Lachnoclostridium, Holdemaniawere,
Akkermansia, Ralstonia, Fournierella, and Megamonas
Changes in HT patients with abnormal thyroid function
Increased abundance of Akkermansia, Acetitomaculum,
Shuttleworthia, Flavobacteriaceae, Lachnospiraceae family,
Oscillospirales
Reduced Klebsiella
Changes in Female HT patients
Reduced Bifidobacterium, Klebsiella
Increased Megamonas
Changes in Male HT patients
Increased Bifidobacterium

-Propionate
production from
mucin
degradation:
Akkermansia
muciniphila

-Related to T1D:
¯ Bifidobacterium
-Related to T2D:
Lachnospiraceae
family, Megamonas.

(246, 259,
264, 265)

Hashimoto’s
Thyroiditis
(255)

PCR-DGGE of 16S
rRNA V3 region, and
16S rRNA V4 region
pyrosequencing

Increased Abundance of Bacteroides, Escherichia-Shigella and
Parasutterella genera.
Reduced abundance of Prevotella_9, Dialister, Bifidobacterium
and Lactobacillus genera.
Increased Prevalence of opportunistic bacteria Bacteroides
uniformis, Bacteroides pyogenes, Bacteroides vulgates, Shigella
dysenteriae, Bacteroides intestinalis, Escherichia coli, Sporomusa
ovate, Bacillus sp., Shigella flexneri.

-Dietary fiber
fermenter:
Prevotella and
Bacteroides.

-Related to insulin
resistance:
Bacteroides vulgates
-Related to T1D:
¯ Bifidobacterium,
Bacteroides species.
-Related to T2D:
B. vulgates, B.
intestinalis,
Escherichia.
-Related to cushing’s
syndrome:
Escherichia-Shigella
-Related to
metabolic syndrome:
Prevotella_9

(244, 245,
259, 265–268)

Hashimoto’s
Thyroiditis
(256)

Male/Female stools,
16S rRNA V3-V4
regions, sequenced
with Illumina Hiseq
2500 platform.

Increased abundance of ratio Firmicutes/Bacteroidetes (F/B)
Increased abundance of Lachnospiraceae Family
Increased abundance of Blautia, Dorea, Roseburia,
Butyricicoccus, Streptococcus, Fusicatenibacter, Coprococcus_2,
Subdoligranulum, Romboutsia, Anaerostipes,
Ruminococcus_gauvreauii_group, Ruminococcus_torques_group,
Fusicatenibacter and Eubacterium_hallii_group genera.
Reduced abundance of Fecalibacterium, Bacteroides,
Prevotella_9 and Lachnoclostridium genera

-Butyrate
producers:
Eubacterium
hallii,
Anaerostipes.
-Acetate
producers:
Blautia

-Related to
metabolic syndrome:
Bacteroidetes,
Prevotella_9.
-Related to T1D:
Streptococcus.

(133, 242,
261, 267,
269–271)
frontiersin.org

https://doi.org/10.3389/fendo.2023.1192216
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mendoza-León et al. 10.3389/fendo.2023.1192216
TABLE 3 Microbial changes related to Hyperthyroidism and Grave’s Disease, and the relation of the altered microbiota to metabolic diseases.

Thyroid
disorder
(Ref)

Method of evaluation Changes in gut microbiota com-
pared to control

Microbial
functions

Microorganism
also related to
metabolic
diseases

References

Hyperthyroid
patients (277)

PCR-DGGE of 16S rRNA V3
region.

Reduced abundance of Bifidobacterium and
Lactobacillus
Increased abundance of Enterococcus,
Clostridium

-Production of
SCFAs: Lactobacillus.

-Related to T1D:
Bifidobacterium,
Clostridium.
-Related to T2D:
Clostridium.
-Related to
improvement of
inflammatory
disorders:
Lactobacillus species.

(259, 269,
270, 278)

Hashimoto’s
Thyroiditis &
Graves’ Disease
(276)

16S rRNA of V2-4-8 and V3-6, 7-
9 regions, sequenced with Ion
Chef System and Torrent S5TM
System

Grave’s Disease patients:
Reduced abundance of Rikenellaceae Family
Increased abundance of Prevotellaceae
Fusobacterium, Sutterella.
Reduced abundance of Faecalibacterium,
Rikenellaceae

-Butyrate producer:
Fusobacterium

-Related to obesity:
Fusobacterium

(279, 280)

Graves’ Disease
(272)

PCR-EDGE of 16S rRNA of V3
region, RT-PCR and 16S rRNA
V3-V4 regions, sequenced with
Illumina Hiseq 2500 platform.

Increased Proportion of Bacteroidetes,
Actinobacteria, and Proteobacteria Phyla.
Increased Abundance of
Prevotella_9 and Haemophilus genera.
Bacteroides vulgatus
Reduced Abundance of Alistipes and
Faecalibacterium genera.
Reduced Lactobacillus and Bifidobacterium
genus
Reduced Clostridium leptum

-Butyrate
production:
Proteobacteria

-Related to obesity:
Bacteroidetes,
Proteobacteria Phyla
¯ Clostridium
Alistipes,
Bifidobacterium,
Lactobacillus
leptum.
-Related to
metabolic syndrome:
Bacteroidetes,
Prevotella_9
-Related to T1D:
Bacteroides vulgatus

(259, 261,
270, 281–283)

Graves’ Disease
(224)

16S rRNA V3-V4 regions,
sequenced with Illumina MiSeq
PE300 platform

Increased Proportion of Bacteroidetes phyla
Reduced Proportion of Firmicutes phyla
Increased abundance of Bacteroides and
Lactobacillus genus.
Reduced abundance of Blautia, Eubacterium
hallii group, Anaerostipes, Collinsella, Dorea,
unclassified Peptostreptococcaceae, and
Ruminococcus torques group genus.

-Acetate producer:
Blautia
-Butyrate producer:
Anaerostipes

-Related to insulin
resistance:
Peptostreptococcaceae
-Related to T1D:
¯ Blautia,
-Related to T2D:
Peptostreptococcaceae
-Related to
metabolic syndrome:
Peptostreptococcaceae

(242, 246,
261, 269, 281,
284)

Grave’s Disease
(128)

Male/Female stools
sequenced with Illumina HiSeq
2500 platform and SCFAs
determination by GC-MS

Increased abundance of Coprobacillus,
Streptococcus and Rothia genera
Eggerthella lenta, Streptococcus
parasanguinis, Veillonella parvula, Fuso-
bacterium mortiferum and Streptococcus
salivarius.
Reduced abundance of Faecalibacterium
prausnitzii, Butyricimonas faecalis,
Bifidobacterium adolescentis and
Akkermansia muciniphila

-Propionate
production from
mucin degradation:
Akkermansia
muciniphila
-Propionate
production:
Veillonella parvula
-Butyrate
production:
Faecalibacterium
prausnitzii,
Bifidobacterium
adolescentis

-Related to T1D:
Streptococcus
-Related to T2D:
Eggerthella lenta,
Akkermansia
muciniphila
-Ameliorate T2D:
Bifidobacterium
adolescentis.

(139, 264,
285–287)

Grave’s Disease
Patients (127)

Male/Female stools, 16S rRNA
V1-V2 regions, sequenced with
Illumina HiSeq 2500 platform,
and SCFAs determination by GC-
MS.

Increased abundance of Bacteroides, and
Yersinia enterocolitica.
SCFAs reduced in GD.
¯ Propionic and butyric acid.

-Propionic acid
producer: B. fragilis.

-Glucose intolerance:
Bacteroides
-Associated to blood
lipid levels:
Turicibacter.

(237, 239,
243, 280)

(Continued)
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technique (Enzyme-Linked Immunosorbent Assay), which utilizes

antibodies specific to the SCFAs (325). Although ELISA is a rapid and

simple method, however it is less sensitive than GC, HPLC, or MS. It

is important to note that the choice of detection method will depend

on the specific application, the type of sample, and the desired

sensitivity and specificity. Furthermore, the use of derivatization

techniques, as discussed earlier, can enhance the detection and

analysis of SCFAs. In conclusion, the detection of SCFAs is crucial

for understanding their role in various physiological and pathological

processes and the development of new therapies. The advancement of

analytical techniques, along with the increasing recognition of the

importance of SCFAs, will likely continue to drive new insights into

their detection and characterization.

Projections of SCFAs as strategies for
following thyroid diseases

Even though SCFAs have been studied in the context of thyroid

disorders, there is limited supporting evidence. Gas chromatography-

mass spectrometry (GC-MS) measurements of SCFAs in patients

with Grave’s disease revealed decreased levels of acetic, propionic,

and butyric acid (127, 128). However, more studies in other thyroid

disorders are needed, although it has been suggested that SCFAs may

indirectly influence thyroid function by affecting gut microbiota and

immune function (326). Given that butyrate, which plays a role in

regulating the immune system and has anti-inflammatory effects that

could be potentially beneficial for people with AITDs such as

Hashimoto’s thyroiditis (327).

Although there is ongoing research to identify new biomarkers

for thyroid diseases, and SCFAs may be among the compounds

studied in this context, more investigation is needed to understand

the relationship between SCFAs and thyroid disorders.

Conclusion

Thyroid disorders are involved for the development of

diseases or chronic metabolic conditions such as type 1 diabetes
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and type 2 diabetes. Iodine nutrition is considered the main cause

of thyroid disorders’ development. In this context, adequate

nutrition can be a protective factor to avoid the development of

thyroid disease and improve thyroid function. Key nutrients like

iodine, selenium, and iron uptake, can be affected by an alteration

of the gut microbiota homeostasis, influencing the host’s systemic

metabolism. Therefore, THs availability and a balanced gut

microbiota are key for the regulation of metabolism. Thyroid

disorders are more common in women, and the relationship

between gut microbiota, thyroid conditions during pregnancy,

and their effects on the offspring’s immune system is far from

being completely understood. What is known is that dysbiosis is

often observed in thyroid disorders, but the enzymatic and

metabolic pathways affected by the abundance or depletion of

certain microorganisms in these conditions need to be described.

Here we show that there is no strong research demonstrating the

impact of SCFAs on thyroid function, even though there is no

doubt that SCFAs have beneficial effects on important organs,

tissues, and cells, considering that SCFAs allowing chemical

communication both locally at the intestinal mucosa and

systemically to the rest of the organs. In this work, it is

described how a low abundance of beneficial organisms

correlated with altered SCFAs production, highlighting the

importance of SCFAs detection as an evaluation tool for the

patient’s gut microbiota’s environment and the need for more

research on metabolites linking gut dysbiosis and thyroid function

to improve the patient’s life quality.
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TABLE 3 Continued

Thyroid
disorder
(Ref)

Method of evaluation Changes in gut microbiota com-
pared to control

Microbial
functions

Microorganism
also related to
metabolic
diseases

References

Grave’s Disease
and improved
therapy with
Prebiotic (274)

Stools from baseline, 3 month
and 6 months after treatment,
sequenced with Illumina HiSeq
2500 platform.

Patients treated with Methimazole:
Reduced abundance of Prevotella spp,
Streptococcus
pneumoniae, Selenomonas ruminantium,
and Enterobacter hormaechei.
Patients treated with Methimazole and
potential prebiotic Berberine:
Increased abundance of Lactococcus lactis,
Enterococcus hirae
Reduced abundance of Prevotella spp.,
Chryseobacterium indoltheticum and
Tannerella forsythia.
Faecalibacterium prausnitzii and
Lactococcus lactis were positively correlated
with TSH levels.

-Butyrate producer:
Faecalibacterium
prausnitzi,
Enterobacter
hormaechei
-Propionate, acetate
production:
Selenomonas
ruminantium

-Related to T2D:
¯Faecalibacterium
prausnitzi,

(254, 259,
285, 288)
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18. LeBlanc J, Chain F, Martıń R, Bermúdez-Humarán L, Courau S, Langella P.
Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins
produced by commensal and probiotic bacteria. Microbial Cell Factories (2017) 16
(1):1–10. doi: 10.1186/s12934-017-0691-z

19. Kim CH. Control of lymphocyte functions by gut microbiota-derived short-
chain fatty acids. Cell Mol Immunol (2021) 18(5):1161–71. doi: 10.1038/s41423-020-
00625-0

20. Nastasi C, Fredholm S, Willerslev-Olsen A, Hansen M, Bonefeld C, Geisler C,
et al. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by
suppressing IL-12 production by antigen-presenting cells. Sci Rep (2017) 7(1):1–10.
doi: 10.1038/s41598-017-15099-w

21. Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. Microbiota-derived
short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal
homeostasis. Nat Commun (2018) 9(1):1–15. doi: 10.1038/s41467-018-05901-2

22. Yang W, Yu T, Huang X, Bilotta A, Xu L, Lu Y, et al. Intestinal microbiota-
derived short-chain fatty acids regulation of immune cell IL-22 production and gut
immunity. Nat Commun (2020) 11(1):1–18. doi: 10.1038/s41467-020-18262-6

23. Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, et al.
Dysbiosis, host metabolism, and non-communicable diseases: trialogue in the inborn
errors of metabolism. Front Physiol (2021) 12:716520. doi: 10.3389/fphys.2021.716520

24. Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and biology in the
biosynthesis and action of thyroid hormones. Angewandte Chemie - Int Edition (2016)
55(27):7606–30. doi: 10.1002/anie.201601116

25. van der Spek AH, Fliers E, Boelen A. The classic pathways of thyroid hormone
metabolism. Mol. Cell. Endocrinol (2017) 458:29–38. doi: 10.1016/j.mce.2017.01.025

26. Ravera S, Reyna-Neyra A, Ferrandino G, Amzel L, Carrasco N. The Sodium/
Iodide symporter (NIS): molecular physiology and preclinical and clinical applications.
Annu Rev Physiol (2017) 79:261–89. doi: 10.1146/annurev-physiol-022516-034125

27. Rodriguez A-M, Perron B, Lacroix L, Caillou B, Leblanc G, Schlumberger M,
et al. Identification and characterization of a putative human iodide transporter located
at the apical membrane of thyrocytes. J Clin Endocrinol Metab (2002) 87(7):3500–3.
doi: 10.1210/jcem.87.7.8797

28. Bizhanova A, Kopp P. Minireview: the sodium-iodide symporter NIS and
pendrin in iodide homeostasis of the thyroid. Endocrinology (2009) 150(3):1084–90.
doi: 10.1210/en.2008-1437

29. Yoshihara A, Hara T, Kawashima A, Akama T, Tanigawa K, Wu H, et al.
Regulation of dual oxidase expression and H2O2 production by thyroglobulin. Thyroid
(2012) 22(10):1054–62. doi: 10.1089/thy.2012.0003

30. Carvalho D, Dupuy C. Role of the NADPH oxidases DUOX and NOX4 in
thyroid oxidative stress. Eur Thyroid J (2013) 2(3):160–7. doi: 10.1159/000354745

31. de Faria C, Fortunato R. The role of dual oxidases in physiology and cancer.
Genet Mol Biol (2020) 43(1):1–9. doi: 10.1590/1678-4685/GMB-2019-0096

32. Szanto I, Pusztaszeri M, Mavromati M. H2O2 metabolism in normal thyroid
cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants (2019) 8
(5):1–21. doi: 10.3390/antiox8050126
frontiersin.org

https://doi.org/10.1038/nrendo.2018.18
https://www.thyroid.org/media-main/press-room/
https://doi.org/10.1210/jc.2013-2409
https://doi.org/10.4103/ejim.ejim_22_19
https://doi.org/10.4158/EP151038.PS
https://doi.org/10.4158/EP151038.PS
https://doi.org/10.31729/jnma.5296
https://doi.org/10.1111/dme.12318
https://doi.org/10.1089/thy.2016.0457
https://doi.org/10.7759/cureus.16457
https://doi.org/10.20945/2359-3997000000348
https://doi.org/10.20945/2359-3997000000348
https://doi.org/10.1136/bmj.k2179
https://doi.org/10.3390/nu12061769
https://doi.org/10.3390/nu12061769
http://www.fao.org/tempref/codex/Meetings/CCNFSDU/ccnfsdu26/nf2603ae.pdf
http://www.fao.org/tempref/codex/Meetings/CCNFSDU/ccnfsdu26/nf2603ae.pdf
https://doi.org/10.1016/j.trsl.2012.10.007
https://doi.org/10.1016/j.trsl.2012.10.007
https://doi.org/10.1080/19490976.2015.1134082
https://doi.org/10.1017/S0007114516002610
https://doi.org/10.1080/19490976.2017.1290756
https://doi.org/10.1186/s12934-017-0691-z
https://doi.org/10.1038/s41423-020-00625-0
https://doi.org/10.1038/s41423-020-00625-0
https://doi.org/10.1038/s41598-017-15099-w
https://doi.org/10.1038/s41467-018-05901-2
https://doi.org/10.1038/s41467-020-18262-6
https://doi.org/10.3389/fphys.2021.716520
https://doi.org/10.1002/anie.201601116
https://doi.org/10.1016/j.mce.2017.01.025
https://doi.org/10.1146/annurev-physiol-022516-034125
https://doi.org/10.1210/jcem.87.7.8797
https://doi.org/10.1210/en.2008-1437
https://doi.org/10.1089/thy.2012.0003
https://doi.org/10.1159/000354745
https://doi.org/10.1590/1678-4685/GMB-2019-0096
https://doi.org/10.3390/antiox8050126
https://doi.org/10.3389/fendo.2023.1192216
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mendoza-León et al. 10.3389/fendo.2023.1192216
33. Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch
Biochem Biophysics (2006) 445(2):269–77. doi: 10.1016/j.abb.2005.06.023

34. Dillmann WH. Cellular action of thyroid hormone. In: Thyroid California, US:
Mary Ann Liebert, Inc., vol. Vol. 12. (2002). doi: 10.1089/105072502760143809

35. Carvalho D, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell
Endocrinol (2017) 458:6–15. doi: 10.1016/j.mce.2017.01.038

36. Gomes-Lima C, Wartofsky L, Burman K. Can reverse T3 assay be employed to
guide T4 vs. T4/T3 therapy in hypothyroidism? Front Endocrinol (2019) 10:856.
doi: 10.3389/fendo.2019.00856

37. Braun D, Schweizer U. Thyroid hormone transport and transporters. In:
Vitamins and hormones, 1st ed, vol. 106. Germany: Elsevier Inc (2018). doi: 10.1016/
bs.vh.2017.04.005

38. Yen P. Physiological and molecular basis of thyroid hormone action. Physiol Rev
(2001) 81(3):1097–142. doi: 10.1152/physrev.2001.81.3.1097

39. Singh B, Yen P. A clinician’s guide to understanding resistance to thyroid
hormone due to receptor mutations in the TRa and TRb isoforms. Clin Diabetes
Endocrinol (2017) 3(1):1–11. doi: 10.1186/s40842-017-0046-z

40. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest (2012) 122
(9):3035–43. doi: 10.1172/JCI60047
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Consumption of ultra-processed foods and cancer risk: results from NutriNet-santé
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