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Background: Diabetic nephropathy (DN), which is the main cause of renal

failure in end-stage renal disease, is becoming a common chronic renal disease

worldwide. Mendelian randomization (MR) is a genetic tool that is widely used

to minimize confounding and reverse causation when identifying the causal

effects of complex traits. In this study, we conducted an integrated multiple

microarray analysis and large-scale plasma proteome MR analysis to identify

candidate biomarkers and evaluate the causal effects of prospective

therapeutic targets in DN.

Methods: Five DN gene expression datasets were selected from the Gene

Expression Omnibus. The robust rank aggregation (RRA) method was used to

integrate differentially expressed genes (DEGs) of glomerular samples between

patients with DN and controls, followed by functional enrichment analysis.

Protein quantitative trait loci were incorporated from seven different

proteomic genome-wide association studies, and genetic association data

on DN were obtained from FinnGen (3676 cases and 283,456 controls)

for two-sample MR analysis. External validation and clinical correlation were

also conducted.

Results: A total of 82 DEGs (53 upregulated and 29 downregulated) were

identified through RRA integrated analysis. The enriched Gene Ontology

annotations and Kyoto Encyclopedia of Genes and Genomes pathways of the

DEGs were significantly enriched in neutrophil degranulation, neutrophil

activation, proteoglycan binding, collagen binding, secretory granule lumen,

gluconeogenesis, tricarboxylic acid cycle, and pentose phosphate pathways.

MR analysis revealed that the genetically predicted levels of MHC class I

polypeptide-related sequence B (MICB), granzyme A (GZMA), cathepsin S

(CTSS), chloride intracellular channel protein 5, and ficolin-1 (FCN1) were

causally associated with DN risk. Expression validation and clinical correlation

analysis showed that MICB, GZMA, FCN1, and insulin-like growth factor 1 may

participate in the development of DN, and carbonic anhydrase 2 and lipoprotein

lipase may play protective roles in patients with DN.
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Conclusion: Our integrated analysis identified novel biomarkers, including MICB

and GZMA, which may help further understand the complicated mechanisms of

DN and identify new target pathways for intervention.
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1 Introduction

Diabetic nephropathy (DN) is a major microvascular

complication of diabetes mellitus and the main cause of end-stage

renal disease worldwide (1). DN is characterized clinically by

decreased glomerular filtration rate (GFR) and increased serum

creatinine and proteinuria (2) while exhibiting mesangial cell

proliferation, hypertrophy, and expansion of the mesangial matrix

at the cellular level (3). Metabolic factors, such as oxidative stress,

elevated glucose levels, glomerular hypertension, and inflammatory

chemokines, play key roles in the glomerular injury of renal cells and

extracellular matrix deposition in DN (3, 4). However, the precise

molecular mechanisms involved in the pathogenesis of DN have not

yet been fully elucidated. Thus, further studies are needed to explore

novel diagnostic targets and therapeutic strategies for DN.

Gene-specific expression profiling has recently been extensively

adopted to analyze microarray data using bioinformatics methods (5,

6). Microarray technology has been widely used for gene expression

patterns in renal tissues from patients with DN or experimental

animals. However, some inconsistencies in those microarray studies

have not been avoided or reduced, such as diverse microarray

platforms, different sample sizes and data outliers, or even sources.

However, in our study, the robust rank aggregation (RRA) method

was utilized to combine and integrate the differentially expressed

mRNA profiles of each of the selected datasets for high computational

efficiency and statistical accuracy (7). Previous studies on the

bioinformatic analysis of DN have not employed the RRA method

to systematically incorporate differentially expressed genes (DEGs),

which was facilitated this study.Mendelian randomization (MR) is an

epidemiological approach that can detect the causal effect of exposure

(e.g., plasma protein) on outcome (DN) using genetic variants as

instrumental variables. Compared with observational studies, MR can

avoid environmental confounders and reverse causality because the

genetic variants used in MR cannot be easily changed by the external

environment (8). Several genome-wide association studies (GWASs)

of plasma proteins have recently identified the cis-variant in the

protein-encoding gene (known as the protein quantitative trait loci,

pQTL) for thousands of plasma proteins (9–15). Consequently, cis-

pQTLs have been widely used as genetic instruments to estimate the

causal effects of plasma proteins on complex diseases, satisfying three

key assumptions of MR (relevance, independence, and exclusion

assumptions) (16).

Thus, integrated multiple-microarray analysis was performed to

identify DEGs in selected datasets using the RRA method, followed
02
by gene enrichment and pathway annotation. We conducted a two-

sample MR analysis of DEGs using cis-pQTLs extracted from seven

different GWASs (9–15), followed by gene expression validation

and clinical correlation analysis. With this, we aimed to identify

candidate biomarkers and evaluate the causal effects of prospective

therapeutic targets in DN, which will facilitate future mechanistic

studies and drug discovery.
2 Materials and methods

2.1 Study design

Figure 1 shows the study workflow. We first identified 82 DEGs

from five GEO datasets using RRA methods. We then do the

functional enrichment analysis to find out related pathological

mechanisms. MR analysis was performed to elucidate causal

inference for the association between DEGs encoded proteins and

DN risk by using data from large-scale pQTLs studies. Expression

validation and correlation with clinical parameters were conducted

via the data in Nephroseq v5 online platform.
2.2 Microarray datasets of
diabetic nephropathy

We obtained the gene expression datasets of diabetic

nephropathy from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). We searched the GEO database

by using the query terms: “Diabetic nephropathy”, “Glomeruli”,

“Gene expression”, “Homo sapiens”, “Microarray”, and “mRNA”.

Datasets were filtered under the following criteria (1): Containing at

least 6 total samples; (2) Containing at least three cases and at least

three controls; (3) Each sample in the dataset did not undergo any

other chemical treatment or gene modification; (4) Raw data or gene

expression profiling by array was available in the GEO datasets.
2.3 Data standardization and normalization

The gene expression matrix and related annotation files of each

dataset were downloaded from the GEO database, and the gene

symbols that the microarray probes correspond to were mapped for

further analysis. The mean value was adopted if multiple probes
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https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fendo.2023.1191768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2023.1191768
were mapped to the same symbol. The datasets were then

standardized by quantiles and the values of the genes that had

undergone the log2 transformation. The boxplot indicating the

overall expression of each sample in the five datasets was drawn by

the graphics V4.0.2 package. For the further evaluation and

verification of the key genes in terms of clearly distinguishing

between diabetic nephropathy and healthy control samples,

principal component analysis (PCA) was performed. For PCA,

the prcomp function (https://stat.ethz.ch/R-manual/R-devel/

library/stats/html/prcomp.html) was used to reduce the

dimension of the data, and the PCA map was constructed by the

factoextra V1.0.7 package.
2.4 RRA analysis

Differentially expressed genes (DEGs) with the threshold

criterion of |logFC| >1 and p < 0.05 between diabetic

nephropathy cases and healthy controls were screened by the

limma V3.44.3 (Linear Models for Microarray and RNA-seq

Data) package of the R software program (version 4.0.3). Then

the ggplot2 V3.3.2 package was employed for the volcano plots of

DEGs from each dataset. To reduce the inconsistencies to the

minimum and to integrate the DEGs from five GSE datasets,

Robust Rank Aggregation (RRA) method was employed to

identify robust DEGs. Compared with the Venn plot, the RRA

method is a more effective tool to integrate multiple microarray

results (7). To perform the RRA analysis, we first calculated the up-

ranked and down-ranked gene lists of each GEO dataset which were

generated by expression fold change between diabetic nephropathy
Frontiers in Endocrinology 03
cases and healthy controls. The Robust Rank Aggregation V1.1

package was then used to integrate all the ranked gene lists of five

GEO datasets. The adjusted P-value indicates the possibility of

ranking high of each gene in the final results.
2.5 Functional and pathway
enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis of differentially expressed genes in RRA

analysis were performed using the clusterProfiler V3.16.1 package,

which is a universal enrichment tool for functional and comparative

study. P-value <0.05 and false discovery rate (FDR) < 0.05 was

regarded as the cut-off criteria.
2.6 GWAS data source

We extracted pQTLs for plasma protein from seven different

proteomic GWASs and integrated them using METAL (9–15, 17).

Totally 72,331 cases and controls were included in our analysis. The

ancestry of all of the individuals is European and there is no sample

overlap among these seven data sources. Detailed information on

the studies involved is listed in Table S1. Summary-level data on the

association of DNA sequence variants with the DN risk were

obtained from the FinnGen R8 study data release that contained

3676 cases and 283456 controls for the discovery cohort (18).

Detailed information containing case definition and covariates are

presented in Table S1.
FIGURE 1

Study workflow. DEGs, differentially expressed genes; DN, diabetic nephropathy; GO, gene ontology; IVW, inverse-variance-weighted; KEGG, kyoto
encyclopedia of genes and genomes; MR, mendelian randomization; pQTLs, protein quantitative trait loci; RRA, robust rank aggregation; GWAS,
genome-wide association study.
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All of the GWAS summary statistics employed in this study are

publicly available and can be freely downloaded. Ethics approval

was obtained by the original analysis.
2.7 Instrumental variable selection

As for genetic instrument selection, we screened pQTLs associated

with proteins that were encoded by the robust DEGs previously

identified by the RRA method and three key assumptions must be

met (19). To meet assumption 1 (relevance assumption), we restricted

the SNPs to be directly associated with the exposure at the P < 5 ×10-8

(genome-wide significant level), on the other hand, the F statistic > 10

was regarded as a good strength of the genetic instrument.

Assumption 2 (independence assumption) is that the genetic variant

should not be directly related to the confounders, which can be

evaluated by the horizontal pleiotropy in the post-MR analysis.

The third MR assumption, known as the exclusion restriction

assumption, means that the instrumental variables (IVs) should be

associated with the outcome only via exposure. To meet this

assumption, we elected to use only cis-acting SNPs (located only

within 1Mb of the genes that encode the proteins) (20) as IVs in our

MR analysis and restrict the linkage disequilibrium (LD) clumped

r2 < 0.01. Because cis-pQTLs are regarded to influence the protein

definitely and directly compared with trans-pQTLs, they are rarely

likely to affect the levels of the protein independently of the levels of

the proteins encoded by their corresponding genes. Instrument

variables are listed in Table S2.
2.8 MR statistical analysis

After selecting eligible IVs and clumping with LD r2 < 0.01, most

of the pQTLs have at most 2 eligible IVs. Next, the IVs in exposure

GWAS were harmonized with that in outcome GWAS data., where

the palindromic SNPs with intermediate allele frequency were

removed. Moreover, the missing SNP was replaced by a proxy SNP

with strong linkage disequilibrium (r2 ≥ 0.8). The Wald ratio was

adopted in single IV MR and the inverse-variance-weighted (IVW)

method was calculated for 2 SNPs or more. In addition, Egger’s

regression and the weighted median were also conducted as

references if applicable. The leave-one-out sensitivity analysis was

performed to determine if a single SNP has a dramatic effect on the

association between exposure of interest and the DN outcome. We

also applied the MR-PRESSO method (the replicates were set 5000
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times) to detect the outliers (21). The false discovery rate (FDR) was

adopted to adjust the multiple comparisons. The steps above were

performed using the “TwoSampleMR” R package (github.com/

MRCIEU/TwoSampleMR) (22) and R software 4.2.2.
2.9 External validation and
clinical correlation

For the validation of the targets we identified, we then used the

data in Nephroseq v5 online platform (http://v5.nephroseq.org) to

verify the significant expression of the target genes and the Pearson

correlation analysis between serum protein expression and

glomerular filtration rate (GFR) level, serum creatinine, proteinuria

from samples of the patients with diabetic nephropathy. The query

settings were set as follows: organism = homo sapiens, disease =

diabetic nephropathy. Comparisons between the two groups were

evaluated by using the unpaired Student t-test. The two-tailed P-value

<0.05 was set as the screening criteria.
3 Results

3.1 Overview of five included GEO datasets

Five datasets were included in our study according to the defined

criteria in method. Table 1 provides detailed information on the

included datasets. A total of 45 patients with DN and 52 healthy

controls were included in these five datasets. The expression value of

each gene in the dataset to which it belonged was standardized and

normalized. The boxplots in Figure S1 show that all the samples in

each dataset achieved acceptable homogeneity. Principal component

analysis plots of each dataset were obtained to reveal the distinct gene

expression patterns between patients with DN and healthy controls

(Figure S2). The samples from the DN cases were obviously separated

from the normal samples of the healthy controls in each of the five

GSE datasets, which promises a lower deviation and inconsistency for

the following analysis.
3.2 DEGs identification by RRA
integrated analysis

The DEGs of each GEO dataset were screened out using the

limma package in R software according to the previously established
TABLE 1 Characteristics of the five included GEO datasets.

GSE ID Samples Tissues Analysis type Platform

GSE30528 9 cases and 11 controls kidney glomerulus Array GPL571

GSE1009 3 cases and 3 controls kidney glomerulus Array GPL8300

GSE96804 21 cases and 17 controls kidney glomerulus Array GPL17586

GSE104948 5 cases and 3 controls kidney glomerulus Array GPL24120

GSE104948 7 cases and 18 controls kidney glomerulus Array GPL22945
fro
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criteria (|logFC| >1 and p < 0.05). The volcano plots of five GEO

datasets were shown in Figure S3. In the RRA results, the smaller the

p-value the higher gene ranks and the credibility of gene differential

expression, and the significance scores provide a rigorous way to

keep the statistically relevant genes. Through the RRA methods, 53

upregulated DEGs and 29downregulated DEGs were determined

and the full results were in Table S3. The heatmap in Figure 2

showed the top 10 upregulated DEGs and the top 10

downregulated DEGs.
3.3 GO and KEGG enrichment analysis

The GO (including biological process, molecular function and

cellular component) and KEGG enrichment were performed by the

clusterProfiler package followed by the criteria previously

mentioned. The results showed that neutrophil degranulation

(GO:0043312; P-value = 2.57E-08), neutrophil activation involved

in immune response (GO:0002283; P-value = 2.77E-08), neutrophil

activation (GO:0042119; P-value = 3.51E-08), neutrophil mediated

immunity (GO:0002446; P-value = 3.59E-08), leukocyte

proliferation (GO:0070661; P-value = 1.57E-07) were the top 5

significantly enriched in biological process, followed by lymphocyte

proliferation (GO:0046651; P-value = 7.75E-07), mononuclear cell

proliferation (GO:0032943; P-value = 8.24E-07) and so on
Frontiers in Endocrinology 05
(Figure 3A). In terms of the molecular function, proteoglycan

binding (GO:0043394; P-value = 1.01E-05) and collagen binding

(GO:0005518; P-value = 1.20E-04) were the top 2 siginificantly

ranked (Figure 3B). The secretory granule lumen (GO:0034774; P-

value = 2.68E-05) was the most significantly enriched in the cellular

component (Figure 3C). As for KEGG enrichment analysis,

Figure 3D showed that Glycolysis/Gluconeogenesis (hsa00010; P-

value = 3.69E-03), Steroid biosynthesis (hsa00100; P-value = 1.01E-

01), Citrate cycle (TCA cycle) (hsa00020; P-value = 1.48E-01),

Pentose phosphate pathway (hsa00030; P-value = 1.48E-01) were

significantly enriched in KEGG analysis. The full results were

available in Table S4.
3.4 MR analysis

Among the 82 identified DEGs associated proteins at the

nominal significance level in DN, 57 were removed from MR

analysis for lack of genetic instruments. The F statistics for all

selected SNPs were over 10 (Table S2). A total of four different

circulating plasma proteins showed causal effects on DN in the

FinnGen cohort. As shown in Figure 4, higher genetically predicted

levels of MICB (MHC class I polypeptide-related sequence B),

GZMA (Granzyme A) and CLIC5 (Chloride intracellular channel

protein 5) were associated with an increased risk of DN. Moreover,
FIGURE 2

Heatmap of top 10 upregulated and top 10 downregulated DEGs. The red band represents the high expression of genes in diabetic nephropathy and
the blue band represents the low expression of genes in diabetic nephropathy.
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MICB and GZMA were both upregulated on genetic levels in the

DN group according to our previous RRA integrated analysis,

which further provided supporting evidence for their potentially

casual association with an increased risk of DN. To detail, in the MR

analysis using the inverse variance weighted method, the odd ratio

of DN per standard deviation increase in genetically predicted levels

of proteins was 1.46 (95% CI 1.27-1.67; P = 3.94 × 10-8) for MICB,

1.34 (95% CI 1.17-1.53; P = 1.86 × 10-5) for GZMA, 0.90 (95% CI

0.83-0.97; P = 5.78 × 10-3) for CTSS, and 1.45 (95% CI 1.04-2.03; P =

2.99 × 10-2) for CLIC5. Since there were 8 and 3 pQTLs identified

for MICB and GZMA respectively, MR-Egger, simple mode,

weighted median, and weighted mode were also performed.

Except for MR-Egger in MICB and simple mode in GZMA, other

methods mentioned above showed significant results for MICB and
Frontiers in Endocrinology 06
GZMA and all methods provided the same direction for the

increased risk of DN (OR > 1). The Wald ratio analysis was

conducted if only a single pQTL was identified for the protein.

Combined MR analysis with the DEGs identification result, FCN1

(Ficolin-1) was upregulated on genetic levels and associated with a

high risk of DN (OR = 1.08; 95% CI 1.00-1.18), IGF1 (Insulin-like

growth factor I) was downregulated and linked with a high risk of

DN (OR = 1.16; 95% CI 0.98-1.37), CA2 (Carbonic anhydrase 2; OR

= 0.65; 95% CI 0.41-1.05) and LPL (Lipoprotein lipase; OR = 0.75;

95% CI 0.53-1.06) was downregulated and unfold low risk of DN,

although these four proteins were not significant enough for lack of

pQTLs in MR result. Sensitive analysis of identified proteins with

DN is presented in Table 2 and the MR associations for all studied

proteins can be found in Table S5.
B

C D

A

FIGURE 3

The GO and KEGG analysis of differentially expressed genes. (A) Top 10 terms of Biological process in GO analysis. (B) Top 10 terms of Molecular
function in GO analysis. (C) Top 10 terms of Cellular component in GO analysis. (D) Top 20 terms of KEGG enrichment analysis. The x-axis label
represents the gene ratio and the y-axis label represents the enriched terms.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1191768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2023.1191768
3.5 External validation and
clinical correlation

To validate the expression level of the identified protein in MR

analysis, the Nephroseq v5 online tool was used. The results shown

in Figure 5A indicated that the mRNA expression ofMICB, GZMA,

CTSS, and FCN1 were significantly upregulated in the diabetic

nephropathy glomerulus sample compared with the healthy

controls. Meanwhile, the mRNA expression of CLIC5, IGF1, CA2,

and LPL were significantly downregulated in glomerulus tissues of

diabetic nephropathy patients. It is evident that the expression levels

of 4 upregulated and 4 downregulated genes corresponded with the

results we presented in the RRA analysis, which made the RRA

results more persuasive and convincing. As for correlation with

GFR level and gene expression illustrated in Figures 5B, C, a low
Frontiers in Endocrinology 07
level of GFR was significantly related to a high expression level of

MICB (R = -0.69, P = 3.50 × 10-4), GZMA (R = -0.76, P = 3.70 × 10-

5) and FCN1 (R = -0.76, P = 3.70 × 10-5). Moreover, a high level of

GFR was significantly correlated with a high expression level of CA2

(R = 0.78, P = 8.10 × 10-3) and LPL (R = 0.80, P = 6.50 × 10-6). The

mRNA expression level of MICB and IGF1 manifested a positive

correlation with serum creatinine in DN patients and the expression

level of LPL reversely correlated with serum creatinine (Figure 5D).

Besides, the mRNA expression level of FCN1 in the renal

glomerulus positively correlated with proteinuria (Figure 5E). The

results shown in Figure 5 indicate that MICB, GZMA, FCN1, and

IGF1 may be involved in promoting the development of diabetic

nephropathy and CA2 and LPL may play a protective role in the

progression of diabetic nephropathy, which in accordance with the

results of casual association from our MR analysis.
FIGURE 4

Potential casual associations of circulating proteins with risk of diabetic nephropathy (DN) in FinnGen outcome GWAS cohort.
TABLE 2 Sensitive analysis of identified proteins with DN.

Protein Method nSNP

Pleiotropy Heterogeneity

MR-PRESSO Global P-value Egger
intercept Intercept’s se MR Egger P-value Q-value P-value

MICB
IVW

5 0.718 0.079 0.070 0.341
2.973 0.562

MR-Egger 1.696 0.638

GZMA
IVW

3 NA -0.013 0.036 0.777
0.425 0.809

MR-Egger 0.291 0.589

CTSS IVW 2 NA NA NA NA 0.022 0.883

CLIC5 IVW 2 NA NA NA NA 0.008 0.929
fron
NA, Not Applicable; nSNP, number of SNPs; IVW, Inverse variance weighted.
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4 Discussion

DN is the leading cause of renal failure worldwide (23). Patients

with renal complications caused by type 2 diabetes have a higher

risk of death (24). Interactions between environmental and genetic

factors promote the development of DN and related chronic kidney

diseases (25). Glomerulopathy plays an essential role in the

progression of DN (26). Proteinuria after decreased GFR is a

clinical characteristic of DN (2). Renal pathological changes in

DN first manifest as glomerular basement membrane thickening

and mesangial expansion then progress to glomerular nodular

lesions (27, 28). More genetic factors that may have an essential

role in the progression of DN have been recently revealed. However,

the mechanism of DN remains elusive and poorly understood

which involves metabolic factors, oxidative stress, and renal

hemodynamic (29, 30). Thus, further exploration of the

underlying pathogenesis is urgently needed. Owing to the

development of high-throughput microarray technology and

progress in bioinformatics methods, we were able to detect

potential hub genes that participate in the pathological

mechanism and identify novel biomarkers of glomerular injury in

DN. As a well-designed tool, the RRA algorithm is characterized by

four key features: high computational efficiency, strong robustness

to background noise, incomplete ranking, and significant scores for

each element in the results (7). As a genetic epidemiological

method, MR can overcome the limitations of traditional

observational studies. To the best of our knowledge, our study is

the first to systematically incorporate and integrate multiple

microarray results to analyze the mechanism of glomerular injury

in DN. In this study, we included five GEO datasets according to

established criteria to identify DEGs from renal glomerular tissue

samples between patients with DN and healthy controls. RRA

analysis was employed to integrate DEGs from five GEO datasets

with high statistical efficiency. Further functional annotation,

protein-protein interaction network construction, and clinical

validation were also performed to explore the potential roles of

hub genes in DN.

In this study, to identify candidate biomarkers and verify the

causal relationship between plasma proteins and DN, 82 DEGs,

including 53 upregulated and 29 downregulated genes, were

identified from multiple datasets through RRA analysis. A large-

scale proteome MR analysis was also conducted. The results of the

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses showed that the 82 DEGs

were significantly enriched in neutrophil-related pathways

(neutrophil degranulation, neutrophil activation involved in

immune response, neutrophil activation, and neutrophil-mediated

immunity). Michelis et al. (31) found that albumin modification

and neutrophil activation participated in systemic inflammation

and oxidative stress in DN. The KEGG pathways mainly included

glycolysis/gluconeogenesis, steroid biosynthesis, tricarboxylic acid

cycle, and pentose phosphate pathways. Glucose variability (GV)-

related genes occupy central positions in networks of diabetic

complications, such as DN (32). Subsequent MR analysis

indicated the causal associations between MICB, GZMA, CTSS,

CLIC5, FCN1, and DN risk; moreover, the associations for both
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MICB and GZMA were robust under multiple MR analysis

methods. However, for CTSS and CLIC5, the direction of

association with DN risk differed between our integrated multiple

microarray and MR analyses, which requires further investigation.

External validation and clinical correlations in the Nephroseq v5

online platform further confirmed that MICB, GZMA, FCN1, and

IGF1 may promote the development and progression of DN,

whereas CA2 and LPL have a protective effect against disease in

patients with DN.

MICB, an immune-activating ligand for the killer cell lectin like

receptor K1 (KLRK1)/NKG2D receptor, act as a stress-induced self-

antigen recognized by gamma delta T cells (33). To date, no studies

have clarified the association between MICB and DN. In our

multiple microarray analysis, MICB was significantly upregulated

in DN glomerulus samples, and MR analysis showed a robust causal

association between higher genetically predicted levels of MICB and

increased risk of DN. Moreover, higher MICB expression levels

significantly correlated with worse renal function, including

decreased GFR and elevated serum creatinine levels. Steinle et al.

(34) found that MICB was involved in the immune response-

activating cell surface receptor signaling pathway and can lead to

cell lysis when bound to the KLRK1 receptor (35). A recent study

found that the pattern of immune cell populations that infiltrate the

tissue, such as neutrophils, lymphocytes, mast cells, and

macrophages (36–38), plays an important role in the progression

of DN, which is consistent with our enrichment findings on

neutrophil-related pathways and immune responses. This could

explain whyMICB is elevated in patients with DN and related to the

deterioration of renal function. As one of the immune receptors of

MICB, NKG2D is mainly expressed in NK cells and distinct T-cell

populations (39). A recent study found that several pathways

related to immune, autophagy, and metabolic processes were

significantly activated, including NK cell activation and resting

NK cells in the glomerulus of DN (40), indicating that MICB may

play a potential role by activating NKG2D on NK T cells in the

progression of DN. Since there is still no research revealing the

relationship between DN and MICB or its KLRK1/NKG2D

receptor, future investigations are needed to explore how MICB

participates in the pathogenesis of DN.

As an abundant protease in the cytosolic granules of cytotoxic

T-cells and NK cells, GZMA can activate caspase-independent

pyroptosis in target cells by catalyzing the cleavage of gasdermin

B, leading to cell death (41). Wang et al. (42) revealed that the toll-

like receptor 4/nuclear transcription factor kB signaling pathway

could induce GSDMD-mediated pyroptosis in tubular cells in DN.

Meanwhile, the activation of the NOD-like receptor thermal protein

domain associated protein 3 could also induce pyroptosis in DN

(43). In addition, several drugs targeting pyroptosis-associated

proteins have been shown to have the potential to treat DN (44–

46). In addition, GZMA also participates in the positive regulation

of apoptotic processes and immune responses (47). These pathways

were also included in our enrichment analysis of DEGs in DN. Our

study showed that GZMA was upregulated in patients. Meanwhile,

elevated levels of circulating GZMA were casually associated with a

high risk of DN in the MR analysis and significantly correlated with

a decreased GFR in the clinical aspect, suggesting that GZMA may
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be a promising therapeutic option for DN. However, this needs to

be confirmed in future studies. Kummer et al. (48) found that no

granzyme positive cells (cells that store GZMA and GZMB) were

detected infiltrating tubular epithelium, and vascular and

glomerular structures in renal biopsies from patients with various

inflammatory, not transplant-related, renal diseases, indicating that

the expression of GZMA in diabetic nephropathy might be specific.
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Moreover, in our MR analysis, we found that increased CLIC5,

FCN1, and IGF1 led to a higher risk of DN, whereas increased levels

of CTSS, CA2, and LPL led to a lower risk of DN. Although the

causal effects of FCN1, IGF1, CA2, and LPL were not significant

owing to the lack of abundant genetic instruments, our clinical

correlation provides some evidence of their roles in the progression

of DN. A high level of FCN1 significantly correlated with a low GFR
B C

D E

A

FIGURE 5

The mRNA expression levels of hub genes and clinical correlation from data in Nephroseq v5 online tool. (A) The expression level of MICB (P = 3.10
× 10-12), GZMA (P = 3.10 × 10-6), CTSS (P = 6.60 × 10-7), CLIC5 (P = 9.50 × 10-16), FCN1 (P = 9.30 × 10-9), IGF1 (P = 3.50 × 10-9), CA2 (P = 5.10 × 10-

6), LPL (P = 6.10 × 10-7). (B) The expression of MICB, GZMA, and FCN1 negatively correlated with GFR. (C) The expression of CA2 and LPL positively
correlated with GFR. (D) The expression of MICB, IGF1 and LPL correlated with serum creatinine level. (E) The expression of LPL positively correlated
with proteinuria. The DN groups represent the diabetic nephropathy patients and the Normal groups represent the healthy controls. GFR, glomerular
filtration rate. ****P < 0.0001.
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and increased proteinuria, while a high level of LPL significantly

correlated with an increased GFR and decreased serum creatinine

level. Nonetheless, these novel targets need to be confirmed in

future studies. CLIC5 is required for the development and

maintenance of proper glomerular endothelial cell and podocyte

architecture (49) and has also been identified as a candidate

biomarker for the diagnosis of DN through gene-based network

analysis (50). CTSS is a thiol protease involved in the adaptive

immune response and has been reportedly associated with the

epithelial-mesenchymal transition of tubular epithelial cells in DN

(51). FCN1 acts as a kind of extracellular lectin which functions as a

pattern-recognition receptor in innate immunity (52) and is

synthesized by peripheral leukocytes. A previous study found that

FCN1 is associated with an earlier onset of type 1 diabetes in a

cohort of children and adolescents. Moreover, FCN1 is differentially

expressed in both DN and non-alcoholic fatty liver disease and is

one of the ten optimal crosstalk genes in these two diseases selected

by LASSO regression and Boruta algorithm (53). IGF1 was

identified as an upregulated gene in DN and reported to be

associated with renal hypertrophy and hyperfiltration in diabetic

rats, which can be relieved by nitric oxide synthase inhibition (54).

Brittain et al. (55) found the downregulation of renal IGF1 gene

expression in several different chronic human kidney diseases,

including diabetic nephropathy, which supports our differential

analysis that IGF1 was downregulated and might link with a high

risk of DN (OR = 1.16). To conclude, the differential expression of

IGF1 might not be specific in diabetic nephropathy and further

efforts need to be made. CA2 can catalyze the reversible hydration

of carbon dioxide and has been reported to be related to type 2

diabetes mellitus (56). Meanwhile, no research has been conducted

on DN and dysfunction of CA2 might lead to renal tubular acidosis.

Level of anti-CA2 antibody can reflect renal (especially proximal

renal tubular) and hematologic impairment (57). LPL is the most

relevant crosstalk gene between non-alcoholic fatty liver disease and

DN (53). LPL was reported to be expressed in mesangial cells, but

not epithelial cells in glomeruli. Moreover, hyperlipidemia

accelerates the progression of glomerular diseases and the

addition of exogenous lipoprotein lipase to mesangial cells has

been shown to lead to enhanced binding of lipoproteins to these

cells (58) and Appel et al. (59) reported that the fabric acid

derivative gemfibrozil inhibits adipose lipolysis and increases

lipoprotein lipase activity thus decreasing LDL synthesis and

accelerating its removal in proteinuric diseases. However, whether

the causative effects of lipoprotein lipase in diabetic nephropathy

are specific or not still needs more work to find out. Our study

showed that CA2 and LPL may play protective roles in the

progression of DN, whichrequires further investigation.

This study has several strengths, including the integrated

multiple-microarray analysis using the RRA method, genetic

instruments from recent large-scale genome-wide studies (9–15),

and expression validation and clinical parameter correlation in the

external database. Although encouraging results were obtained,

several limitations need to be considered when interpreting our
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results. First, the multiple-microarray analysis examined the mRNA

levels of genes in kidney glomerulus samples. While our MR

analysis measures the circulating protein concerning DN, the

relationship between mRNAs and proteins could be affected by

differences in translational efficiency, protein degeneration,

contextual confounds, and protein-level buffering (60). Some

proteins are expressed locally and not secreted into the

circulation, which partially explains why 57 DEGs failed to match

the available pQTLs in our MR analysis. Moreover, this study did

not examine all the plasma proteins related to DN. Second, the cis-

pQTLs used in our analysis were mainly obtained through two

platforms, Olink and Somascan, which were not able to detect

different isoforms or protein modifications, but could exhibit high-

throughput efficiency and high specificity when quantifying

proteins on a large scale. Thus, future research combining

different proteomic platforms is needed to confirm the association

between microarrays and MR analyses (61, 62). Third, most pQTLs

had only one or two instrumental variables available for each

protein after selection, making it difficult to perform sensitivity

and post-MR analyses. This can be addressed by using larger sample

datasets in future studies. Finally, our samples were confined to

European populations, and caution should be exercised when

extending our results to other ethnicities. Thus, more studies

considering other races are needed. Nonetheless, we believe that

our MR results provide insights into the pathological development

of DN. Biological experiments are still necessary to understand the

complex biology of DN and illustrate its underlying mechanisms.
5 Conclusions

In summary, we provide a deeper insight by performing RRA

analysis of the complicated molecular signature of glomerular

injury in DN, followed by functional annotation and MR analyses

to identify potential therapeutic targets, such as MICB, GZMA,

CTSS, CLIC5, and FCN1. Moreover, through GO and KEGG

enrichment analyses, we found that the DEGs were mostly

enriched in neutrophil-related pathways and immune responses.

We then validated the expression of genes and analyzed the

association between gene expression and the clinical features of

DN using the Nephroseq v5 online platform, showing that MICB,

GZMA, FCN1, and IGF1 may be involved in the development of

DN, whereas CA2 and LPL may play protective roles in DN.

However, the mechanisms underlying glomerular injury in DN

have not been fully elucidated, and further studies are needed to

explore the functions of these therapeutic targets in DN.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1191768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2023.1191768
Author contributions

CF, YG, and YS designed this research. CF did the data

acquisition. YG conducted the statistical analysis. CF and YG

wrote the first draft of the manuscript. YS revised the manuscript

and give the final approval for the manuscript submission. All

authors contributed to the art ic le and approved the

submitted version.
Funding

This work was supported by the Key Project of Natural Science

Research in Jiangsu Universities (No. 21KJA350002).
Acknowledgments

The authors thank Emilsson, Hillary, Png, Suhre, Sun, Yao, and

FinnGen for sharing the GWAS summary data.
Frontiers in Endocrinology 11
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1191768/

full#supplementary-material
References
1. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J.
Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.
Nat Rev Nephrol (2011) 7(6):327–40. doi: 10.1038/nrneph.2011.51

2. Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis
and treatment. Nat Rev Endocrinol (2013) 9(12):713–23. doi: 10.1038/nrendo.2013.184

3. Schlondorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc
Nephrol (2009) 20(6):1179–87. doi: 10.1681/ASN.2008050549

4. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, et al. Diabetic
nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood)
(2008) 233(1):4–11. doi: 10.3181/0705-MR-134

5. Moylan CA, Pang H, Dellinger A, Suzuki A, Garrett ME, Guy CD, et al. Hepatic
gene expression profiles differentiate presymptomatic patients with mild versus severe
nonalcoholic fatty liver disease. Hepatology (2014) 59(2):471–82. doi: 10.1002/hep.26661

6. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, et al.
Relationship between methylome and transcriptome in patients with nonalcoholic fatty
liver disease. Gastroenterology (2013) 145(5):1076–87. doi: 10.1053/j.gastro.2013.07.047

7. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and
meta-analysis. Bioinformatics (2012) 28(4):573–80. doi: 10.1093/bioinformatics/btr709

8. Sekula P, Del Greco MF, Pattaro C, Kottgen A. Mendelian randomization as an
approach to assess causality using observational data. J Am Soc Nephrol (2016) 27
(11):3253–65. doi: 10.1681/ASN.2016010098

9. Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, et al. Genome-wide
mapping of plasma protein qtls identifies putatively causal genes and pathways for
cardiovascular disease. Nat Commun (2018) 9(1):3268. doi: 10.1038/s41467-018-
05512-x

10. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al.
Genomic atlas of the human plasma proteome. Nature (2018) 558(7708):73–9.
doi: 10.1038/s41586-018-0175-2

11. Sun BB, Chiou J, Traylor M, Benner C, Hsu Y-H, Richardson TG, et al. Genetic
regulation of the human plasma proteome in 54,306 uk biobank participants. bioRxiv
(2022), 2022.06.17.496443. doi: 10.1101/2022.06.17.496443

12. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al.
Connecting genetic risk to disease end points through the human blood plasma
proteome. Nat Commun (2017) 8:14357. doi: 10.1038/ncomms14357

13. Png G, Barysenka A, Repetto L, Navarro P, Shen X, Pietzner M, et al. Mapping
the serum proteome to neurological diseases using whole genome sequencing. Nat
Commun (2021) 12(1):7042. doi: 10.1038/s41467-021-27387-1

14. Hillary RF, McCartney DL, Harris SE, Stevenson AJ, Seeboth A, Zhang Q, et al.
Genome and epigenome wide studies of neurological protein biomarkers in the Lothian
birth cohort 1936. Nat Commun (2019) 10(1):3160. doi: 10.1038/s41467-019-11177-x
15. Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, et al. Co-
Regulatory networks of human serum proteins link genetics to disease. Science (2018)
361(6404):769–73. doi: 10.1126/science.aaq1327

16. Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation
studies: a guide, glossary, and checklist for clinicians. BMJ (2018) 362:k601.
doi: 10.1136/bmj.k601

17. Willer CJ, Li Y, Abecasis GR. Metal: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics (2010) 26(17):2190–1. doi: 10.1093/
bioinformatics/btq340

18. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al.
Finngen: unique genetic insights from combining isolated population and national
health register data. medRxiv (2022). doi: 10.1101/2022.03.03.22271360

19. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The Mr-
base platform supports systematic causal inference across the human phenome. Elife
(2018) 7. doi: 10.7554/eLife.34408

20. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin
RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature
(2012) 491(7422):56–65. doi: 10.1038/nature11632

21. Verbanck M, Chen CY, Neale B, Do R. Publisher correction: detection of
widespread horizontal pleiotropy in causal relationships inferred from mendelian
randomization between complex traits and diseases. Nat Genet (2018) 50(8):1196.
doi: 10.1038/s41588-018-0164-2

22. Lam M, Chen CY, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic
architectures of schizophrenia in East Asian and European populations. Nat Genet
(2019) 51(12):1670–8. doi: 10.1038/s41588-019-0512-x

23. Mitch WE. Treating diabetic nephropathy–are there only economic issues? N
Engl J Med (2004) 351(19):1934–6. doi: 10.1056/NEJMp048254

24. Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A,
Gudbjornsdottir S, et al. Excess mortality among persons with type 2 diabetes. N
Engl J Med (2015) 373(18):1720–32. doi: 10.1056/NEJMoa1504347

25. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev
(2013) 93(1):137–88. doi: 10.1152/physrev.00045.2011

26. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC3rd. From fibrosis to
sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes (2008)
57(6):1439–45. doi: 10.2337/db08-0061

27. Jefferson JA, Shankland SJ, Pichler RH. Proteinuria in diabetic kidney disease: a
mechanistic viewpoint. Kidney Int (2008) 74(1):22–36. doi: 10.1038/ki.2008.128

28. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB,
et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol (2010) 21
(4):556–63. doi: 10.1681/ASN.2010010010
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1191768/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1191768/full#supplementary-material
https://doi.org/10.1038/nrneph.2011.51
https://doi.org/10.1038/nrendo.2013.184
https://doi.org/10.1681/ASN.2008050549
https://doi.org/10.3181/0705-MR-134
https://doi.org/10.1002/hep.26661
https://doi.org/10.1053/j.gastro.2013.07.047
https://doi.org/10.1093/bioinformatics/btr709
https://doi.org/10.1681/ASN.2016010098
https://doi.org/10.1038/s41467-018-05512-x
https://doi.org/10.1038/s41467-018-05512-x
https://doi.org/10.1038/s41586-018-0175-2
https://doi.org/10.1101/2022.06.17.496443
https://doi.org/10.1038/ncomms14357
https://doi.org/10.1038/s41467-021-27387-1
https://doi.org/10.1038/s41467-019-11177-x
https://doi.org/10.1126/science.aaq1327
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1093/bioinformatics/btq340
https://doi.org/10.1101/2022.03.03.22271360
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/s41588-018-0164-2
https://doi.org/10.1038/s41588-019-0512-x
https://doi.org/10.1056/NEJMp048254
https://doi.org/10.1056/NEJMoa1504347
https://doi.org/10.1152/physrev.00045.2011
https://doi.org/10.2337/db08-0061
https://doi.org/10.1038/ki.2008.128
https://doi.org/10.1681/ASN.2010010010
https://doi.org/10.3389/fendo.2023.1191768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2023.1191768
29. Cooper ME. Interaction of metabolic and haemodynamic factors in mediating
experimental diabetic nephropathy. Diabetologia (2001) 44(11):1957–72. doi: 10.1007/
s001250100000

30. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas
S, et al. Diabetic kidney disease. Nat Rev Dis Primers (2015) 1:15018. doi: 10.1038/
nrdp.2015.18

31. Michelis R, Kristal B, Zeitun T, Shapiro G, Fridman Y, Geron R, et al. Albumin
oxidation leads to neutrophil activation in vitro and inaccurate measurement of serum
albumin in patients with diabetic nephropathy. Free Radic Biol Med (2013) 60:49–55.
doi: 10.1016/j.freeradbiomed.2013.02.005

32. Saik OV, Klimontov VV. Bioinformatic reconstruction and analysis of gene
networks related to glucose variability in diabetes and its complications. Int J Mol Sci
(2020) 21(22):8691. doi: 10.3390/ijms21228691

33. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced mhc
molecules by intestinal epithelial gammadelta T cells. Science (1998) 279(5357):1737–
40. doi: 10.1126/science.279.5357.1737

34. Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, et al. Interactions of
human Nkg2d with its ligands mica, micb, and homologs of the mouse rae-1 protein
family. Immunogenetics (2001) 53(4):279–87. doi: 10.1007/s002510100325

35. Nachmani D, Gutschner T, Reches A, Diederichs S, Mandelboim O. Rna-
binding proteins regulate the expression of the immune activating ligand micb. Nat
Commun (2014) 5:4186. doi: 10.1038/ncomms5186

36. Tesch GH. Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond)
(2017) 131(16):2183–99. doi: 10.1042/CS20160636

37. Zheng Z, Zheng F. Immune cells and inflammation in diabetic nephropathy. J
Diabetes Res (2016) 2016:1841690. doi: 10.1155/2016/1841690

38. Wilson PC, Wu H, Kirita Y, Uchimura K, Ledru N, Rennke HG, et al. The
single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl
Acad Sci U.S.A. (2019) 116(39):19619–25. doi: 10.1073/pnas.1908706116

39. Vorwerk G, Zahn S, Bieber T, Wenzel J. Nkg2d and its ligands as cytotoxic
factors in cutaneous lupus erythematosus. Exp Dermatol (2021) 30(6):847–52.
doi: 10.1111/exd.14311

40. Zhou W, Liu Y, Hu Q, Zhou J, Lin H. The landscape of immune cell infiltration
in the glomerulus of diabetic nephropathy: evidence based on bioinformatics. BMC
Nephrol (2022) 23(1):303. doi: 10.1186/s12882-022-02906-4

41. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme a from cytotoxic
lymphocytes cleaves gsdmb to trigger pyroptosis in target cells. Science (2020) 368
(6494):eaaz7548. doi: 10.1126/science.aaz7548

42. Wang Y, Zhu X, Yuan S, Wen S, Liu X, Wang C, et al. Tlr4/Nf-kappab signaling
induces gsdmd-related pyroptosis in tubular cells in diabetic kidney disease. Front
Endocrinol (Lausanne) (2019) 10:603. doi: 10.3389/fendo.2019.00603

43. Wan J, Liu D, Pan S, Zhou S, Liu Z. Nlrp3-mediated pyroptosis in diabetic
nephropathy. Front Pharmacol (2022) 13:998574. doi: 10.3389/fphar.2022.998574

44. Chen A, Chen Z, Xia Y, Lu D, Yang X, Sun A, et al. Liraglutide attenuates Nlrp3
inflammasome-dependent pyroptosis via regulating Sirt1/Nox4/Ros pathway in H9c2
cells. Biochem Biophys Res Commun (2018) 499(2):267–72. doi: 10.1016/
j.bbrc.2018.03.142

45. Wang MZ, Wang J, Cao DW, Tu Y, Liu BH, Yuan CC, et al. Fucoidan alleviates
renal fibrosis in diabetic kidney disease via inhibition of Nlrp3 inflammasome-
mediated podocyte pyroptosis. Front Pharmacol (2022) 13:790937. doi: 10.3389/
fphar.2022.790937

46. Liu BH, Tu Y, Ni GX, Yan J, Yue L, Li ZL, et al. Total flavones of abelmoschus
manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by
targeting Mettl3-dependent M(6)a modification-mediated Nlrp3-inflammasome
Frontiers in Endocrinology 12
activation and Pten/Pi3k/Akt signaling. Front Pharmacol (2021) 12:667644.
doi: 10.3389/fphar.2021.667644

47. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, et al. Cleaving the
oxidative repair protein Ape1 enhances cell death mediated by granzyme a. Nat
Immunol (2003) 4(2):145–53. doi: 10.1038/ni885

48. Kummer JA, Wever PC, Kamp AM, ten Berge IJ, Hack CE, Weening JJ.
Expression of granzyme a and b proteins by cytotoxic lymphocytes involved in acute
renal allograft rejection. Kidney Int (1995) 47(1):70–7. doi: 10.1038/ki.1995.8

49. Wegner B, Al-Momany A, Kulak SC, Kozlowski K, Obeidat M, Jahroudi N, et al.
Clic5a, a component of the ezrin-podocalyxin complex in glomeruli, is a determinant of
podocyte integrity. Am J Physiol Renal Physiol (2010) 298(6):F1492–503. doi: 10.1152/
ajprenal.00030.2010

50. Wu S, Li W, Chen B, Pei X, Cao Y, Wei Y, et al. Gene-based network analysis
reveals prognostic biomarkers implicated in diabetic tubulointerstitial injury. Dis
Markers (2022) 2022:2700392. doi: 10.1155/2022/2700392

51. Bai Y, Ma L, Deng D, Tian D, Liu W, Diao Z. Title: bioinformatic identification
of genes involved in diabetic nephropathy fibrosis and their clinical relevance. Biochem
Genet (2023). doi: 10.1007/s10528-023-10336-6

52. Zhang J, Yang L, Ang Z, Yoong SL, Tran TT, Anand GS, et al. Secreted m-ficolin
anchors onto monocyte transmembrane G protein-coupled receptor 43 and cross talks
with plasma c-reactive protein to mediate immune signaling and regulate host defense.
J Immunol (2010) 185(11):6899–910. doi: 10.4049/jimmunol.1001225

53. Yan Q, Zhao Z, Liu D, Li J, Pan S, Duan J, et al. Integrated analysis of potential
gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy.
Front Endocrinol (Lausanne) (2022) 13:1032814. doi: 10.3389/fendo.2022.1032814

54. Levin-Iaina N, Iaina A, Raz I. The emerging role of no and igf-1 in early
renal hypertrophy in stz-induced diabetic rats. Diabetes Metab Res Rev (2011) 27
(3):235–43:4050. doi: 10.1002/dmrr.1172

55. Brittain AL, Kopchick JJ. A review of renal Gh/Igf1 family gene expression in
chronic kidney diseases. Growth Hormone IGF Res (2019) 48-49:1–4. doi: 10.1016/
j.ghir.2019.07.001

56. Guo Q, Niu W, Li X, Guo H, Zhang N, Wang X, et al. Study on hypoglycemic
effect of the drug pair of astragalus radix and dioscoreae rhizoma in T2dm rats by
network pharmacology and metabonomics. Molecules (2019) 24(22). doi: 10.3390/
molecules24224050

57. Jin Y-B, Dai Y-J, Chen J-L, Li J, Zhang X, Sun X-L, et al. Anti-carbonic
anhydrase ii antibody reflects urinary acidification defect especially in proximal renal
tubules in patients with primary sjögren syndrome. Medicine (2023) 102(2):e32673.
doi: 10.1097/MD.0000000000032673

58. Irvine SA, Martin J, Hughes TR, Ramji DP. Lipoprotein lipase is expressed by
glomerular mesangial cells. Int J Biochem Cell Biol (2006) 38(1):12–6. doi: 10.1016/
j.biocel.2005.07.008

59. Appel GB, Appel AS. Lipid-lowering agents in proteinuric diseases. Am J
Nephrol (1990) 10 Suppl 1:110–5. doi: 10.1159/000168204

60. Buccitelli C, Selbach M. Mrnas, proteins and the emerging principles of gene
expression control. Nat Rev Genet (2020) 21(10):630–44. doi: 10.1038/s41576-020-0258-4

61. Pietzner M, Wheeler E, Carrasco-Zanini J, Kerrison ND, Oerton E, Koprulu M,
et al. Synergistic insights into human health from aptamer- and antibody-based
proteomic profiling. Nat Commun (2021) 12(1):6822. doi: 10.1038/s41467-021-
27164-0

62. Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, et al.
Multiplatform approach for plasma proteomics: complementarity of olink proximity
extension assay technology to mass spectrometry-based protein profiling. J Proteome
Res (2021) 20(1):751–62. doi: 10.1021/acs.jproteome.0c00641
frontiersin.org

https://doi.org/10.1007/s001250100000
https://doi.org/10.1007/s001250100000
https://doi.org/10.1038/nrdp.2015.18
https://doi.org/10.1038/nrdp.2015.18
https://doi.org/10.1016/j.freeradbiomed.2013.02.005
https://doi.org/10.3390/ijms21228691
https://doi.org/10.1126/science.279.5357.1737
https://doi.org/10.1007/s002510100325
https://doi.org/10.1038/ncomms5186
https://doi.org/10.1042/CS20160636
https://doi.org/10.1155/2016/1841690
https://doi.org/10.1073/pnas.1908706116
https://doi.org/10.1111/exd.14311
https://doi.org/10.1186/s12882-022-02906-4
https://doi.org/10.1126/science.aaz7548
https://doi.org/10.3389/fendo.2019.00603
https://doi.org/10.3389/fphar.2022.998574
https://doi.org/10.1016/j.bbrc.2018.03.142
https://doi.org/10.1016/j.bbrc.2018.03.142
https://doi.org/10.3389/fphar.2022.790937
https://doi.org/10.3389/fphar.2022.790937
https://doi.org/10.3389/fphar.2021.667644
https://doi.org/10.1038/ni885
https://doi.org/10.1038/ki.1995.8
https://doi.org/10.1152/ajprenal.00030.2010
https://doi.org/10.1152/ajprenal.00030.2010
https://doi.org/10.1155/2022/2700392
https://doi.org/10.1007/s10528-023-10336-6
https://doi.org/10.4049/jimmunol.1001225
https://doi.org/10.3389/fendo.2022.1032814
https://doi.org/10.1002/dmrr.1172
https://doi.org/10.1016/j.ghir.2019.07.001
https://doi.org/10.1016/j.ghir.2019.07.001
https://doi.org/10.3390/molecules24224050
https://doi.org/10.3390/molecules24224050
https://doi.org/10.1097/MD.0000000000032673
https://doi.org/10.1016/j.biocel.2005.07.008
https://doi.org/10.1016/j.biocel.2005.07.008
https://doi.org/10.1159/000168204
https://doi.org/10.1038/s41576-020-0258-4
https://doi.org/10.1038/s41467-021-27164-0
https://doi.org/10.1038/s41467-021-27164-0
https://doi.org/10.1021/acs.jproteome.0c00641
https://doi.org/10.3389/fendo.2023.1191768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Integrated multiple-microarray analysis and mendelian randomization to identify novel targets involved in diabetic nephropathy
	1 Introduction
	2 Materials and methods
	2.1 Study design
	2.2 Microarray datasets of diabetic nephropathy
	2.3 Data standardization and normalization
	2.4 RRA analysis
	2.5 Functional and pathway enrichment analysis
	2.6 GWAS data source
	2.7 Instrumental variable selection
	2.8 MR statistical analysis
	2.9 External validation and clinical correlation

	3 Results
	3.1 Overview of five included GEO datasets
	3.2 DEGs identification by RRA integrated analysis
	3.3 GO and KEGG enrichment analysis
	3.4 MR analysis
	3.5 External validation and clinical correlation

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


