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Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion

are common maternal pregnancy complications that seriously endanger

women’s lives and health, and their occurrence is increasing year after year

with a rejuvenation trend. In contrast to biomarkers found freely in tissues or

body fluids, exosomes exist in a relatively independent environment and provide

a higher level of stability. As backbone molecules, guidance molecules, and

signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the

cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA

stability, acting as competitive endogenous RNAs to bind miRNAs, and so on.

Exosomal lncRNAs can exist indefinitely and are important in intercellular

communication and signal transduction. Changes in maternal serum exosome

lncRNA expression can accurately and timely reflect the progression and

regression of pregnancy-related diseases. The purpose of this paper is to

provide a reference for clinical research on the pathogenesis, diagnosis, and

treatment methods of pregnancy-related diseases by reviewing the role of

exosome lncRNAs in female pathological pregnancy and related

molecular mechanisms.
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1 Introduction

Exosomes are membrane vesicles that are released into the extracellular fluid by various

cells (1). The exosome membrane is high in cholesterol, sphingolipids, and other

components, and it contains a variety of proteins, mRNA, and lncRNA, including

mother cell-specific proteins and exosome-associated proteins. Exosomes are the best

markers for determining the levels of various substances expressed within the mother cell

(2). Scholars have paid close attention to the non-coding RNAs found in the non-coding

region in recent years (3). lncRNAs are expressed in low amounts in cells or tissues and
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have a length of more than 200 nt. Their regulation primarily

consists of epigenetic regulation, transcriptional regulation, and

post-transcriptional regulation, all of which affect cell proliferation,

apoptosis, and differentiation and play an essential role in the

development of many diseases (4, 5). Research has found that

lncRNA plays an important role in the homeostasis of cells or

tissues during development. Although LncRNAs cannot directly

regulate protein translation, they can exert regulatory power

through miRNAs, which may be mediated as a mediator (6).

Some lncRNAs are enriched in exosomes, while others are almost

absent, implying that lncRNAs are selectively sorted into exosomes

(7). Pathological pregnancy is becoming more common, and the

resulting problem of reduced fertility cannot be ignored (8).

Exosomal lncRNA, which is abundant and stable in plasma and

has high ribonuclease activity, can serve as a reference for clinicians

in the diagnosis of pregnancy-related disorders (9). As a result, it is

clinically significant to investigate the exosome lncRNAs that affect

women’s pathological pregnancy behavior, as this can help to

further investigate the disease’s development mechanism and

provide new ideas and strategies for disease treatment, thereby

genuinely protecting women’s reproductive health (10).
2 Overview of exosomes

2.1 Biogenesis of exosomes

Exosomes are made up of a double-layered lipid membrane

structure that ranges in size from 30nm to 150nm and contains

DNA, mRNA, and lncRNA (11, 12). Exosomes are present in almost

all eukaryotic body fluids (13), including uterine fluid, urine,

amniotic fluid, breast milk, peritoneal fluid, and cell culture fluid,

according to recent research (14). When exposed to extracellular

stimuli, microbial attack, or other stress conditions, the cell

membrane invaginates, allowing material from outside the cell

membrane to enter the cell along with the cell membrane surface

proteins, resulting in the formation of the early-sorting endosome

(ESE) (15). By “budding,” the ESE membrane generates

multivesicular bodies (MVBs) or late endosomes. Finally, MVBs

are secreted extracellularly to form exosomes under the control of

the endosomal sorting complex required for transport (ESCRT) and

specific proteins (16). Exosomes and target cells interact in three

ways: exosome surface membrane proteins directly bind to target cell

receptors, activating intracellular signaling pathways; target cells take

up exosomes via endocytosis; and exosomes can directly fuse with

the plasma membrane of target cells, releasing the miRNAs and

lncRNAs they carry into the target cells (17) (Figure 1).
2.2 Function of exosomes

Exosomes are critical intercellular messengers that regulate

cellular physiological functions such as immune regulation, cell

proliferation, antigen expression and presentation, and bioenergetic

conversion (18, 19). Exosomes transport nucleic acids, which play

an essential role in cellular communication (20). Exosomes contain
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at least ten different types of RNA, and actively secreted exosomes

can package a large amount of intracellular information material for

transmission from one cell to another, achieving cross-cellular

regulation and participating in intercellular communication and

microenvironment regulation (21). Because cell membrane

transmembrane proteins are also expressed on the exosome

membrane, it is critical for exosome identification (22).

Glycoproteins and transmembrane proteins are enriched in

intercellular communication and adhesion events, which can be

utilized to determine their cellular or tissue origin, such as

placental-derived exosomes that express placental-like alkaline

phosphatase (PLAP) (23). Exosomes can control morphogenetic

signaling, immune cell recruitment, and genetic material transport

to carry out a range of cell biological tasks in the cellular

microenvironment (24). The majority of methods for detecting

exosomal nucleic acid information rely on the presence of mRNA

and microRNA in exosomes (25). In recent years, the importance of

targeting exosomal lncRNAs has gained more attention. LncRNAs

protected by the exosomal tegument exhibit higher expression and

better stability than lncRNAs isolated directly from peripheral

bodily fluids, and their results are trustworthy.
3 Overview of lncRNAs

3.1 lncRNAs play a role in the regulation of
pre-transcription

By controlling the regulation of target genes by the epimodification

complex before transcription takes place through chromatin

modification, genomic imprinting, and dosage compensation effects,

lncRNAs in the nucleus play an epigenetic function in gene expression

(26, 27). The chromatin state and the way proteins attach to chromatin

are both altered by the different ways that lncRNAs can modify

histones, including methylation, acetylation, and ubiquitination. In

order to interact with the histone modification complex Polycomb

Repressive Complex 2 (PRC2) and mediate histone methylation and

demethylation, LncRNA HOX antisense intergenic RNA (HOTAIR)

may serve as a molecular scaffold. The ATP-dependent chromatin

remodeling complex plays a major role in controlling chromatin

remodeling, an enzymatic co-process that enables nucleosomal DNA

acquisition by altering the structure, composition, and placement of

nucleosomes. BRG1, the central component of the chromatin

remodeling complex SWI/SNF, can interact with lncRNA MANTIS,

stabilizing it. An open chromatin conformation is induced by the

interaction of BRG1 with BAFl55, another chromatin remodeling

factor, and this increases the transcription of genes involved in

angiogenesis. MANTIS is a lncRNA that is thought to have pro-

endothelial angiogenic potential (Figure 2).
3.2 LncRNAs play a role in controlling
gene transcription

By preventing the RNA Pol II complex from attaching to the

promoter, LncRNA can interfere with transcription (28). According
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to Latos et al., the lncRNA Aim transcript covers the lgf2r promoter

region and prevents the recruitment of RNA Pol II, preventing the

transcription of lgf2r. LncRNA can directly activate the downstream

genes by bridging the gap between the enhancer and promoter

regions (29). It is crucial for the transcriptional activation of Snail

that activating lncRNAs interact with enhancers and transcription

factors, be present inside the enhancer, and have enhancer activity.

Studies demonstrate that the binding of activating lncRNAs to the

Snail promoter region is mediated by the transcriptional co-

activation complex Mediator, acting in concert with CDK8-

catalyzed histone modifications to promote transcriptional

activation of Snail, underscoring the significance of activating

lncRNAs in human disease. lncRNA LNMAT2 is loaded into

exosomes through direct interaction with heterogeneous

ribonucleoprotein A2B1 (hnRNPA2B1) by direct interaction to
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exosomes and delivery to human lymphatic vessel endothelial

cells (HLEC); subsequently, LncRNALNMAT2 forms a triple

complex with the PROX1 promoter by inducing hnRNPA2B1-

mediated H3K4me3 and enhances PROX1 transcription, thereby

promoting lymphangiogenesis and lymph node metastasis.
3.3 LncRNAs participate in the selective
shear regulation process

Genetic information from DNA is translated into mature

mRNA by biological processes, including shearing and splicing;

this process does not function directly (30). More than 95% of gene

transcripts go through a process called selective splicing, which

makes biological gene expression more complex and plays a
FIGURE 1

Biogenesis and identification of exosomes. Fluid and extracellular constituents such as proteins, lipids, metabolites, small molecules, and ions can
enter cells, along with cell surface proteins, through endocytosis and plasma membrane invagination. The resulting plasma membrane bud
formation in the luminal side of the cell presents with outside-in plasma membrane orientation. Several proteins are implicated in exosome
biogenesis and include ESCRT proteins, as well as others that are also used as markers for exosomes (CD9, CD81, CD63, flotillin, ceramide, and Alix).
Exosome surface proteins include tetraspanins, integrins, immunomodulatory proteins, and more. Exosomes can contain different types of cell
surface proteins, intracellular proteins, RNA, DNA, amino acids, and metabolites (15).
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regulatory function in the growth and development of living things

(31). LncRNA participates in gene expression regulation by

constructing different variable splicing forms through splicing

factors, regulating miRNA precursor transcripts and upstream

differentially methylated regions (DMR) (32). In order to control

the phosphorylation level of the serine/arginine-rich (SR) protein

family, which controls mRNA splicing, lncRNAs have been shown

to function as regulatory factors (33). It has been demonstrated

that the lncRNA metastasis-associated lung adenocarcinoma

transcript 1 (MALAT1) associates with numerous proteins to

form a nuclear speckle that takes part in varied pre-mRNA

shearing (34). Vidisha et al. discovered that the lncRNA

MALAT1 selectively binds to the nuclear protein TDP-43,

resulting in the recruitment of the SR protein family to the

nucleus. The nuclear speckle was recruited by splicing factors like

TDP-43, which improved the SR protein family’s capacity to splice

and thus raised its level of phosphorylation.
4 Exosomal lncRNA offers excellent
clinical use potential

Specificity, as exosomes include particular indicators of tissue or

cellular origin, is one of the properties of exosome-derived lncRNAs

as biomarkers. Notably, the RNase activity is high in the

extracellular environment, but extracellular ncRNAs remain

relatively stable in plasma, suggesting that circulating ncRNAs

may be protected and circumvented from harsh conditions (35).

Exosome stability: Exosomes remain in a stable state in bodily

fluids, and RNA is not significantly exposed because of the
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protection of lipid bilayer membranes, where enzymes cannot

easily digest the contents of exosomes (36). Although the lncRNA

expression is low in some cells, it is highly expressed in their

secreted exosomes and correlates with the development of disease.

Exosomes are widely distributed in different body fluids. The

primary techniques for isolating exosomes are gradient density

centrifugation, differential ultracentrifugation, polymer

immunoprecipitation, gel exclusion separation, and membrane

affinity kits (37, 38). Exosomal lncRNAs combine the benefits of

exosomes and lncRNAs in a way that enhances the effectiveness of

treatment and the prognosis of patients (39). Exosomes can be

employed as specialized targets for treating disease. As a result, the

non-invasive detection of lncRNA produced from exosomes has the

potential to be exploited as a biomarker for future diagnosis and

therapy (40).
5 Correlation of exosomal lncRNA
with pregnancy

5.1 Endometrial tolerance

Fertilization, implantation, endometrial metaphase, placental

development, and birth are significant, complex, and irreversible

aspects of pregnancy in humans and other mammals (41).

Abnormalities or the failure of any one of these processes can

have an impact on the pregnancy’s outcome (9) (Figure 3). By

directly influencing embryonic development and regulating the

expression of important adhesion molecules, the endometrium

can leak exosomes into the uterine fluid and govern implantation

(42). h19 is a naturally occurring lncRNA that is widely produced,

developmentally controlled, and affects Let-7 target genes (43).

Reduced expression of the H19 gene and the ITG-3 protein was

found in the recurrent implantation failure (RIF) group, proving

that the expression of the lncRNAH19 is positively associated with

that of the ITG-3 protein, reducing endometrial tolerance and

ultimately causing implantation failure.lncRNATUNAR was

initially expressed in the human endometrium and is thought to

play a role in embryo implantation by controlling the attachment of

blastocysts to the endometrial epithelium as well as the proliferation

and ecdysis of embryonic stem cells. In healthy females, the

expression of lncRNATUNAR was increased in LH+2 and

downregulated in LH+7. Due to the cyclic expression of the

endometrium and its abnormal expression in RIF patients,

lncRNATUNAR may have a role in controlling the embryonic

implantation process. lncRNATUNAR was found to be increased in

LH+7 endometrium from RIF patients.
5.2 Promote the establishment of immune
tolerance at the maternal-fetal interface

The maternal-fetal interface, which is made up of extra-

embryonic tissues and the meconium, is a crucial component that

helps the mother’s immune system adapt to the fetus during

pregnancy (44). By triggering the JNK and p38 signaling
FIGURE 2

Conceptual summary of supragenomic regulation by lncRNAs Vast
and heterogeneous lncRNAs interact broadly with gene regulatory
machineries. By providing a supragenomic layer of control built upon
genomic and epigenomic processes, lncRNAs modulate many levels
of gene regulation, from transcription to protein modification (26).
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pathways in meconium macrophages via the exosomal lncRNA

Zinc finger E-box-binding homeobox 2 antisense RNA 1 (ZEB2-

AS1), trophoblast cells can create and maintain the maternal-fetal

immune tolerance microenvironment. This promotes the

polarization of macrophages toward the inhibitory M2 phenotype.

In order to support the orderly development of a typical pregnancy,

the induced M2 can also operate on trophoblast cells and encourage

their proliferation and differentiation at the same time. The decline

in recurrent spontaneous abortion patients’metaphase macrophage

M2 may be brought on by low expression of ZEB2-AS 1 in their

trophoblast exosomes. The preservation of a stable pregnancy may

be made possible by apoptosis, which may allow the human

placenta and fetal allografts to avoid a detrimental maternal

immune attack while pregnant and enjoy immunological

privileges in the uterine cavity (45). The results point to

functional FasL and TRAIL being secreted by human early and

term placentas, which help deliver apoptosis and shield the fetal

placenta from activated maternal immune cells. This suggests

placental exosome-mediated fetal immunological privilege.

Exosomes play a key role in preserving homeostasis at the

maternal-fetal interface throughout pregnancy and are a cutting-

edge instrument for intercellular communication (46).
5.3 Promote successful
embryo implantation

Embryo implantation, a crucial stage in pregnancy, is the

process by which the blastocyst interacts with the uterus in a

receptive condition while in an activated state before making close

contact with the endometrium (47). Mammalian reproduction

depends on the embryo’s successful implantation into the

mother (48). Placenta-derived exosome (PEXO) can be ingested

by epithelial and stromal cells in the meconium, changing the

regional immunological milieu, according to in vitro research. In

order to start and maintain pregnancy, cell-to-cell communication

at the maternal-fetal interface is crucial. Exosomes, which the

embryo secretes to help with implantation, enhance the embryo’s

natural adaptability and support successful implantation and the
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start of pregnancy, allowing the embryo to control its growth.

Before embryo implantation, extracellular vesicles of decidual

epithelial cells can activate the expression of Bcl2, Bax, Casp3,

and Tp53 genes in endometrial epithelial cell apoptosis pathways.

Exosomes primarily increase the expression of endometrial

epithelial cell adhesion-related proteins following embryo

implantation to aid subsequent adherence (49). Exosomes from

human ectodermal stromal cells can upregulate the production of

trophoblast calmodulin and so boost invasive activity in addition to

that of epithelial cells. They can also promote the creation of

endothelial cell tubes and may be crucial for angiogenesis. In

mouse trials, embryos treated with embryonic-derived exosomes

were able to increase implantation rates and improve implantation

ability. They could also improve blastocyst formation rate, embryo

quality, and future growth and development.
6 Exosomal lncRNA and
pathological pregnancy

Exosomes contain various proteins and nucleic acids, serving as

diagnostic markers for obstetric diseases with high specificity. The

study of exosome lncRNA can explore the pathogenesis of various

diseases in pathological pregnancy, screen biomarkers, and provide

a new basic basis for the diagnosis and treatment of diseases. Many

lncRNAs associated with tumor cell function may also play

significant regulatory roles for trophoblasts because placental

trophoblasts share characteristics with tumor cells during

proliferation, migration, and invasion (50). This is especially true

for pathways involved in angiogenesis, cell cycle regulation, cell

migration, and invasion (51). Through interacting with miR-216a-

5p and controlling recombinant hexokinase 2(HK2), LncRNA

MALAT1 prevents placental trophoblast growth, migration, and

invasion, as well as angiogenesis, cell cycle arrest, and apoptosis. In

addition to the syncytial trophoblast-specific protein PLAP and the

trophoblast-specific protein human leukocyte antigen G(HLAG),

PEXO is abundant in the exosomal marker proteins CD9, CD63,

and CD81 (52–54). These two proteins can be separated to form

PEXO in maternal peripheral blood, and the quantity of PEXO can
FIGURE 3

Exosomes and exosomal noncoding RNAs throughout human gestation (9).
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be used to forecast fetal growth and ascertain the success of a

pregnancy. Exosomes carry a variety of payloads in maternal

peripheral blood, and histological study of these exosomes in

various disorders has shown that changes in their type and

amount may negatively impact the function of target cells (55).
6.1 Exosomal lncRNA and Preeclampsia

6.1.1 Exosomes participate in the occurrence
of PE

A key contributor to increased maternal and neonatal mortality,

Preeclampsia is a pregnancy problem that manifests beyond 20

weeks of gestation with proteinuria, hypertension, or other systemic

damage (56–60). To lower maternal and neonatal mortality and

enhance mother and baby health, early Preeclampsia diagnosis is

crucial (61). The number of placental exosomes, changes in their

composition, and their impact on the maternal immune system are

thought to be the key ways that PEXO contributes to Preeclampsia

pathogenesis (62).

Preeclampsia patients exhibit decreased expression of functional

proteins such as matrix metalloproteinase (MMP) 2 and MMP9, as

well as increased levels of phosphatidylserine (PS) and lower levels of

phosphatidic acid and phosphatidylglycerol in exosomes when

compared to the normal pregnancy group (63, 64). The

remodeling of spiral arteries, fetal growth, superficial placentation,

reduced blood flow, and ultimately the development of Preeclampsia

can all be impacted by decreased expression of any one of these

proteins. Human umbilical cord mesenchymal stem cells

(HUCMSCs)- exosomes can increase IL-10, TNF-, IFN-, and the

local recruitment of NK cells and macrophages in utero, modulating

the immunological balance at the maternal-fetal plane and indirectly

affecting pregnancy outcomes. Compared to women who had

normal pregnancies, the placentas of Preeclampsia patients had a

significant number of differently expressed lncRNAs, according to

research using lncRNA microarray technology. They were

implicated in the development of Preeclampsia by interfering with

trophoblast cell activity, among other things (65).

6.1.2 Decreased expression of exosomal lncRNA
in Preeclampsia

A lncRNA called MALAT1 is linked to placental implantation

and penetration (66). When compared to healthy pregnant women,

Preeclampsia sufferers’ placental tissues express less of the lncRNA

MALAT1 (67). When lncRNAMALAT1 levels are low, EMT is

induced with less trophoblast invasion, migration, and

angiogenesis, which can result in a higher uterine spiral artery

remodeling injury (68). According to research, lncRNA MALAT1

levels in plasma exosomes from pregnant women with Preeclampsia

were positively correlated with vascular endothelial growth factor

(VEGF) expression levels. This suggests that downregulating

lncRNA MALAT1 levels in plasma exosomes may speed up the

progression of Preeclampsia by controlling VEGF expression,

which in turn suppresses angiogenesis (69). Wu et al. discovered

that lncRNAMALAT1 could bind to miR-206, prevent the latter

from degrading IGF-1 mRNA, boost IGF-1 expression, and activate
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the PI3K/AKT signaling pathway, which in turn encouraged

trophoblast migration and invasion (70).

Preeclampsia patients had a lower placental expression of the

short nucleolar RNA host gene 22 (SNHG22) than healthy pregnant

women did. By interacting with miR-128-3p to encourage

PCDH11X expression and open up downstream pathways,

lncRNASNHG22 can have a role in Preeclampsia. In comparison

to normal pregnant placental tissues, the expression of lncRNA

XIST was found to be considerably reduced in the placentas of

Preeclampsia patients. lncRNA XIST is involved in the development

of Preeclampsia by regulating the proliferation and invasive ability

of trophoblast HTR-8/SVneo through miR-135b. The lncRNA

TUG1 was downregulated in the placental tissue of Preeclampsia

patients compared to healthy pregnant women, and this

downregulation decreased cell proliferation, migration, and

invasion while promoting trophoblast death. While TUG1

downregulation boosted the expression of the enhancer of zeste

homolog 2 (EZH2) and decreased the levels of the Rho family

GTPase 3 (RND3) in Preeclampsia, it prevented remodeling of the

uterine spiral artery. Studies have shown that downregulating lnc-

dendritic cell (DC), a lncRNA expressed in DC, prevents monocytes

from differentiating into DC, diminishing the inhibitory effect of

DC on Treg, encouraging the proliferation of Th1 cells in the

meconium of Preeclampsia patients, and ultimately promoting

Preeclampsia (71, 72).
6.1.3 Increased expression of exosomal
lncRNA in Preeclampsia

Compared to normal pregnancies, the placenta of Preeclampsi

patients has higher levels of lncRNAH19 expression (73). In the

human choriocarcinoma cell line JEG-3 and the human

choriocapillaris trophoblast cell line HTR-8/SVneo, lncRNAH19

regulates the PI3K/Akt/mTOR pathway and boosts autophagy and

invasiveness (74). Moreover, the lncRNAH19 gene encodes miR-

675, which can suppress cell growth by lowering the expression of

the nodal modulator 1 (NOMO1) in JEG-3 cells (75). In the

placental tissues of Preeclampsia patients, lncRNA GAS5

expression is elevated, and its level rises as the severity of the

disease does as well (76). The development of atherosclerosis can be

aided by the lncRNA GAS5, which can encourage the death of

vascular endothelial cells as well as aberrant proliferation and

migration of vascular smooth muscle cells. The degree to which

lncRNAGAS5 was expressed in Preeclampsia patients was inversely

correlated with spiral artery lumen area and positively correlated

with spiral artery wall thickness, suggesting that lncRNA GAS5 may

be connected to the process of placental spiral artery recasting.

Many lncRNAs have an impact on trophoblast cells’ physiological

processes, which are intimately associated with the development of

Preeclampsia and include migration, invasion, proliferation, and

apoptosis (77). Determining the regulatory roles that Preeclampsia-

related lncRNAs play in various pathways can therefore assist in

clarifying the interactions that contribute to Preeclampsia

pathophysiology, identify essential molecules for diagnosis and

therapy, and provide potential targets for Preeclampsia

prevention and treatment (78).
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6.2 Exosomal lncRNA and gestational
diabetes mellitus

6.2.1 Exosomal lncRNA’s role in the emergence
of gestational diabetes mellitus

The condition known as gestational diabetes mellitus is

characterized by aberrant glucose metabolism in the body, which

is brought on by insulin insufficiency and hormonal changes during

pregnancy (79). In extreme cases, gestational diabetes mellitus can

result in maternal and neonatal death. The incidence of gestational

diabetes mellitus is increasing as people’s lifestyles and diets change

(80). Research has revealed that gestational diabetes mellitus is a

risk factor for cardiovascular disease and type 2 diabetes (T2DM),

which can raise the risk of immediate or long-term issues in

expecting mothers and children and gravely jeopardize the

physical and mental health of women and neonates (81, 82).

Insulin resistance (IR), one of the primary causes of gestational

diabetes mellitus, has a complex etiology and unknown

pathophysiology (83, 84). Hence, a contemporary topic that

requires attention is the quest for biomarkers with high sensitivity

and specificity for the early diagnosis and treatment of gestational

diabetes mellitus as well as the maternal postpartum state (85).

Exosome levels and biological activity were shown to vary with

gestational stage in pregnant women with gestational diabetes

mellitus and normal glucose tolerance (NGT) (86). When

matched for gestational weeks, the concentration of placental

exosomes in the plasma of gestational diabetes mellitus patients is

significantly higher than that of healthy pregnant women and may

positively correlate with baby weight. Between 22 and 28 weeks of

gestation, the plasma exosomes mostly displayed altered expression

of proteins related to insulin sensitivity, including CAMK2b and

pregnancy-as-sociated plasma protein A (PAPPA). As a result,

gestational diabetes mellitus patients’ plasma exosomes play a

significant role in controlling glucose homeostasis during

pregnancy (87).

6.2.2 Decreased expression of exosomal lncRNA
in gestational diabetes mellitus

An endogenous lncRNA called SNHG17 can bind and inhibit

the transcription of miRNAs, which control the transcription and

expression of target genes and contribute to the onset and

progression of gestational diabetes mellitus (88). Research

suggests that lncRNASNHG17, which is connected to vascular

endothelial cell survival and angiogenesis, is abnormally

underexpressed in the peripheral blood of T2DM patients (89).

Serum lncRNASNHG17 levels are significantly lower in pregnant

women with gestational diabetes mellitus than in healthy pregnant

women, and they are correlated with fasting blood glucose (FBG),

glycosylated hemoglobin, type A1c (HbA1c), and Homeostasis

model assessment(HOMA)-IR negatively and HOMA-b
positively. This suggests that lncRNASNHG17 may be involved in

the pathological lesion process of gestational diabetes mellitus by

influencing these variables (90). In gestational diabetes mellitus

patients, the expression level of lncRNAMALAT1 was discovered to

be correlated with the disease severity and to have a strong negative
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relationship with the maternal BMI and FBG at delivery (91).

Compared to healthy pregnant women, gestational diabetes

mellitus patients had significantly lower serum levels of the

lncRNAMALAT1 gene (92). By increasing miR-155-5p

expression, suppressing IGF2 expression, enhancing trophoblast

cell survival, migration, and invasion, and reviving the biological

activity of high glucose-induced trophoblast cells, in vitro cellular

assays demonstrated that silencing lncRNAMALAT1 plays a role in

the development of gestational diabetes mellitus (93).

6.2.3 Increased expression of exosomal lncRNA
in gestational diabetes mellitus

Maternally expressed gene 3 (MEG3) has been linked to abnormal

placental expression, trophoblast migration, and apoptosis. It also has

an impact on the expression of the NF-B, caspase-3, and Bax proteins

in the placenta. Human umbilical vein endothelial cells (HUVEC) from

gestational diabetes mellitus have elevated MEG3 expression, which

affects fetal endothelial function through the PI3K signaling pathway

(94). MEG3 overexpression, meanwhile, was able to prevent human

villous trophoblast HTR-8/SVneo from proliferating, migrating, and

invading while inducing apoptosis, indicating that MEG3 may be

implicated in the development of gestational diabetes mellitus and

playing a significant role (95). The conserved family SNX member

sortingnexin17 (SNX17) is crucial for the endocytic, intracellular

transport of cell surface proteins. It is crucial for endocytosis and the

intracellular activities that involve cell surface proteins. It was

discovered that lncRNA-SNX17 was elevated and miR-517a was

downregulated in the blood of gestational diabetes mellitus patients

and that the two together were more useful for the diagnosis of

gestational diabetes mellitus than the single index test (96). Both the

lncRNA P21 and the lncRNA H19 were shown to be elevated in the

serum and placental tissues of gestational diabetes mellitus patients.

These two lncRNAs may cooperate to promote the development of

gestational diabetes mellitus and correlate with newborns’ birth

weights. The incidence of gigantic newborns in gestational diabetes

mellitus patients was connected with serum lncRNA HOXA transcript

expression at the distal tip (HOTTIP), which was considerably

increased in gestational diabetes mellitus patients. Both miR-21 and

lncRNA HOTTIP were discovered to be abnormally expressed in

gestational diabetes mellitus and connected with a poor pregnancy

outcome, which could be used as a prediction for early identification of

gestational diabetes mellitus (97). In order to identify other potential

targets for the therapy of gestational diabetes mellitus, we will keep

screening exosomal lncRNAs strongly associated with IR and glucose

metabolism and investigate their potential participation in regulatory

networks (98, 99).
6.3 Exosomal lncRNA and recurrent
spontaneous abortion

6.3.1 The emergence of recurrent spontaneous
abortion is intimately related to exosomal lncRNA

Two or more consecutive spontaneous abortions constitute the

incidence of recurrent spontaneous abortion (100). Early superficial
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placental implantation, poor trophoblast migration and invasion,

and defective placental microvascular formation are three

significant pathophysiological causes for the development of

recurrent spontaneous abortion, all of which are becoming more

common (101, 102). Exosomal lncRNAs participate in the

regulation of trophoblast invasive capacity, the expression of

cyclin-dependent kinases (CDKs), and various physiological

processes like lipid metabolism and protein synthesis. These

actions have an impact on early embryonic implantation.

Exosomes produced by mesenchymal stem cells can operate on

trophoblast cells to cause them to secrete MMP, which in turn

makes trophoblasts more invasive. By being endocytosed by

trophoblast cells, exosomes from metaphase macrophages can

carry out the corresponding biological action (103). When we co-

cultured exosomes from patients with unexplained recurrent

spontaneous abortion (URSA) and patients with normal early

pregnancy abortion with trophoblast HTR-8/SVneo cells, we

discovered that the number of cells migrating in URSA patients

was significantly lower than that in patients with normal early

pregnancy abortion. Both the number of cells migrating and the

viability of the cells were much lower in URSA patients. This shows

that meconium macrophages can control trophoblast cells’

biological behavior by secreting exosomes, leading to embryonic

arrest and playing a role in the emergence of URSA (104).

The regulation of embryonic development, endometrial

tolerance, trophoblast function, stimulation of inflammation,

placental vascular development, and the regulation of embryonic

stem cells are the key ways that lncRNAs contribute to miscarriage

(105, 106). It was discovered that the p53-regulated lncRNA

lncPRESS1 safeguards embryonic stem cells by inhibiting the

function of the silent information regulator (SIRT) 6 (107).

Meanwhile, lncKdm2b stimulates the production of transcription

factor zinc finger and BTB structural domain protein 3, promoting
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early embryonic development and embryonic stem cell self-renewal

(108). Small interfering RNA-silenced mouse embryonic stem cells

may suffer harm or even miscarry if appropriate lncRNAs are

administered (109). LncRNA screening before embryo implantation

can lower the chance of a failed transfer and miscarriage since

lncRNAs play a significant role in controlling embryonic stem cell

development (110, 111).

6.3.2 Exosomal lncRNA offers fresh
approaches to identifying and treating
recurrent spontaneous abortion

Defective gene expression and aberrant cell proliferation are

brought on by the increased expression of LncRNAH19 in recurrent

spontaneous abortion patients’ embryonic tissues (112). Through its

binding to let-7, lncRNA H19 inhibits ITG3 expression. This has an

impact on how cells adhere to the basement membrane and lowers

endometrial tolerance. As a result, embryos are lost (113). Apoptosis

and iron death are promoted by IncRNAH19 by downregulating the

expression of Bax and upregulating the expression of Bcl2 and GPX4

in recurrent spontaneous abortion. Nuclear enriched transcript 1

(NEAT1) and MALAT levels in recurrent spontaneous abortion

patients are much lower than in healthy women, and trophoblast cell

proliferation, migration, invasiveness, and apoptosis were all reduced

when the MALAT1 gene was knocked down (114). The human

plasmacytoma variant translocation 1 (PVT1) promoter is directly

impacted by lncRNA regulation, which also lowers the ability of

trophoblast cells to invade (115).

Patients with recurrent spontaneous abortion had increased

villous tissue LINC01088 expression. ARG1 can be bound by

LINC01088, which is mostly found in the nucleus of trophoblast

cells (116). This increases ARG1’s protein stability and suppresses the

expression of NOS. When LINC01088 is overexpressed, ARG1’s

protein stability is improved, which in turn lowers the expression
TABLE 1 The expression of exosomal lncRNAs in pathological pregnancy.

Type of disease Exosomal lncRNAs Expression increases/decreases References

Preeclampsia SNHG22 decreases (77)

Preeclampsia MALAT1 decreases (67)

Preeclampsia HIF1A-AS1 decreases (77)

Preeclampsia SNHG12 decreases (77)

Preeclampsia MVIH decreases (77)

Preeclampsia GHET1 decreases (77)

Preeclampsia DANCR decreases (77)

Preeclampsia SNHG5 decreases (77)

Preeclampsia TUG1 decreases (77)

Preeclampsia lnc-DC decreases (72)

Preeclampsia H19 increases (73)

Preeclampsia GAS5 increases (76)

Preeclampsia HIF1A increases (77)

(Continued)
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of NOS and lowers NO expression. The JNK/P38 MAPK signaling

pathway is further activated by the decreased NO, which impairs

trophoblast cell proliferation, invasion, and migration and

contributes to the development of recurrent spontaneous abortion.

The lnc-SLC4A1-1 gene was discovered to be significantly expressed

in the villi of URSA patients and to be able to trigger an

immunological response via the NF-B/CXCL8 axis (117). In

peripheral blood mononuclear cells from pregnant women with

URSA, the expression levels of the lncRNAs SNHG5 and KLF4

were aberrant, and both of these were risk factors for the development

of URSA (118, 119). We discovered that the lncRNA types HOTAIR

and SNHG7 are related to recurrent spontaneous abortion

pathogenesis and control trophoblast proliferation, apoptosis,
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invasion, and chorionic villus angiogenesis (120, 121). These

investigations revealed prospective biomarkers and therapeutic

targets, offering fresh perspectives on the early detection and

management of recurrent spontaneous abortion (122) (Table 1).
Conclusion

Exosomal lncRNAs have a wide range of potential for investigation

(123). Exosomal lncRNAs have the power to control a wide range of

cellular biological processes, including the recasting of the helical

arteries, the inflammatory response, immunological control, cellular

metabolism, and autophagy (124–126). Exosomal lncRNAs are more
TABLE 1 Continued

Type of disease Exosomal lncRNAs Expression increases/decreases References

Preeclampsia SH3PXD2A-AS1 increases (77)

Preeclampsia LINC01410 increases (77)

Preeclampsia INHBA-AS1 increases (77)

Preeclampsia RPAIN increases (77)

Preeclampsia TINCR increases (77)

Gestational diabetes mellitus MALAT1 decreases (92)

Gestational diabetes mellitus PVT1 decreases (98)

Gestational diabetes mellitus SNHG17 decreases (90)

Gestational diabetes mellitus MEG3 increases (94)

Gestational diabetes mellitus SNX17 increases (96)

Gestational diabetes mellitus P21 increases (98)

Gestational diabetes mellitus H19 increases (98)

Gestational diabetes mellitus HOTTIP increases (97)

Gestational diabetes mellitus p3134 increases (98)

Gestational diabetes mellitus ANRIL increases (98)

Gestational diabetes mellitus AC092159.2 increases (98)

Recurrent spontaneous abortion NEAT1 decreases (122)

Recurrent spontaneous abortion MALAT decreases (114)

Recurrent spontaneous abortion SNHG7 decreases (120)

Recurrent spontaneous abortion ANRIL decreases (122)

Recurrent spontaneous abortion PVT1 decreases (122)

Recurrent spontaneous abortion HOTAIR decreases (121)

Recurrent spontaneous abortion SNHG5 decreases (119)

Recurrent spontaneous abortion H19 increases (113)

Recurrent spontaneous abortion MEG8 increases (122)

Recurrent spontaneous abortion LINC01088 increases (116)

Recurrent spontaneous abortion SLC4A1-1 increases (117)
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durable and less prone to degradation than serum-derived lncRNAs,

allowing them to move unaltered from their “origin” to their

“destination” and carry out their intended functions (127–130).

Exosomal lncRNAs at the maternal-fetal interface have been shown

in numerous studies to play an essential role in pregnancy-specific

illnesses and to support embryo implantation andmaintenance. Hence,

it is necessary to address the issue of how to harvest exosomes that

more accurately depict the cellular environment in vivo (126, 131, 132).

Pregnancy-specific disorders have been linked to abnormal changes in

placenta-derived exosomes seen in the peripheral blood of pregnant

women, although larger sample sizes are still required to confirm their

utility as biomarkers for clinical testing. Exosomes can also forecast

embryonic developmental potential, and shortly, using exosomes as

markers in clinical testing will be a promising and significant

noninvasive test (133, 134).
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ESE early-sorting endosome

MVBs multivesicular bodies

ESCRT endosomal sorting complex required for transport

PLAP placental-like alkaline phosphatase

PRC2 Polycomb repressive complex 2

HOTAIR HOX antisense intergenic RNA

hnRNPA2B1 heterogeneous ribonucleoprotein A2B1

HLEC human lymphatic vessel endothelial cells

DMR differently methylated regions

SR serine/arginine-rich

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

PCR polymerase chain reaction

RIF recurrent implantation failure

ZEB2-AS1 Zinc finger E-box-binding homeobox 2 antisense RNA 1

PEXO Placenta-derived exosome

HK2 recombinant hexokinase 2

HLAG human leukocyte antigen G

MMP matrix metalloproteinase

PS phosphatidylserine

HUCMSCs Human umbilical cord mesenchymal stem cells

VEGF vascular endothelial growth factor

SNHG22 short nucleolar RNA host gene 22

EZH2 enhancer of zeste homolog 2

RND3 Rho family GTPase 3

DC dendritic cell

NOMO1 nodal modulator 1

T2DM diabetes mellitus type 2

IR insulin resistance

NGT normal glucose tolerance

PAPPA pregnancy-associated plasma protein A

FBG fasting blood glucose

HbA1c glycosylated hemoglobin, type A1c

HOMA homeostasis model assessment

MEG3 maternally expressed gene 3

HUVEC human umbilical vein endothelial cells

SNX17 sorting nexin 17

HOTTIP HOXA transcript expression at the distal tip

CDKs cyclin-dependent kinases

URSA unexplained recurrent spontaneous abortion
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SIRT silent information regulator

NEAT1 nuclear enriched transcript 1

PVT1 plasmacytomvariant translocation 1
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