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Lineage plasticity and treatment
resistance in prostate cancer:
the intersection of genetics,
epigenetics, and evolution
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Christopher E. Wee1, Shilpa Gupta1 and Omar Y. Mian1

1Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States, 2Glickman Urologic
Institute, Cleveland Clinic, Cleveland, OH, United States, 3Department of Pathology, Robert J.
Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
Androgen deprivation therapy is a cornerstone of treatment for advanced

prostate cancer, and the development of castrate-resistant prostate cancer

(CRPC) is the primary cause of prostate cancer-related mortality. While CRPC

typically develops through a gain in androgen receptor (AR) signaling, a subset of

CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and

hormonal changes that promote cellular plasticity, leading to AR-indifferent

disease, with neuroendocrine prostate cancer (NEPC) being the quintessential

example. NEPC is enriched following treatment with second-generation anti-

androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and

PTEN expression andMYCN and AURKA amplification appear to be key drivers for

NEPC differentiation. Epigenetic modifications also play an important role in the

transition to a neuroendocrine phenotype. DNA methylation of specific gene

promoters can regulate lineage commitment and differentiation. Histone

methylation can suppress AR expression and promote neuroendocrine-

specific gene expression. Emerging data suggest that EZH2 is a key regulator

of this epigenetic rewiring. Several mechanisms drive AR-dependent castration

resistance, notably AR splice variant expression, expression of the adrenal-

permissive 3bHSD1 allele, and glucocorticoid receptor expression. Aberrant

epigenetic regulation also promotes radioresistance by altering the expression

of DNA repair- and cell cycle-related genes. Novel therapies are currently being

developed to target these diverse genetic, epigenetic, and hormonal

mechanisms promoting lineage plasticity-driven NEPC.
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1 Introduction

In American men, prostate cancer (PCa) is among the most

common malignancies and is projected to become the second

leading cause of cancer related death in 2023, accounting for an

estimated 29% of total new cases and 11% of total cancer related

deaths (1). A rare but particularly lethal subtype is neuroendocrine

PCa (NEPC), with a median survival of 7 months following

diagnosis (2). The prevailing hypothesis behind the development

of NEPC is the transdifferentiation of an adenocarcinoma to a

neuroendocrine (NE) lineage (3). Generally, this NE phenotype is

positive for markers of other high-grade NE carcinomas, such as

chromogranin A(CHGA), neuron-specific enolase (NSE),

synaptophysin (SYP), and CD56, and negative for luminal

prostate differentiation markers (4). The transition to a NE

phenotype is strongly associated with lineage plasticity. Lineage

plasticity refers to the ability of cells to transition from one

committed development program to another, allowing for

multiple, varying phenotypes to arise from a singular genotype in

response to environmental stimuli (5). This property is often

maintained in cancer cells and is exploited to promote

opportunistic adaptation and progression with plastic phenotypes

being enriched in advanced stages of cancer. Therefore, lineage

plasticity allows cancer cells to derive therapy resistance by

reprogramming to a phenotype that is indifferent towards cellular

pathways being targeted by therapy (3). Indeed, the lineage

transition to a NE subtype is one mechanism by which PCa

evades androgen receptor (AR)-targeting treatment by shifting its

cellular phenotype from an AR-dependent adenocarcinoma to an

AR-indifferent NE or small-cell carcinoma.

Unique to PCa is its reliance on the AR to regulate tumor

progression via transcriptional regulation of AR targeted genes (6)

and the activation of AR-targeted signaling pathways (7). Targeting

the AR driven signaling cascade has proven effective in treating PCa

(8) and has led to the emergence of androgen deprivation therapy

(ADT) as a mainstay of treatment for locally advanced and

metastatic PCa (9, 10). However, disease control using ADT alone

is limited, and resistance is common, typically occurring after an

average of 2-3 years of treatment (11). Recurrent tumors, known as

castration-resistant prostate cancer (CRPC), are typically more

aggressive, proliferating despite castrate levels of androgen. The

emergence of a CRPC subtype is thought to be driven via androgen-

dependent and androgen-independent mechanisms. The majority

of CRPCs retain a degree of dependency on the AR and androgen

signaling but escape ADT by a variety of mechanisms, including

increased AR expression, expression of mutant AR variants, AR

splice variant (AR-Vs) expression, and intratumoral steroid

hormone synthesis (8). However, increased usage of AR-targeting

treatments has been associated with an increased recognition of

androgen-independent CRPC variants, with NEPC historically

being the prototypic example of AR (-) CRPC (12, 13).

Additionally, the AR’s role as a differentiation factor suggests its

loss may play a significant role in lineage plasticity between CRPC

subtypes (14), although numerous other factors have been

implicated in driving PCa lineage plasticity. Notably, the
Frontiers in Endocrinology 02
development of CRPC may also promote resistance to

radiotherapy (RT) as molecular pathways governing the transition

to CRPC are often implicated in radioresistance (15–18). In this

review, we discuss the genetic and epigenetic drivers of PCa lineage

plasticity and link emergent phenotypes to treatment resistance.

Specifically, we focus on the emergence of NEPC following ADT

and the implications NE and other AR-indifferent phenotypes have

on ADT and RT resistance.
2 Molecular mechanisms driving
treatment emergent lineage plasticity

2.1 AR

For decades, androgens have been implicated in driving PCa

development and progression through their interactions with the

AR, a ligand-dependent nuclear transcription factor (6). With the

androgen axis playing such a significant role in tumor progression,

treatment plans frequently involve suppressing the androgen

signaling axis via surgical or medical castration (19, 20). Several

categories of modern ADT drugs can be used to accomplish medical

castration, including luteinizing hormone-releasing hormone

agonists/antagonists, AR antagonists, and androgen synthesis

inhibitors (19, 20). First-generation AR antagonists were

introduced in the late 1980s and include flutamide, nilutamide,

and bicalutamide (21–23). These drugs are non-steroidal anti-

androgens that act as selective competitive antagonists (22).

Initial treatment with first-generation AR agonists is effective at

reducing tumor burden and decreasing serum prostate-specific

antigen levels; however, within a few years, many patients

receiving ADT manifest early signs of biochemical progression,

signaling the emergence of CRPC (11). Despite its classification, the

majority of CRPC is still AR-dependent. As such, treatment with

second-generation anti-androgens, such as enzalutamide,

apalutamide, and darolutamide, have demonstrated clinical

benefit, though typically for a limited duration. Treatment of

CRPC with enzalutamide increased time to progression by 8.3

months in the AFFIRM trial, 11.2 months in the PREVAIL trial,

and 19.4 months in the TERRAIN trial (21). Further progression

following second-generation anti-androgen treatment can be

mediated by the activation of the AR through secondary

alterations to the AR gene, AR bypass or crosstalk mechanisms,

or other means. However, increasing evidence suggests that a subset

of CRPC tumors evade potent hormone therapy through a loss

rather than a gain in AR function (24). These androgen-indifferent

tumors become less dependent on AR signaling, a process

associated with lineage plasticity, loss of luminal markers, and

acquisition of NE features (24). Moreover, this AR-independent

state is defined by a reduced reliance on the AR signaling pathway

to promote tumor progression and the activation of other factors

that promote cell survival such as MYCN, AURKA, ONECUT2,

and BRN2 (3, 25, 26). Recently, it has been clarified that lineage

plasticity is not a binary switch but occurs on a continuum with

identifiable, preexisting clonal subsets. These subsets include AR
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activity-low tumors that exhibit decreased AR signaling despite

continued AR expression, amphicrine tumors that express an active

AR and NE program, double negative tumors that lack both AR and

NE gene expression, and finally, NEPC tumors that lack AR

expression and express a NE phenotype (12). Among these NE-

negative subsets, NEPC is the dominant form, accounting for as

much as 10-20% of CRPC (27, 28). Furthermore, NEPC incidence is

expected to increase with widespread use of modern androgen

receptor pathway inhibitors (ARPIs) (28).
2.2 RB1, TP53, and PTEN

Recent genomic analysis has revealed several alterations

enriched in NEPC. Mutations in the tumor suppressor genes RB1,

TP53, and PTEN are individually among the most common genetic

alterations in PCa. However, the concomitant loss of more than one

of these critical factors is enriched in the NE subtype (4, 29, 30). For

instance, concurrent RB1 and TP53 loss was present in 53.3% of

NE-CRPC biopsies, compared with 13.7% of castration-resistant

adenocarcinoma (4). Emerging data places special emphasis on the

loss of RB in promoting phenotypic plasticity towards NEPC (31).

Interestingly, aggressive NE tumors from other organs also exhibit

alterations in these tumor suppressor genes (32). Investigation of a

combined knockdown of RB1 and TP53 in PTEN-null LNCaP cells

resulted in reduced AR expression, enzalutamide resistance, and
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activation of a NEPC program. Additionally, SOX2 knockdown

stopped the lineage plasticity program induced by RB1/TP53 loss,

signaling the importance of lineage plasticity related transcription

factors in driving the NEPC transition (33). In vivo comparison

between PTEN loss (SKO), PTEN and RB1 loss (DKO), and PTEN,

RB1, and TP53 loss (TKO) has demonstrated lower AR expression

and activation of NEPC programming in the DKO and TKO

groups. Notably, the DKO and TKO tumors exhibited increased

expression of SOX2, a key downstream effector for NEPC lineage

plasticity (34). Moreover, loss of RB1, TP53, and PTEN reportedly

induce NE transdifferentiation by upregulating NE program-related

transcription factors, such as SOX2, SOX11, and EZH2 (33–35).

Evidently, RB1, TP53, and PTEN loss are important factors in the

transition to NEPC; however, evidence suggests that these genetic

alterations alone are insufficient to promote lineage plasticity. For

instance, there are numerous instances of NEPC tumors not

exhibiting these mutations, and non-NE CRPC tumors have been

observed exhibiting these genetic alterations (4, 36). Moreover,

RB1/TP53 knockouts of PTEN-deficient LNCaP cells resulted in

decreased AR transcriptional activity but did not promote an

increase of NEPC gene expression. This suggests necessity

without sufficiency and that other reprogramming factors absent

from these analyses may be required to induce a NE phenotype in

PCa (36). These and other alterations that can be considered

hallmarks of phenotypic lineage plasticity in prostate cancer are

detailed schematically in Figure 1.
FIGURE 1

Hallmarks of prostate cancer phenotypic plasticity.
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2.3 MYCN and AURKA

The phenotypic transition that leads to NEPC is also frequently

associated with amplification of MYCN and AURKA, with

concurrent amplification of these two genes occurring in 40% of

NEPC compared to 5% of prostate adenocarcinoma (37).

Preclinical models have found MYCN to be a key driver of NEPC

phenotypes (37–39). MYCN overexpression in models with PTEN

loss or AKT overexpression resulted in tumors with low AR

expression and signaling, upregulation of NE markers, and

resistance to AR targeting therapies (38, 39). Moreover, these

tumors, along with MYCN overexpressing cell lines, demonstrated

enriched expression of embryonic stem cell and active epithelial-

mesenchymal transition (EMT) program gene sets (38, 39).

Additionally, MYCN can be stabilized by dimerization with its

allosteric protein partner, AURKA (40). Although pharmacological

inhibition of MYCN is difficult, AURKA inhibitors (E.g., alisertib,

CD532) can be used to indirectly target MYCN (38, 41, 42). MYCN

protein levels decreased significantly in response to the anti-tumor

activities of AURKA inhibitor treatment (39). Additionally, a

mechanistic link between mutated TP53 and elevated AURKA

levels has been described (43). Collectively these data point to

MYCN as a central mediator of cellular plasticity during

NE differentiation.
2.4 FOXA1 and FOXA2

Changes in the expression of the Forkhead Box A (FOXA)

family of proteins, especially FOXA1 and FOXA2, have been

implicated in NEPC development. The FOXA family is a group of

pioneer transcription factors that can access condensed chromatin,

facilitating the local binding of other regulatory factors (44).

FOXA1 expression has been shown to be transiently increased in

localized PCa but is lowered following progression to CRPC (45, 46)

and further decreased in NEPC (47). Loss of FOXA1 promotes NE

differentiation by upregulating CXCL8 and CXCL8-activated

MAPK/ERK phosphorylation. Moreover, FOXA1 is reported to

play a reprogramming role in lineage conversion (48), with FOXA1

mutations altering its pioneering function and perturbing normal

luminal epithelial cell differentiation programs (49). FOXA1

interacts with the TET1 protein to mediate local DNA

demethylation and histone 3 lysine 4 methylation (50). On the

other hand, FOXA2 overexpression has been reported in genetically

engineered mouse models of NEPC, a result consistent with clinical

NEPC specimens (51, 52). However, FOXA2 expression is not

detected in prostate adenocarcinoma samples (51). FOXA2

induces prostate adenocarcinoma-to-NE lineage transition

through cooperation with HIF1 and REST (53, 54), and FOXA2

knockdown reverses this process. Interestingly, FOXA2 has been

shown to positively regulate KIT expression in NEPC (55), a

receptor tyrosine kinase that is positively correlated with NEPC

score and SYP, ENO2, and EZH2 expression (55, 56). Inhibiting the

KIT pathway resulted in NEPC growth suppression in both human
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and mouse NEPC, suggesting the potential utility of targeting KIT

in the treatment of NEPC (55). Nevertheless, a better understanding

of the roles FOXA1/FOXA2 hold in regulating lineage plasticity and

their crosstalk with epigenetic modulators is still key to discover

new therapeutic strategies.
3 Epigenetic dysregulation affecting
lineage plasticity in PCa

Epigenetic modifications (e.g., DNA methylation, histone

modification, and chromatin remodeling) are critical regulators of

transcriptional states, are known drivers of carcinogenesis, and are

tightly associated with NEPC lineage plasticity. Despite similarities

in their genomic profiles, NEPC and prostate adenocarcinoma have

markedly distinct epigenetic landscapes (4, 37, 57). Notably, AR

signaling loss is strongly associated with epigenetic reprogramming

and is essential for maintaining luminal cell differentiation in the

prostate (58). Moreover, significant evidence demonstrates the

importance of epigenetics in the transition to a NEPC phenotype.

For instance, epigenetic dysregulation in NEPC has been reported

in pathways involving cell-cell adhesion, development, epithelial-

mesenchymal transition (EMT), and stem cell regulation and

maintenance (4).
3.1 DNA methylation

DNA methylation is the most widely studied epigenetic

modification and has implications in carcinogenesis, therapy

resistance, and lineage plasticity. DNA methylation refers to the

covalent attachment of a methyl group to DNA cytosine residues,

forming 5-methylcytosine (5mC). De novo DNA methylation is

catalyzed by the DNA methyltransferases (DNMT) DNMT3a and

DNMT3b, while maintenance DNA methylation is catalyzed by

DNMT1 (59). Inversely, DNA demethylation is mediated by ten

eleven translocation (TET) enzymes. DNA methylation primarily

occurs at CpG-rich regions called ‘CpG islands.’ Notably, CpG

islands are preferentially located in the 5’ UTR of genes and make

up approximately 60% of human gene promoters. Methylation of

gene promoters predominantly results in gene silencing by either

preventing or promoting the recruitment of regulatory elements

(60). Global DNA hypomethylation is frequently observed in cancer

and can lead to genomic instability and proto-oncogene activation

(60). DNA hypomethylation is postulated to occur early in the

development of many types of cancer, driving carcinogenesis.

However, PCa breaks away from this common view, instead

occurring late in disease progression and likely is involved in the

formation and propagation of metastases (61). Site-specific CpG

island hypermethylation leading to aberrant gene silencing is

frequently observed in PCa (60, 62). DNA methylation is known

to disrupt pathways involved in DNA damage repair, hormonal

response, tumor-cell invasion and metastasis, and cell cycle control

(63, 64). Additionally, DNA methylation can regulate lineage
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plas t ic i ty and therapy res i s tance through promoter

hypermethylation of CRIP1, FLNC, RASGRF2, RUNX2, and

HS3ST2. These genes are important for lineage commitment and

differentiation and have been associated with tumor recurrence

(65–68). As such, DNA methylation plays a significant role in

driving NE transdifferentiation from an adenocarcinoma. For

instance, in NEPC samples, ASXL3 and SPDEF genes were found

to be hypermethylated, while the NEPC marker INSM1 and the

plasticity gene CDH2 were hypomethylated (69).

DNA methylation has also been implicated in regulating AR

signaling. Specifically, DNA hypermethylation of the AR

promoter, driven by PTEN, RB1, and TP53 loss, can partially

explain the inactivation of canonical AR signaling in NEPC (70,

71). For instance, in AR-null cell line models and patient tumor

samples, DNA methylation has been implicated in regulating AR

expression (73–75). Treatment with AR-negative cell lines,

DuPro, TSU-PR1, and DU145, with the DNMT inhibitor 5-

azacitidine resulted in AR re-expression and concomitant

demethylation of the AR promoter (73, 75). DNMTs can also

regulate AR signaling in a methylation independent manner.

Prostate epithelial cells lacking RB1 demonstrate increased

DNMT1 expression. RB1 negatively regulates the transcription

factor E2F1, which can activate DNMT1 expression by interacting

with the DNMT1 promoter. Overexpression of E2F1 was sufficient

to repress AR expression and AR promoter-driven reporter genes

(71). Similarly, DNMT1 knockdown renewed AR expression in

AR-negative human prostate epithelial cells. DNMT1 directed

ChIP analysis showed association of DNMT1 with the AR

promoter; however, a lack of de novo methylation at the AR

minimal promoter suggests that DNMT1 represses AR

expression via a methylation-independent mechanism (72).

These data present DNMT inhibitors as a promising class of

drugs for the treatment of AR-null PCa.
3.2 Post translational histone modification

Significant evidence has revealed that post-translational

histone modifications mediate numerous biological processes in

cancer via alterations in chromatin conformation. These

modifications include methylation, acetylation, phosphorylation,

and ubiquitination; however, histone-related gene expression

regulation is predominately regulated by histone methylation

and acetylation. Histone acetylation is driven by histone

acetyltransferases (HATs) and is deacetylated by histone

deacetylases (HDACs). Similarly, histone methylation is

catalyzed by histone methyltransferases (KMTs) and reversed by

histone demethylases (KDMs). Histone acetylation is commonly

associated with transcriptional activation, resulting from

alterations in histone net charge. This leads to an open

chromatin conformation that is more accessible to transcription

factor binding and the regulation of gene transcription. Unlike

histone acetylation, methylation does not exclusively lead to

translational activation but is instead associated with either gene

activation or repression.
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3.2.1 Histone methylation and demethylation
AR expression loss has been linked to the repression of histone

methylation. Enrichment of repressive histone modifications

H3K27me3 and H3K9me2 has been observed in AR-null NEPC

PDXs (76). Enhancer of Zeste Homologue 2 (EZH2), the catalytic

subunit of the Polycomb Repressive Complex 2 (PRC2), is a master

regulator of epigenetic rewiring in NEPC and is the KMT

responsible for H3K27me3 marks. Upregulation of EZH2 is a

well-established feature of NEPC (4, 37, 39, 77). Genes repressed

by EZH2 are also downregulated in tumors from NEPC patients,

with EZH2 inhibition reactivating AR signaling, decreasing NE

target gene expression, and re-sensitizing tumors to enzalutamide

(34). Mechanistically, EZH2 cooperates with lineage-guiding

transcription factors to epigenetically regulate gene expression

and lineage specificity. Notably, EZH2 has been shown to

cooperate with MYCN to suppress AR signaling (39). EZH2 has

also been shown to synergize with other epigenetic modifiers,

regulating chromatin conformation to promote lineage plasticity.

For instance, EZH2 has been linked to DNMT activity, potentially

marking genes for de novo DNA methylation via a scaffolding

mechanism mediated by the long ncRNA HOTAIR (78–80).

Similarly, HOTAIR can scaffold EZH2 and lysine-specific

demethylase 1 (LSD1), a H3K4 and H3K9 demethylase. EZH2:

LSD1 coordinates to repress developmental genes, promoting a

cellular state of elevated plasticity (81).

Several studies report that EZH2 mediates NE differentiation.

For example, EZH2 can be activated by transcription factor 4

(TCF4), a key transcription factor involved in Wnt/-catenin

signaling. Elevated Wnt signaling is a common feature in NEPC,

and TCF4 inhibition has been shown to preclude the

transdifferentiation of adenocarcinoma to NEPC, following ADT

(82). Furthermore, EZH2 activity has been tied to cAMP-response

element binding protein (CREB) activation. Inhibition of EZH2 can

prevent CREB-induced H3K27 methylation and NE differentiation

(83). Finally, MEK-ERK signaling has been shown to regulate EZH2

transcriptional upregulation and recruitment to the promoter of E-

cadherin. Therefore, MEK-ERK signaling can facilitate epithelial-

mesenchymal plasticity via EZH2 regulation (84, 85). These studies

demonstrate EZH2’s role as a master regulator of NEPC lineage

plasticity, and its inhibition is a promising strategy for novel

NEPC treatment.

In addition to histone methylation, histone demethylation also

plays a significant role in regulating NEPC. LSD1 is known to

demethylate H3K4 and lysine residues on several non-histone

proteins, including, TP53, E2F1, DNMT1, and HIF-1. Notably,

LSD1 is an important regulator of AR transcriptional activity,

suppressing the transcription of AR target genes (86). Indirect

demethylation of H3K9 on AR target genes and cell cycle genes

can also be facilitated by LSD1 (87). Interactions between LSD1 and

another master epigenetic regulator SRRM4 can produce a

neuronal-specific isoform of LSD1, called LSD1 + 8a, that is

exclusively expressed in NEPC as opposed to adenocarcinoma.

SRRM4 is overexpressed in NEPC and is a powerful driver of

transdifferentiation in NEPC (88). This splice variant of LSD1 may

act as a biomarker for NEPC and contribute to lineage plasticity in
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NEPC (28). These epigenetic factors may provide novel targets for

NEPC treatment.

3.2.2 Histone acetylation, deacetylation, and
chromatin remodeling

Recent studies have shown that the use of modern ARPIs can

result in widespread changes in chromatin structure and contribute

to lineage plasticity. Histone acetylation and deacetylation are two

factors that affect chromatin accessibility (89–92). Notably, the

HDAC SIRT1 is upregulated in NEPC, and its overexpression has

been shown to promote lineage plasticity (93). The precise

mechanism by which SIRT1 promotes lineage plasticity is

unknown; however, in breast cancer (94), liver cancer stem cells

(95), and bone marrow-derived mesenchymal stem cells (96), SIRT

has been shown to promote upregulation of SOX2. SIRT1 mediated

SOX2 upregulation may be an avenue whereby SIRT1 promotes

lineage plasticity in NEPC, though evidence remains preliminary

and evolving.

Other chromatin remodelers in PCa can affect lineage plasticity.

CDH1 loss, for example, has been shown to promote neuronal

differentiation and enzalutamide resistance (92). CDH1 loss

resulted in global changes in chromatin accessibility, notably,

increasing accessibility for four transcription factors associated with

non-luminal lineage program activation. Deletion of each

transcription factor by CRISPR-Cas9 knockout re-sensitized cells to

enzalutamide (97). The restrictive element-1 silencing transcription

factor (REST) cooperates with AR and corepressors such as EZH2

and LSD1 to suppress neuronal differentiation (98, 99). REST

silencing attenuated AR signaling and increased NE lineage

markers (100). Moreover, loss of REST activity via a splicing-in

event by SRRM3/4 can promote expression of BAF53B rather than

BAF53A, subunits of the chromatin remodelers, neuron specific BAF

(nBAF) complex and canonical BAF complex respectively (12).

Exchanging the subunits BAF53A and BAF45A for BAF53B and

BAF45B in the nBAF complex has been shown to promote a

chromatin switch to a differentiated neuronal phenotype in post-

mitotic neurons (101). Moreover, BAF53B and BAF45B are both

highly expressed in NEPC and absent in adenocarcinoma (90). Lastly,

it has been shown that BET bromodomain proteins are important in

NEPC. Specifically, the BET bromodomain protein BRD4, which

recognizes H3K27 acetylation, can cooperate with E2F1 to induce

lineage plasticity. BET bromodomain inhibition suppressed the

induction of lineage plasticity driving genes and suppressed the

growth of treatment emergent NEPC cells high in E2F1 (89). All

together, these data demonstrate the importance of epigenetic factors

in driving lineage plasticity toward a NEPC phenotype.
4 Early therapeutic resistance in
localized PCa

4.1 Early hormone therapy resistance

As previously described, early hormone therapy failure often

results in AR-dependent CRPC. Several mechanisms promote the

progression to AR-dependent CRPC, including increased AR
Frontiers in Endocrinology 06
amplification and mutation, AR-Vs expression, and intra-tumoral

steroid hormone synthesis (8).

Increased AR expression allows PCa to circumvent low

androgen levels by hypersensitizing tumor cells to androgens,

promoting disease progression (102). Several factors can promote

increased AR expression, including gene amplification, increased

translation, and decreased degradation (8). Moreover, AR

expression can be enhanced by increased protein stability via the

E3 ligase MID1 (103). AR amplification has been identified in a

significant proportion of CRPC cell lines, ranging from 30-80%

(104, 105). Several point mutations in the AR gene have been

identified that can result in increased AR activity, despite low

androgen levels. For instance, mutations in the AR ligand binding

domain can decrease ligand specificity, allowing alternate steroid

hormones, such as -DHT, progesterone, or DHEA, to activate AR

signaling (106). Notably, other mutations that confer resistance to

second generation AR agonists, such as F876L, have been

identified (107).

Several alternative AR-Vs that confer ADT resistance have been

identified. These splice variants often emerge in late stages of PCa,

are constitutively active due to the loss of the C-terminus ligand

binding domain, and often correlate with a poor prognosis (108,

109). Several common AR-Vs are ARv1, ARv7, and ARv567, with

ARv7 being the most well studied (110, 111). ARv7 is constitutively

active because it lacks the canonical AR ligand binding site (111).

Moreover, ARv7 can heterodimerize with AR to translocate to the

nucleus where it acts as a transcription factor (112). ARv7 has been

shown to regulate both AR-regulated genes as well as a unique set of

AR-independent genes (111). Given the correlation between AR

splice variant expression and poor prognosis, the targeting of AR

variants may offer novel CRPC treatment with the ARv7 inhibitor

niclosamide being recently tested (113).

Another key mechanism contributing to AR-dependent CRPC

is the intra tumoral synthesis of androgen, including testosterone

and dihydrotestosterone (DHT), which originate from adrenal

precursor steroids such as dehydroepiandrosterone (DHEA) (114,

115). Several enzymes and genes involved in intra tumoral

androgen synthesis have been identified as potential targets for

diagnosis and treatment. One such target is 3b-hydroxysteroid
dehydrogenase isoenzyme-1 (3bHSD1, encoded by HSD3B1),

which catalyzes the rate-limiting step in the metabolic conversion

from DHEA to testosterone and DHT in the adrenal gland. A

specific germline missense-encoding variant of HSD3B1(1245A>C)

leads to a divergence of enzyme level and downstream androgen

synthesis. HSD3B1(1245A) is known as an adrenal-restrictive allele

as it codes for an enzyme that is degraded more rapidly, while

HSD3B1(1245C), an adrenal-permissive allele, codes for a stable

enzyme resistant to proteasomal degradation that promotes robust

conversion from DHEA to DHT (116–118). Numerous studies have

shown that prostate cancer patients carrying the HSD3B1(1245C)

variant are more likely to become resistant to ADT and progress to

CRPC and have worse survival outcomes. However, to date there is

no known disparity of overall survival time related to HSD3B1.

The upregulation of glucocorticoid receptors (GR) is one AR-

independent mechanism known to mediate ADT resistance in PCa.

GRs are a part of the nuclear receptor superfamily of transcription
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factors (119). Like AR, GR undergoes a conformational change in

the cytoplasm and is translocated to the nucleus after binding with

androgens or glucocorticoids. Once inside the nucleus, GR can bind

to androgen responsive elements and regulate the expression of

target genes (120). Notably, AR and GR bind to nearly identical

DNA motifs (121). One implication of this finding is that amplified

GR signaling may be redirected to circumvent AR loss of function

under castrate conditions (18). Notably, GR regulates a significant

number of genes that are AR pathway-specific (122), and GR

activity has been found to replace AR activity in CRPC, following

enzalutamide treatment (123, 124).
4.2 Radioresistance in PCa

Radiotherapy is a cornerstone of curative PCa treatment, and its

combination with ADT has been shown to significantly increase

patients’ overall survival (125). Nevertheless, approximately 30-50%

of high-risk, clinically localized PCa cases recur within five years of

curative intent radiotherapy. While the majority of these

recurrences are out of field metastases, PSMA PET scans are

shedding increasing light on non-trivial local recurrence rates and

offer an opportunity for deeper study of mechanisms driving

resistance to radiotherapy/hormone therapy combinations (126).

The intra-tumoral genetic and epigenetic heterogeneity observed in

PCa has been theorized as a source of resistant subpopulations

(127). Moreover, the selective pressure applied by RT may trigger

evolutionary adaptations resulting in acquired radioresistance

promoted by epigenetic and transcriptional reprogramming (128).

Both acquired and intrinsic radioresistance involves changes in

biological mechanisms controlling DNA repair, hypoxia response,

cell proliferation and survival, EMT, apoptosis inhibition, and

autophagy (129). As described below, extensive experimental

evidence also supports the role of an aberrant epigenome in

driving a radioresistant phenotype.

4.2.1 Alternative AR signaling driving
PCa radioresistance

One inference that can be drawn from the significant clinical

benefit observed with ADT and RT combinations is that their anti-

neoplastic effects are at least additive and more likely synergistic. It

has been demonstrated that AR signaling promotes radioresistance

by upregulating the transcription of DNA double strand break

(DSB) repair genes. Treatment with second-generation anti-

androgens was shown to downregulate DNA repair genes in a

CRPC model. Moreover, primary PCa was observed to displays a

wide spectrum of AR transcriptional output that correlates with the

expression of a set of DNA repair genes. The addition of androgens

to ionizing radiation (IR) treated PCa cells enhanced DNA damage

repair and treatment with anti-androgens increased DNA damage

and decreased clonogenic survival (130). Similarly, increased AR

expression and activity was observed following RT in several human

PCa models, both in vitro and in vivo. AR expression was also

correlated with survival in vitro and time to tumor progression in

vivo. Finally, AR pathway upregulation was found in nearly 20% of
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patients following RT (131). Taken together, these data demonstrate

the strong synergistic effect of ADT and RT. This underscores the

important role of AR signaling in therapeutic resistance to

genotoxic treatments.

Given the association between AR signaling and radioresistance

in localized hormone sensitive disease, it follows that castrate-

resistance is similarly tied to radiation response. A possible

pathway leading to radioresistance in CRPC is the emergence of

AR-Vs. One study has shown that AR-Vs can promote non-

homologous end joining (NHEJ) repair when canonical AR

signaling is blocked by ARPI (132). Similarly, others have used

CRISPR-engineered PCa cell lines to show that AR-Vs can

desensitize cells to IR when canonical AR signaling is disturbed

(133). ARv7 is the most clinically relevant of the AR-Vs and was

shown to significantly promote the DNA damage response (DDR)

of PCa cells following severe DNA damage. ARv7 expression was

sufficient to upregulate both homologous recombination (HR) and

NHEJ in PCa by forming a positive regulatory loop with poly ADP-

ribose polymerase 1 (PARP-1) (17). Interestingly, epigenetics seem

to play a role in ARv7 expression in PCa via the inclusion of a

cryptic exon. The KDM Jumonji domain containing (JMJD) 1A, an

eraser of H3K9 methylation, can complex with the splicing factor

hnRPNF. This complex binds to methylated H3K9 regions of the

cryptic exon located in the intronic sequence between exons 3 and

4, favoring the inclusion of the cryptic exon and ARv7 production.

Furthermore, JMJD1A knockdown has been shown to reduce ARv7

levels (134). With AR splice variants promoting radioresistance,

inhibiting their expression may re-sensitize tumors to IR.

4.2.2 Epigenetic aberrations promote
PCa radioresistance

Several epigenetic events affecting the DDR and cell cycle that

can promote tumor radioresistance. Key proteins, such as ataxia-

telangiectasia mutated (ATM), DNA dependent protein kinases,

-H2AX, breast cancer gene 1/2 (BRCA 1/2), PARP-1, and RAD51,

are important in DDR induction (135). Defective DDR pathways

are frequently described as drivers of PCa tumorigenesis, with 15-

30% of cases displaying DDR instability (136). Several genes,

involved in DNA damage are frequently hypermethylated in PCa,

including GPX3, MGMT, and ASC (137). Moreover, ATM may be

hypermethylated, as its functional loss far exceeds its rate of

mutation (138). The methylation of DDR genes frequently results

in tumorigenesis due to increased chromosomal instability, but

impaired DDR can leave tumors more susceptible to RT. For

example, patients with ATM and BRCA1/2 mutations exhibited

superior tumor response following RT (139).

Conversely, the methylation of genes involved in cell cycle

regulat ion are more often associated with increased

radioresistance. For instance, the cyclin-dependent kinase

inhibitors (CDKs), CDKN1A (p21Cip1), CDKN1B (p27Kip1), and

CDKN2A (p16Ink4A), reprimo (RPRM), stratifin (SFN), and CDK1

are all frequently hypermethylated and play various roles in tumor

radioresistance (140). The CDKNs and their associated pathways

have a variety of complex interactions regulating tumor

suppression, DDR activation, cell cycle arrest, and apoptosis
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control (141). This regulation is accomplished by inhibiting cyclin-

dependent kinases, with p21 and p27 inhibiting CDK2 and p16

inhibiting CDK4/6. Moreover, activation of p21 signaling has been

found to promote radioresistance (142). Similarly, demethylation of

p21 and p53 promoters in nasopharyngeal carcinoma restored and

activated p21 and p53 activity, leading to cell cycle arrest and

apoptosis, resulting in increased radioresistance (143). Cell phase

change, due to decreased expression or loss of p27, has been shown

to confer radioresistance in esophageal carcinoma and luminal

breast cancer (144, 145). Depletion of p16 in cervical cancer led

to increased radioresistance and higher self-renewal capability

(146). Moreover, wild-type p16 expression was consistent with

radiosensitivity in malignant melanoma cells when compared to

homozygous p16 deficient cell lines (147). The tumor suppressor

RPRM has previously been implicated in triggering p53-mediated

G2 cell cycle arrest following DNA damage (148, 149) and

negatively regulates ATM levels (150). Moreover, RPRM loss has

been shown to confer radioresistance both in vitro and in vivo,

marking RPRM as a potential target for cancer therapy and

radiation protection (149, 150). SFN is known to mediate G2

arrest by preventing the nuclear translocation of the CDC2-cyclin

B1 complex in response to DNA damage (151). In contrast to other

hypermethylated cell-cycle related genes, the hypermethylation of

SFN is not associated with greater radioresistance. Instead, cells that

lose SFN frequently undergo mitotic catastrophe following DNA

damage (151, 152). Interestingly, one study found the expression of

SFN to increase with tumor progression; however, the driving

mechanism behind the increased expression has not been

investigated (151). Still, this group of cell cycle-regulating genes

offers many novel targets for radiation protection, and the transient

nature of these epigenetic changes may allow for the re-sensitization

of radioresistant tumors. Nevertheless, more data are needed before

these findings can be effectively translated into the clinic.

Post-translational histone modification is another class of

epigenetic modifications that can affect PCa radioresistance. For

instance, EZH2 is frequently upregulated and suppresses

transcription via H3K27 methylation (153). In addition to driving

lineage plasticity, EHZ2 has several cellular functions pertaining to

the DDR, including regulating DDR elements and chromatin

conformation following IR-induced damage. IR promotes H3K27

trimethylation by EZH2 around DNA damage sites. The resulting

chromatin compaction is necessary for efficient DNA damage repair

(154). Additionally, EZH2 can cooperate with BRCA1 to maintain a

cancer stem cell signature, promoting radioresistance. Treatment

with a global histone methylation inhibitor downregulates BRCA1

and EZH2 express ion, inhibit ing tumorigenici ty and

radioresistance (155). Similarly, in glioblastoma multiforme cells,

EZH2 inhibition has been shown to significantly reduce H3K27

methylation and increased residual H2AX foci following IR. This

significantly increased cell cycle arrest at the G2 checkpoint and

apoptotic cell death (156). Finally, EZH2 inhibition has been shown

to robustly downregulate DDR genes by preventing EZH2-

mediated FOXA1 direct methylation (157). Another histone

modifier that is frequently overexpressed in PCa is the histone

methyltransferase KMT2D. KMT2D serves as an oncogene,

promoting tumor growth and metastasis; however, it also has
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functions regarding radioresistance. Silencing of KMT2D has

been shown to promote ROS-mediated DNA damage, leading to

apoptosis and senescence. Moreover, KMT2D loss reduced

enhancer activity markers H3K4me1 and H3K27ac, which

blocked the binding of FOXO3, an important mediator of the

cellular oxidative stress response, resulting in suppressed

antioxidant gene expression (158). Additionally, KMT2D

overexpression can also epigenetically activate PI3K/Akt and

upregulate EMT and oncogenic pathways, promoting tumor

radioresistance (159).

The PI3K/Akt/mTOR pathway can affect radioresistance in

other ways. The Ras family of GTPases plays a key role in various

basic cellular functions such as controlling cell proliferation,

differentiation, and apoptosis, with Ras stimulations having a

wide range of downstream signaling pathways. Phosphoinositide

3-kinases (PI3Ks) are one of the best characterized Ras effector

groups, and their activation leads to the induction of the PI3K/Akt/

mTOR pathway that affects cell growth, cell cycle, and cell survival

(160). Uncontrolled activation of this signaling pathway has been

associated with the development of cancer and tumor

radioresistance. Radioresistant cell lines have demonstrated an

increased activation in the PI3K/Akt/mTOR pathway (161).

Moreover, dual inhibition of PI3K and mTOR has resulted in a

significant reduction in radioresistance, increasing apoptosis, arrest

of the G2/M phase, increased double strand breaks, and reduced cell

cycle checkpoint inactivation and autophagy both in-vitro and in-

vivo (162, 163). DNA methylation can promote PI3K/Akt/mTOR

pathway-driven radioresistance via the hypermethylation of

negative regulators of this pathway (164, 165). Moreover, H3 and

H4 acetylation have been shown to activate Akt/mTOR, resulting in

increased PCa progression and therapy resistance (166).
5 Therapeutic implications

With lineage plasticity driven CRPC posing a challenge for

clinical management, novel therapeutic options targeting NEPC are

needed. Several clinical trials focusing on agents that target NEPC

have been reported, with one of the earliest Phase 2 trials testing the

AURKA inhibitor alisertib. Investigators tested alisertib in NEPC

patients as AURKA appears to be important in stabilizing MYCN

(40). It should be noted that this trial did not require MYCN or

AURKA upregulation for enrollment. Although this study did not

meet its primary end point of 6-months progression free survival,

the subpopulation of patients that exhibited increased AURKA

expression (16%) did appear to have longer overall survival (167).

Another NEPC targeting agents is rovalpituzumab tesirine, a DLL3-

targeted antibody-drug conjugate. This agent was tested in a Phase

1/2 trial that included 18 patients with NEPC, and a 10% objective

response rate was observed (168). A comprehensive list of therapies

targeting NEPC from 2017 to 2023 can be found in Table 1.

In addition to NEPC targeted therapies, drugs that target the

NEPC epigenome and delay or reverse NE differentiation are

promising. EZH2 is the most well studied epigenetic factor that is

dysregulated in NEPC (39, 77). Preclinical NEPC models treated

with EZH2 inhibitors have demonstrated attenuation of MYCN
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driven NEPC phenotypes and re-sensitization to ARPI treatment

(39, 169). For instance, the EZH2 inhibitor, PF-06821497, is

currently being tested in a Phase 1 study in metastatic CRPC

patients (NCT03460977). Similarly, ORIC-944 is being tested in a

Phase 1/1b trial in patients with metastatic CRPC (NCT05413421).

BET bromodomain proteins also offer a potential route for

epigenetic targeting of NEPC. Preclinically, treatment with BRD4
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inhibitors, either in monotherapy or in combination with ARPIs,

have exhibited anti-tumor properties in PCa (170–172). Early

investigation into the BET inhibitor ZEN-3694 has found that

patients with NEPC tumors that exhibit high E2F1/BRD4 activity

may be more susceptible to BET inhibition (89, 173). ZEN-3694 is

now being tested in combination with enzalutamide and

pembrolizumab in a Phase II trial, comprised of treatment
TABLE 1 Clinical trials of non-epigenetic therapies targeting neuroendocrine prostate cancer (2017-2023).

Drug Target Combination
Agent(s) Phase Status Trial

Identifier

Targeted/
Immuno-
therapy

Apalutamide, Cetrelimab AR Inhibitor, anti-PD-1 2 R NCT04926181

Tarlatamab DLL3/CD3 (Bispecific T-Cell Engager) 1 R NCT04702737

HPN328
anti-DLL3/anti-CD3/anti-albumin (T-Cell

Engager)
1/2 R NCT04471727

PT217 DLL3/CD47 (Bispecific Antibody) 1 NYR NCT05652686

BXCL701, Pembrolizumab DPP8/DPP9 Inhibitor, anti-PD-L1 1/2 R NCT03910660

Niraparib, Cetrelimab PARP Inhibitor, anti-PD-1 Carboplatin, Cabazitaxel 2 R NCT04592237

Cabozantinib S-malate,
Ipilimumab, Nivolumab

TK Inhibitor, anti-CTLA4, anti-PD-1 2 R NCT03866382

Regorafenib, Tislelizumab
VEGFR1-3/TIE2/PDGFR-b/FGFR/KIT/

RET/RAF Inhibitor, anti-PD-1
2 NYR NCT05582031

Lenvatinib, Pembrolizumab VEGFR2 Inhibitor, anti-PD-L1 2 R NCT04848337

Tivozanib, Atezolizumab VEGFR/TK Inhibitor, anti-PD-L1 1/2 R NCT05000294

Lenvatinib, Pembrolizumab
VEGFR1-3 Inhibitor,

anti-PD-L1
1/2 R *NCT02861573

Vibostolimab-
Pembrolizumab

anti-TIGIT/anti-PD-L1 1/2 R *NCT02861573

Immuno-
therapy

Pembrolizumab anti-PD-L1 Carboplatin, Cabazitaxel 2 NYR NCT05563558

Pembrolizumab anti-PD-L1
Carboplatin, Cisplatin,
Docetaxel, Etoposide

1 R NCT03582475

Avelumab anti-PD-L1 2 C NCT03179410

Nivolumab, Ipilimumab anti-PD-1, anti-CTLA4 2 R NCT03333616

XmAb20717 anti-PD-1/anti-CTLA4 1 C NCT03517488

Nivolumab, Ipilimumab anti-PD-1, anti-CTLA4 Carboplatin, Cabazitaxel 2 R NCT04709276

PDR001, LAG525 anti-PD-1, anti-LAG-3 2 C NCT03365791

Targeted Berzosertib ATR Inhibitor Topotecan Hydrochloride 2 ANR NCT03896503

Abiraterone, Apalutamide,
Leuprolide

CYP17A1 Inhibitor, AR Inhibitor, GnRH
Agonist

2 ANR NCT03902951

Erdafitinib FGFR Inhibitor 2 R NCT04754425

Goserelin GnRH Agonist Docetaxel, Prednisode 2 R *NCT03696186

Goserelin GnRH Agonist
Carboplatin, Doxetaxel,

Prednisone
2 R *NCT03696186

[225]-FPI-2059 NTSR1 (Targeted Alpha Therapy) [111In]-FPI-2058 1 R NCT05605522

Olaparib PARP inhibitor
Carboplatin, Cabazitaxel,

Prednisone
2 ANR NCT03263650

ORIC-944 PRC2 Inhibitor 1 R NCT05413421
NEPC, Neuroendocrine Prostate Cancer; ANR, Active Not Recruiting; C, Completed; NYR, Not Yet Recruiting; R, Recruiting. *: Clinical trial with >1 intervention targeting NEPC.
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emergent NEPC patients (NCT04471974). Similarly, the

combination of ZEN-3694 and enzalutamide vs. enzalutamide

alone is being tested in patients whose disease responded poorly

to abiraterone, with the hope that this will enrich the cohort for

patients with tumors that have undergone lineage plasticity

(NCT04986423). A comprehensive overview of the current

clinical trials for epigenetic drugs targeting NEPC can be found

in Table 2.

Other potential avenues for epigenetic targeting are LSD1 and

the DNMTs. LSD1 is a KDM that is overexpressed in androgen-

independent PCa and modulates FOXA1-dependent, AR-

associated lineage plasticity and stem cell-associated gene

expression (174, 175). Several clinical studies testing LSD1

inhibition have been proposed but were later terminated for

var ious reasons (NCT02712905 , NCT02217709 , and

NCT01253642); however, recruitment for Phase 1/2 testing of

JBI-802, an LSD1/HDAC6 inhibitor, is currently ongoing

(NCT05268666). Preclinical testing of DNMT inhibitors have

shown promising results, with DNMT inhibition re-sensitizing

resistant NE-like cell lines to ARPIs (176, 177). Notably, the

DNMT inhibitors decitabine and azacytidine already have FDA

approval for the treatment of myelodysplastic syndromes and could

be repurposed for the treatment of NEPC. However, Phase 2 testing

of DNMT inhibitors in CRPC did not show strong anti-tumor

activity (178, 179).

Drugs that inhibit lineage plasticity by targeting the epigenome

may also be used as radiosensitizers in the future. For instance, one

pre-clinical study showed that EZH2 inhibition dramatically

enhanced CRPC cells to genotoxic stress, demonstrating the

potential utility in EZH2 inhibitors in sensitizing cancers that

overexpress EZH2-activated DDR genes to genotoxic agents

(157). Moreover, BRD4 is essential for the repair of DNA DSBs

by mediating NHEJ, and BRD4 is negatively associated with

outcome following RT (180). LSD1 also offers a potential option

for radiosensitizing PCa, as pre-clinical data has shown that LSD1

knockdown can significantly enhance radiosensitivity (181). Finally,

DNMT inhibitors and HDAC inhibitors have also shown

radiosensitizing effects (182, 183). However, evidence supporting
Frontiers in Endocrinology 10
the efficacy of epigenetic targeting in radiosensitizing PCa has not

progressed beyond pre-clinical investigation to date.

Despite the potential of new epigenetic and NE-targeting

therapies in NEPC treatment, their development and clinical

deployment has proven challenging. One major hurdle for many

novel epigenetic therapies is their lack of specificity, often affecting a

wide range of transcriptional networks leading to undesired off-

target results and side-effects (10). Nevertheless, epigenetic

targeting in NEPC offers a promising therapeutic avenue with

potential to bring new options to the clinic.
6 Conclusion

Prostate cancer encompasses a range of natural histories,

spanning from indolent disease to treatment-refractory CRPC/

NEPC. Therapy-induced NEPC is marked by lineage plasticity,

loss of luminal markers, and acquisition of NE features, such as

SYP and CHGA. While genetic mutations, such as loss of PTEN,

TP53, and RB1, and MYCN amplification have been implicated in

this lineage transition, they are insufficient to induce the

transdifferentiation of adenocarcinoma to NEPC. Instead,

increasing evidence points to an aberrant epigenome as a major

driver of lineage plasticity. Hyper-methylation of the AR promoter

may partially explain the loss of canonical AR signaling observed in

NEPC. Similarly, abnormal function of master epigenetic regulators,

such as EZH2, promote NE lineage programs. Epigenetic

dysregulation can also affect PCa radioresistance by altering the

expression of genes involved in DDR and cell cycle. NEPC’s reliance

on epigenetic machinery has provided a new avenue for treating a

disease that, so far, has been nearly incurable. Epigenome-targeting

drugs have shown promise for treating NEPC in preclinical and

early-clinical studies, and similar mechanisms are beginning to be

exploited to re-sensitize tumors to RT. Despite their potential,

numerous challenges remain before these epigenetic therapies can

be successfully implemented in modern treatment regimens for

NEPC. In summary, understanding the mechanisms that promote

lineage plasticity, from tumorigenesis to the emergence of treatment
TABLE 2 Clinical trials of epigenetic therapies targeting neuroendocrine prostate cancer.

Drug Target Combination
Agent(s) Indication Phase Status Trial

Identifier

Epigenetic
JBI-802

LSD1/HDAC6/
HDAC8 Inhibitor

NEPC 1/2 Recruiting NCT05268666

CC-90011 LSD1 Inhibitor
Itraconazole,
Rifampicin

NEPC 1
Active, not
recruiting

NCT02875223

Epigenetic/Targeted EPZ-6438,
Abiraterone

EZH2 Inhibitor,
CYP17A1 Inhibitor

Prednisone
(Phase 1b Intervention 1)
SCNEPC, NEPC, mPC

1/2 Recruiting *NCT04179864

EPZ-6438,
Enzalutamide

EZH2 Inhibitor, AR
Inhibitor

(Phase 1b Intervention 2)
SCNEPC, NEPC, mPC

1/2 Recruiting *NCT04179864

Epigenetic/
Targeted/Immuno-
therapy

ZEN-3694,
Enzalutamide,
Pembrolizumab

BET Inhibitor, AR
Inhibitor, anti-PD-L1

Transdifferentiated
mCRPC,

t-SCNEPC, SCNEPC
2 Recruiting NCT04471974
NEPC, Neuroendocrine Prostate Cancer; mPC, Metastatic Prostate Cancer; SCNEPC, Small-Cell Neuroendocrine Prostate Cancer; t-SCNEPC, Treatment-Emergent Small-Cell Neuroendocrine
Prostate Cancer. *: Same clinical trial, different interventions.
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resistance, is imperative in contemporary prostate cancer research

and represents a critical step in the discovery of new targets and

more effective therapies to prevent and treat lethal PCa.
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