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Background: Preeclampsia (PE) is the primary cause of perinatal maternal-fetal

mortality and morbidity. The exact molecular mechanisms of PE pathogenesis

are largely unknown. This study aims to identify the hub genes in PE and explore

their potential molecular regulatory network.

Methods: We downloaded the GSE148241, GSE190971, GSE74341, and

GSE114691 datasets for the placenta and performed a differential expression

analysis to identify hub genes. We performed Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), Gene

Set Enrichment Analysis (GSEA), and Protein–Protein Interaction (PPI) Analysis

to determine functional roles and regulatory networks of differentially

expressed genes (DEGs). We then verified the DEGs at transcriptional and

translational levels by analyzing the GSE44711 and GSE177049 datasets and

our clinical samples, respectively.

Results: We identified 60 DEGs in the discovery phase, consisting of 7

downregulated genes and 53 upregulated genes. We then identified seven hub

genes using Cytoscape software. In the verification phase, 4 and 3 of the seven

genes exhibited the same variation patterns at the transcriptional level in the

GSE44711 and GSE177049 datasets, respectively. Validation of our clinical

samples showed that CADM3 has the best discriminative performance for

predicting PE

Conclusion: These findings may enhance the understanding of PE and provide

new insight into identifying potential therapeutic targets for PE.

KEYWORDS

bioinformatics, preeclampsia, differentially expressed genes, biomarkers,
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Introduction

Preeclampsia (PE) is a pregnancy-related disease that occurs

after the 20th gestational week, characterized by clinical symptoms

such as hypertension, proteinuria, poor placental vascularization,

abnormal maternal cardiovascular adaptations, and fetal growth

restriction. PE is the leading cause of maternal and fetal mortality

and morbidity worldwide, affecting up to 10% of pregnancies (1, 2).

The underlying mechanism and preventive treatment for PE are still

under investigation.

With the rapid development of next-generation sequencing,

the exploration of diagnostic and therapeutic biomarkers for PE

has made significant progress. Bioinformatics analysis of these big

data provides new leads for identifying reliable and functional

differentially expressed genes and transcripts. Reanalyzing these

big data from various medical sources might provide novel

insights from other perspectives and evidence for mapping

molecular pathogenesis networks of disease. In recent years,

several independent studies on EOPE (early-onset pre-

e c l amps i a ) u s ing RNA sequenc ing t e chno logy and

bioinformatics analysis have identified dysregulated pathways,

including the G-protein coupled receptor (GPCR) signaling

pathway, endocytosis pathway, the focal adhesion pathway, as

well as abnormal expression of multiple miRNAs and mRNAs (3–

5). These findings provide important insights into the

pathophysiology of EOPE. However, due to small sample sizes,

the improper grouping of clinical subtypes, and insufficient

analyzing the transcriptome data, studies failed to identify

distinct molecular markers in PE.

In the present study, we analyzed four publicly available

microarray datasets of early-onset eclampsia retrieved from Gene

Expression Omnibus (GEO), an array- and sequence-based

database repository submitted by the research community. We

used computational approaches to identify differentially expressed

genes (DEGs) associated with PE and conducted enrichment

analysis and protein-protein interaction (PPI) networks. We then

another two validation cohorts to validate dysregulated expressions

from GEO datasets. Further, we then used RT-PCR to test the

mRNA expression levels of the identified genes using PE and

control samples from clinical, expecting to provide potential

biomolecules for early detection of PE, subsequent clinical

treatment, and more fully understand the pathogenesis

mechanism of PE.
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Materials and methods

Expression profile dataset selection

We searched for the gene expression profile data of early-onset

PE (EOPE) in the GEO database and screened the identified

datasets according to the inclusion and exclusion criteria. The

inclusion criteria were as follows (1): including five or more pairs

of samples from the EOPE group and normal group (2), the Dataset

type is expression profiling by array or RNA profiling by array (3),

the sample type is the human placenta. The exclusion criteria were

as follows: no complete gene expression profile data was provided.

Finally, six datasets related to EOPE in placenta tissue

transcriptome data were retrieved through the GEO database. The

information on these datasets was displayed in Table 1. GSE74341,

GSE114691, GSE148241, and GSE190971 datasets were used for

bioinformatic analysis. GSE177049 and GSE44711 were used for

validation of the bioinformatic analysis.
Data processing and differentially
expressed genes identification

Raw microarray data for six datasets were downloaded from the

GEO database. We normalized the data using the R package limma

(6) and converted it to log2 values for further analysis. We used the

R package limma to obtain DEGs between the EOPE and control

groups from GSE74341, GSE114691, GSE148241, and GSE190971

datasets. Genes with p < 0.05 and |log2 fold change (FC)| ≥ 1 were

considered DEGs in the respective databases. The overlapping

DEGs among the four datasets were considered the final DEGs.

The volcano maps and Venn diagrams were generated through the

Sangerbox 3.0 (http://sangerbox.com/) (7).
Function and pathway analysis of DEGs

Gene ontology analysis (GO) is an effective method for

annotating genes and identifying characteristic biological

attributes, including biological processes (BP), molecular

functions (MF), and cellular components (CC) (8). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) database offers a

thorough collection of data on protein interaction networks and
TABLE 1 Data resource.

ID Status(N:P) Organism Tissue Platform Analysis or Validation

GSE148241 32:9 Homo sapiens Placenta GPL16791 Analysis

GSE190971 6:7 Homo sapiens Placenta GPL11154 Analysis

GSE74341 10:7 Homo sapiens Placenta GPL16699 Analysis

GSE114691 21:20 Homo sapiens Placenta GPL11154 Analysis

GSE44711 8:8 Homo sapiens Placenta GPL10558 Validation

GSE177049 6:6 Homo sapiens Placenta GPL24676 Validation
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bio-interpretation of genomic sequences (9). Genes are annotated in

Disease Ontology (DO) with links to human diseases (10). In our

study, GO, KEGG, and DO enrichment analysis of DEGs were

completed by the ‘clusterProfiler’ package in R software (11). For all

the cases, we recorded all the enriched terms with p-value < 0.05.
Gene set enrichment analyse of datasets

Gene Set Enrichment Analysis (GSEA) is a gene set-based

functional pathway enrichment analysis method that calculates

the enrichment fraction of gene sets in each functional pathway

(12). GSEA was performed using GSEABase, clusterProfiler, and

org.Hs.eg.db packages. Differences at p-value < 0.05 were defined as

the cutoff criteria.
PPI network analysis

PPI network analysis of DEGs was performed using the online

STRING website (https://string-db.org/) (13). Then, use Cytoscape

software (10) to visualize the PPI network. The screening condition

for constructing the PPI network was a combined score > 0.3.
Identifying the key module and hub genes

Molecular Complex Detection (MCODE) is a plugin for

Cytoscape to build important functional modules in PPI networks

(14). Parameters were set as Node Score Cutoff = 0.2, Degree

Cutoff = 2, K-Core = 4, and Max. Depth = 100. Moreover, three

algorithms, namely, Density of Maximum Neighborhood

Component (DMNC), Maximum Neighborhood Component

(MNC), and Clustering Coefficient, were used in the cytoHubba

plugin (15) to determine the top 12 hub genes. The genes that were

present in all three algorithm results were considered the final hub

genes. In addition, a sub-network of hub genes was generated from

the PPI network.
Verification of hub gene expression by
validation datasets

The validation datasets were processed in the same way as the

analysis datasets. The mRNA level of the hub genes was validated in

the GSE177049 and GSE44711 datasets.
Validation of clinical specimens

Quantitative reverse transcriptase-PCR (RT-PCR) was used for

the quantitative expression of hub genes. Placentas were collected

from 18 clinical samples, including 9 healthy controls and 9 with

EOPE. The cycle threshold (CT) data were determined, and the

mean CT was determined from triplicate PCRs. Relative gene

expression was calculated with the equation 2–DCT.
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Construction of miRNAs-hub genes
network and TFs-hub genes network

Target miRNAs of the hub genes were predicted with the

miRTarBase (16), Starbase (17), and Targetscan (18) databases. To

improve the prediction accuracy,We chose predicted miRNAs for each

hub gene, which were predicted by at least two databases. Predicted

miRNAs that regulate multiple hub genes were considered critical

miRNAs.We submitted the hub genes to ChIP-X Enrichment Analysis

3 (ChEA3) platform for TF prediction (19). Hub genes-associated TFs

were ranked by mean rank score. Finally, we selected the TFs which

score ≤ 50 as key predicted TFs. The miRNAs-hub genes network and

TFs-hub genes network were visualized using Cytoscape.
Statistical analysis

We used R software and GraphPad Prism to conduct statistical

analyses. For RNA-seq datasets, we utilized the R package limma to

identify DEGs. To determine key modules and hub genes in the protein-

protein interaction network, we employed two commonly used

Cytoscape plugins, MCODE and cytoHubba software. In the

verification analysis, the normality of continuous variables was assessed

using the Shapiro-Wilk test, and the homogeneity of variances was tested

using Levene’s test. For normally distributed data, two-tailed t-tests were

performed. For non-normally distributed data, the Mann-Whitney U

test was used. p<0.05 was considered to be statistically significant.
Results

Identification of DEGs in PE

We performed a systematic review of GEO datasets to identify the

DEGs between normal pregnant women and women with PE. A

schematic representation of the screening strategy to identify such

compounds is shown in Figure 1. We selected four acceptable datasets,

GSE148241, GSE190971, GSE74341, and GSE114691, which

comprised at least 5 pairs of normal or PE placenta expression

profiling by RNA array (Table 1). Based on the criteria of |log2 FC|>

1 and P < 0.05 of the data preprocessing specified in the Materials and

Methods section, we identified and visualized the DEGs in related

datasets by volcano mapping and heat mapping in the respective

databases (Figures 2A–D; Supplementary Figure 1). We draw a

Venn diagram showing the DEGs from the 4 datasets. As

shown in Figures 2E, F, we obtained a total of 60 DEGs, of

which 7 downregulated genes and 53 upregulated genes

(Supplementary Table 1).
GO, KEGG, and DO enrichment
results of DEGs

To better understand the function of the overlapping genes, we

subjected the 60 overlapping genes to GO, KEGG, DO, and GSEA

analyses. According to the results of GO analysis results, the changes in
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biological processes (BP) of DEGs were significantly enriched in the

‘regulation of transmembrane receptor protein serine/threonine kinase

signaling pathway,’ ‘transmembrane receptor protein serine/threonine

kinase signaling pathway,’ ‘positive regulation of MAPK cascade,’

‘regulation of gonadotropin secretion,’ and ‘gonadotropin secretion’;

the changes in cell component (CC) of DEGs were enriched in

‘photoreceptor inner segment,’ ‘microtubule organizing center

attachment site,’ ‘meiotic nuclear membrane microtubule tethering

complex,’ ‘nuclear membrane protein complex,’ and ‘nuclear

membrane microtubule tethering complex’; and the changes in

molecular function (MF) were enriched in ‘hormone activity,’

‘growth factor binding,’ ‘transmembrane receptor protein kinase

activity,’ ‘activin binding,’ and ‘sodium-independent organic anion

transmembrane transporter activity.’ (Figures 3A, B). KEGG pathway

analysis revealed that the pathways enriched by dysregulated DEGs

include ‘cytokine-cytokine receptor interaction,’ ‘transcriptional
Frontiers in Endocrinology 04
misregulation in cancer,’ ‘Ras signaling pathway,’ ‘TGF-beta signaling

pathway,’ and ‘HIF-1 signaling pathway’ (Figure 3C). DO analysis

revealed that the diseases enriched by dysregulated DEGs include

‘preeclampsia,’ ‘gestational diabetes,’ ‘Kuhnt-Junlus degeneration of

macula and posterior pole,’ ‘Leydig cell tumor,’ and ‘placenta cancer’

(Figure 3D). The top five GO terms and all KEGG and DO pathways

are displayed visually (Figure 3). Moreover, we utilized GSEA to

quantify the potential functional pathway (Table 2).
Protein-protein interaction
network analysis

We uploaded DEGs to the STRING online database to form the

protein-protein interaction network. We used the Cytoscape

software to generate a PPI network. With a PPI score > 0.3, we
FIGURE 1

The flowchart of the analysis process.
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built a PPI network with 37 DEGs after hiding disconnected nodes

(Figure 4A). Next, we identified one key module based on MCODE

analysis (MCODE score = 3.333), including four key DEGs,

CADM3, KCNF1, NTRK2, and PHYHIP (Figure 4B). We also
Frontiers in Endocrinology 05
identified seven hub genes (Figure 4C), which included the 4 DEGs

from MCODE analysis and the other three genes (PAPPA2,

HTRA4, and INHBA) in three algorithms simultaneously

(DMNC, MNC, and Clustering Coefficient).
A B

D

E F

C

FIGURE 2

Identification of DEGs between the normal group and EOPE group in the analysis datasets. (A-D) The volcano plots of DEGs in GSE190971,
GSE148241, GSE74341, and GSE114691, respectively. Red dots indicate genes with high expression levels, blue dots indicate genes with low
expression levels, and black dots indicate genes with no differential expression based on the criteria of p-value < 0.05 and |log 2 fold change
(FC)| ≥ 1, respectively. (E, F) Venn diagrams showed the overlaps of numbers of upregulated (E) and down-regulated (F) DEGs between the four
analysis datasets.
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Dataset and clinical validation of 7 hub
genes expression

To validate the critical genes identified by PPI analysis, we examined

the seven potential key genes in the GEO database GSE44711 and

GSE177049 (Table 1). Figure 5A showed the violin plots of differentially

expressed genes in GSE44711, where genes HTRA4, NTRK2, and

PAPPA2 were significantly upregulated, while CADM3 was
Frontiers in Endocrinology 06
downregulated (Figure 5A). We further revealed the relationship

between the expression of these genes using the database GSE177049.

The expression of HTRA4 and PHYHIP genes were significantly

upregulated, while gene CADM3 was significantly downregulated

(Figure 5B). Next, we collected placental tissues from normal pregnant

women and women with PE, and via RT-PCR, we investigated the

relative gene expression levels of the seven genes. We observed that

CADM3 showed decreased expression while NTRK2 showed increased
A B

DC

FIGURE 3

GO, KEGG, and DO enrichment results of DEGs. (A, B) The bubble plot and bar graph showed the top 5 significant items in the BP, CC, and MF
fractions based on the P-values in the GO analysis. (C) The bar graph showed the result of the KEGG enrichment analysis. (D) The bar graph showed
the result of DO enrichment.
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expression levels in the PE group relative to their expression levels in the

normal group (Figures 5C–I). To further evaluate the relationship

between these seven hub genes and PE, we used the GSE190971

dataset, which has patient blood pressure information, to validate the

correlation between the hub gene expression and the highest blood

pressure. As shown in Supplementary Figure 2, CADM3 was negatively

correlated to the patient’s blood pressure, while all the other six hub genes

positively correlated to the patient’s blood pressure.We also plotted ROC

curves and AUC values to evaluate hub genes’ sensitivity and specificity

for EOPE diagnosis. The results indicated both CADM3 were highly

accurate in EOPE diagnosis, and the AUC was 0.864 (Figure 5J).
miRNAs-hub genes and TFs-hub
genes network

To further explore the regulatory function of the hub genes, we

predicted target miRNAs from three online database and TFs from

one online database. We submitted the hub genes to ChIP-X

Enrichment Analysis 3 (ChEA3) platform for TF prediction (19).
Frontiers in Endocrinology 07
Hub genes-associated TFs were ranked by mean rank score. Finally,

we selected the TFs which score ≤ 50 as key predicted TFs. We

identified seven TFs, ARNT2, KCNIP3, ZIC1, RORB, NACC2,

ZNF285, and SCRT1 (Figure 6A). We predicted target miRNAs

of the hub genes using the miRTarBase (16), Starbase (17), and

Targetscan (18) databases. To improve the accuracy of the

prediction, We chose predicted at least two databases miRNAs for

each hub gene. Predicted critical miRNAs regulate multiple hub

genes (Figure 6B).
Discussion

Preeclampsia is divided into early-onset preeclampsia and late-

onset preeclampsia, based on gestational age at diagnosis or

delivery. Early-onset preeclampsia, less common than late-onset

preeclampsia but with more severe clinical onset features, threatens

maternal and fetal health worldwide, especially in developing

countries (20–22). The pathogenesis of EOPE is unclear, and an

ideal early clinical biomarker for the prediction of EOPE are
TABLE 2 Summarize GSEA results of analysis datasets.

ID Description Regulation Analysis datasets

hsa00513 Various types of N-glycan biosynthesis Up GSE74341,GSE114691,GSE190971

hsa04371 Apelin signaling pathway Down GSE74341;GSE114691;GSE148241;GSE190971

hsa04613 Neutrophil extracellular trap formation Down GSE74341;GSE114691;GSE148241;GSE190971

hsa04921 Oxytocin signaling pathway Down GSE74341;GSE114691;GSE148241;GSE190971

hsa00532 Glycosaminoglycan biosynthesis - chondroitin sulfate/dermatan sulfate Down GSE74341;GSE114691;GSE148241

hsa04022 cGMP-PKG signaling pathway Down GSE74341;GSE114691;GSE190971

hsa04260 Cardiac muscle contraction Down GSE74341;GSE114691;GSE148241

hsa04261 Adrenergic signaling in cardiomyocytes Down GSE74341;GSE114691;GSE148241

hsa04270 Vascular smooth muscle contraction Down GSE74341;GSE114691;GSE190971

hsa04310 Wnt signaling pathway Down GSE74341;GSE114691;GSE148241

hsa04512 ECM-receptor interaction Down GSE74341;GSE114691;GSE148241

hsa04540 Gap junction Down GSE74341;GSE114691;GSE148241

hsa04610 Complement and coagulation cascades Down GSE74341;GSE114691;GSE148241

hsa04611 Platelet activation Down GSE74341;GSE114691;GSE190971

hsa04621 NOD-like receptor signaling pathway Down GSE74341;GSE114691;GSE190971

hsa04670 Leukocyte transendothelial migration Down GSE74341;GSE148241;GSE190971

hsa04713 Circadian entrainment Down GSE74341;GSE114691;GSE148241

hsa04725 Cholinergic synapse Down GSE74341;GSE114691;GSE148241

hsa04933 AGE-RAGE signaling pathway in diabetic complications Down GSE74341;GSE114691;GSE148241

hsa05032 Morphine addiction Down GSE74341;GSE114691;GSE148241

hsa05143 African trypanosomiasis Down GSE74341;GSE148241;GSE190971

hsa05144 Malaria Down GSE74341;GSE114691;GSE148241

hsa05412 Arrhythmogenic right ventricular cardiomyopathy Down GSE74341;GSE114691;GSE148241

hsa05414 Dilated cardiomyopathy Down GSE74341;GSE114691;GSE148241
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lacking. Several studies used bioinformatics analysis techniques to

uncover potential biomarkers and cellular signaling pathways in

preeclampsia (23, 24); however, in most of these studies,

preeclampsia was not classified as early-onset eclampsia and late-

onset eclampsia. In contrast to previous studies that only analyzed a

single dataset (25, 26), this study combined four GEO datasets

related to EOPE for bioinformatics analyses to explore potential

signaling pathways and biomarkers of EOPE. In addition, we used

two other GEO datasets associated with EOPE and local clinical

samples to validate the biomarkers.
Frontiers in Endocrinology 08
Disease Ontology (DO) analysis for the 60 DEGs revealed that

PE had the highest enrichment score, indicating that the DEGs

obtained in this study were strongly associated with preeclampsia.

We further used KEGG and GO to validate the DEGs. Our analysis

demonstrated that multiple enriched signaling pathways are related

to the pathogenesis of PE. A previous study revealed that serine/

threonine kinases are involved in the placental inflammatory

response (27) and are the most common signaling pathway when

analyzing the fetal genes with severe PE (28). Our data supported

the hypothesis that serine/threonine kinase may affect the EOPE
A

B C

FIGURE 4

PPI network, hub genes identification, and function module identification. (A) PPI network displayed 37 DEGs in the PPI network after hiding
disconnected nodes in the network, (B) One key module was identified based on MCODE analysis. (C) Seven hub genes were present in three
algorithms simultaneously (DMNC, MNC, and Clustering Coefficient). These seven genes were shown in red octagon in (A).
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patient and their offspring. Both previous studies and our results

demonstrated that gonadotropin regulation and secretion (29, 30),

Cytokine-cytokine receptor interaction (31), the activation of the

Ras signaling pathway and MAPK signaling pathway (32), TGF-b
signaling pathway (33), HIF-1 signaling pathway (34, 35), and 2-
Frontiers in Endocrinology 09
Oxocarboxylic acid metabolism (36, 37) are critical pathways for

PE development.

We also performed a GSEA analysis on each database in this

study to obtain more potential pathways. Unlike KEGG and GO,

GSEA was performed on the complete gene expression profile and
A

B

D E F

G IH J

C

FIGURE 5

Dataset and clinical validation of 7 hub genes. (A, B) Split violin plots exhibiting expression intensity and expression levels of 7 hub genes in GSE44711
(A) and GSE177049 (B). Blue represents normal placenta tissue, while red represents the placenta tissue of EOPE. (C-I) Validation of differential
mRNA expression of hub genes between EOPE and normal placentas in local clinical samples. (J) The ROC curves showed the diagnostic value of
CADM3 and NTRK2 in EOPE, based on local clinical samples, with AUC values shown below the curves. Data shown mean ± SEM. n = 9 *p < 0.05,
**p < 0.01, ***p < 0.001; ns: p > 0.05.
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obtained signaling pathways that may be up- or down-regulated

when a positive phenotype occurs. The present study combined

GSEA results from four databases and hypothesized a potential link

between the Apelin signaling pathway and eclampsia. Although no

previous eclampsia study mentioned the Apelin signaling pathway,

studies reported in amniotic cells (38) and primordial trophoblast

cells (39) that silencing the Apelin signaling pathway promoted the

release of inflammatory factors, including IL-1b, IL-6, and IL-8,
Frontiers in Endocrinology 10
which provide critical roles in multiple aspects of PE development

(40–42). In the present study, we speculate that down-regulation of

the Apelin signaling pathway induced the release of these

inflammatory cytokines from placental tissue and promoted the

development of EOPE.

The present study identified 7 DEGs (PAPPA2, HTRA4,

NTRK2, PHYHIP, INHBA, KCNF1, and CADM3) as hub genes

that play essential roles in EOPE. The validated datasets and our
A

B

FIGURE 6

The predicted miRNAs-hub genes regulatory network and predicted TFs-hub genes regulatory network. (A) The TFs-hub genes regulatory network.
(B) The miRNA-hub genes regulatory network.
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confirmation experiments using the local clinical placenta samples

demonstrated that the mRNA expression of PAPPA2, HTRA4,

NTRK2, PHYHIP, and CADM3 genes differ between EOPE and

healthy maternal placenta. Previous studies reported that PAPPA2

and HTRA4 are biomarkers of EOPE (43–45), while no such studies

regarding PHYHIP, NTRK2, and CADM3 for EOPE, indicate these

three DEGs might be new biomarkers of the disease. Our data

showed for the first time that the mRNA expression of NTRK2 is

higher in the EOPE placenta, while NTRK2(TrkB) protein is

significantly higher in female depression patients than in the

healthy control group (46). There’s a link between PE and

postpartum depression (PPD), recent studies have shown that

20.5% of women with PE or eclampsia suffer from postpartum

depression (47), women who had PE had nearly 3-fold increased

odds of PPD compared to normal women, and the risk of PPD

increased with the aggravation of PE (48). Taken together, we

speculate that overexpression of NTRK2 in EOPE patients may

account for the vulnerability of PPD in EOPE patients, but this

needs to be verified in follow-up studies. Our data also revealed that

CADM3 mRNA was down-regulated in EOPE patients. CADM3

codes for the cell adhesion molecule 3 protein, also called nectin-

like molecule 1 (necl-1). CADM3 is a tumor suppressor gene, while

the functions of many tumor suppressor genes on eclampsia have

different results (49–51), the role of CADM3 on early eclampsia

remains unclear. CADM3 may be a complementary and innovative

point in the study of the tumor suppressor genes in the pathogenesis

of EOPE. In the present study, we verified that NTRK2 and CADM3

were biomarkers of EOPE, revealed that NTRK2 and CADM3 had

good diagnostic efficacy, especially CADM3, whose area under

ROC curve (AUC) was up to 86.4%, indicating CADM3 is a good

diagnostic marker for EOPE. Moreover, we also found a strong

negative correlation between the expression of CADM3 mRNA and

the maximum blood pressure of pregnant women, suggesting that

CADM3 may also be related to the severity of EOPE.

To further investigate the regulatory mechanism of hub genes in

EOPE, we predicted miRNAs and TFs regulating hub genes based

on the prediction databases. We noticed that ARNT2 gene, a TF

that can simultaneously target five hub genes. Previous studies

showed that ARNT2 mRNA expression is increased in the placenta

of PE patients (52), it involved in the PE developmental classic

pathway (HIF-1 signaling pathway) (53); in addition, the up-

regulation of BCL6-ARNT2 pathway increased the sensitive of

trophoblast to ischemia and hypoxia and increased the expression

of FLT1 (52), which is a major driver of elevated blood pressure in

the end-stage PE pathway (54). We also predicted multiple miRNAs

that targets new biomarker CADM3, including miR-195-5p, whose

expression was increased in PE placenta (55). In endothelial cells

incubated with PE plasma, miR-195-5p expression is elevated,

which leads to decreased VEGFA expression and decreased

angiogenesis (56).

It must be emphasized that we relied on previously published

datasets in this study. The suggested pathogenic mechanisms of

miR-195-5p and CADM3 related to EOPE needs further validation

in cell and/or animal model.
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