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Background: Urinary sodium was indicated to be associated with dyslipidemia,

but inconsistent conclusions for this association exist across the present

observational studies.

Objectives: This study aimed to evaluate the causal association between urinary

sodium and circulating lipid levels [low-density lipoprotein cholesterol (LDL-C),

triglycerides, and high-density lipoprotein cholesterol (HDL-C)] through

Mendelian randomization.

Methods: Univariable Mendelian randomization (UVMR) and multivariable

Mendelian randomization (MVMR) with pleiotropy-resistant methods were

performed. Data for urinary sodium were obtained from the genome-wide

association study (GWAS) from 446,237 European individuals. Data for lipid

profiles were extracted from GWAS based on the UK Biobank (for the

discovery analysis) and the Global Lipids Genetics Consortium (for the

replication analysis).

Results: In the discovery analysis, UVMR provided evidence that per 1-unit log-

transformed genetically increased urinary sodium was associated with a lower

level of HDL-C level (beta = −0.32; 95% CI: −0.43, −0.20; p = 7.25E−08), but not

with LDL-C and triglycerides. This effect was still significant in the further MVMR

when considering the effect of BMI or the other two lipid contents. In contrast,

higher genetically predicted triglycerides could increase urinary sodium in both

UVMR (beta = 0.030; 95% CI: 0.020, −0.039; p = 2.12E−10) and MVMR analyses

(beta = 0.029; 95% CI: 0.019, 0.037; p = 8.13E−10). Similar results between

triglycerides and urinary sodium were found in the replication analysis.

Conclusion: Increased urinary sodiummay haveweak causal effects on decreased

circulating HDL-C levels. Furthermore, genetically higher triglyceride levels may

have independent causal effects on increased urinary sodium excretion.
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Introduction

Dyslipidemia represents the imbalance of circulating lipid

levels like low-density lipoprotein cholesterol (LDL-C),

triglycerides, and high-density lipoprotein cholesterol (HDL-C),

which leads to severe diseases in other organ systems, especially

cardiovascular disease (CVD) (1). Since CVD is the leading cause

of mortality in the world, the identification of causal risk factors

associated with dyslipidemia would provide important insights

into preventing CVD (2).

Over the past decades, high sodium consumption has been

considered closely related to CVD by promoting the development

of hypertension (3). As the golden standard for estimating salt

intake, urinary sodium has been indicated and associated in a dose–

response manner with a higher CVD risk (4). Unfortunately, few

publications have estimated the association between urinary sodium

and dyslipidemia based on observational studies. Due to the

heterogeneity in the selection of cases, controls, sample size, and

study designs, there were inconsistent conclusions across the

present publications (5–8). Moreover, because of the potential

confounding and reverse causation, observational studies are

limited in estimating causal association.

A randomized control trial (RCT) has been long regarded as the

golden standard for causality estimation, which can control the

confounding factors and provide a causal estimate with a high

evidence level. However, conducting a highly qualified RCT

requires abundant time and resources. By applying genetic

variants related to the exposure of interest as the instrumental

variable (IV), Mendelian randomization (MR) can minimize

unmeasured confounding from observational studies and estimate

the causal association between potential risk factors and health

outcomes (9). When an RCT is not easily practicable, a precisely

designed MR can provide more reliable evidence to guide

intervent ional research than observat ional ones and

complementary information for further RCTs (10).

The aims of this study were to explore whether 1) urinary

sodium exerts total and direct causal effects on circulating lipid

levels (LDL-C, triglycerides, and HDL-C) and 2) circulating lipid

levels have total and directional causal effects on the

urinary sodium.
Material and method

Study design

We conducted this study with several steps of a two-sample MR.

First, we applied bidirectional univariable MR (UVMR) to assess

the causal association between urinary sodium and circulating lipid

levels (the discovery analysis). Second, we used bidirectional

multivariable MR (MVMR) to evaluate the direct effect of urinary

sodium on circulating lipid levels and the direct effect of circulating

lipid levels on urinary sodium when accounting for body mass

index (BMI) (the discovery analysis). In each step above, we

performed replication analysis with data of circulating lipid levels
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from another database (the Global Lipids Genetics Consortium).

Supplementary Figures 1, 2 show the flow graph of each procedure.
Data source

Urinary sodium
The data on urinary sodium were obtained from 446,237

European indiv idua l s f rom the UK Biobank (UKB)

(Supplementary Table 1) (11). The sodium concentration in

collected urine samples was determined by the ion-selective

electrode method (potentiometric method) using Beckman

Coulter AU5400, UK Ltd., in which the analytic range for sodium

was 2–200 mmol/L and the coefficients of variation (CV) of the low

and high internal quality control (IQC) level of urinary sodium

were 0.99% and 0.82%, respectively (12). Participants with sex

discordance, high missingness/heterozygosity, and withdrawn

consent, as well as those who were pregnant or unsure of their

pregnancy status at baseline, were excluded. A custom Affymetrix

UKB Axiom array was applied for the genotyping of DNA samples

obtained from the UKB. The urinary sodium was log-transformed

and obtained with a linear mixed model controlling for population

stratification and correlation among individuals and was adjusted

for age and sex.
Circulating lipid levels
The data of circulating lipid levels for the discovery analysis

were obtained from a largest-to-date genome-wide association

study (GWAS) with participants of European ancestry from the

UKB (sample size: triglyceride: n = 441,016, HDL-C: n = 403,943,

LDL-C: n = 440,546) (13). The lipid traits (unit: standard deviation

[SD] [mmol/L]) were standardized/normalized using inverse rank

normalization, and the analyses were adjusted for age, sex, and

genotyping chip array. Details regarding sample handling and the

assays employed have been previously elucidated in other

publications (14, 15).

In summary, Beckman Coulter (UK), Ltd. provided assays using

the Beckman Coulter AU5800 platform, and the methods included

enzyme immuno-inhibition for HDL-C, enzymatic selective

protection for LDL-C, and enzymatic for triglycerides. The CV

for HDL-C at the low, medium, and high IQC levels were 1.81%,

1.76%, and 1.72%, respectively. For LDL-C, the CV was 1.71%,

1.59%, and 1.57% at the corresponding IQC levels, while for

triglycerides, it was 2.27%, 2.18%, and 2.05%, respectively.

The data of circulating lipid levels for the replication analysis

were extracted from the most representative GWAS of subjects

from the Global Lipids Genetics Consortium (sample size:

triglyceride: n = 177,861, HDL-C: n = 187,167, LDL-C: n =

173,082) (16). This study collected the summary statistics for

Metabochip SNPs from 45 studies. Individuals who were known

to be taking lipid-lowering medications were excluded. LDL-C

levels were directly measured in 10 studies, representing 24% of

the total study population, while in the remaining studies, they were

estimated using the Friedewald formula (16, 17). The circulating

lipid levels (unit: SD [mg/dL]) were measured after fasting for more
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than 8 h and adjusted for age, age2, and sex and then quantile-

normalized. Quality control steps involved identifying outliers,

ensuring consistent strand assignment, validating reported

statistics, checking genomic control values, and excluding rare

variants (16). This GWAS only selected European individuals for

novel genome-wide significant loci discovery, while the non-

European indiv idua ls were examined only for fine-

mapping analyses.
Statistical analyses and
Mendelian randomization

We applied TwoSampleMR (https://github.com/MRCIEU/

TwoSampleMR) to combine and harmonize data in UVMR,

bidirectional MR, and MVMR. The random-effects inverse-

variance weighted (IVW) method was utilized as the primary

method to provide a robust causal estimate in the absence of

directional pleiotropy. However, the IVW method could ignore

the potential pleiotropy, which could lead to the violence of

instrumental variable assumptions of MR (18). Therefore, we

applied sensitivity analysis like MR-Egger, weighted median,

and weighted mode methods (19). Furthermore, Cochran’s Q

statistic was used for the detection of possible heterogeneities

(p-value < 0.05 indicated the presence of heterogeneity). The

potential horizontal pleiotropy was tested by intercept obtained

from the MR-Egger analysis (p-value < 0.05 indicated the presence

of horizontal pleiotropy). To exclude the single nucleotide

polymorphism (SNP) explaining more variation for the outcome

rather than the exposure, we applied Steiger filtering to reduce the

possibility of false results because of pleiotropy and the MR

Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method for

the detection and removal of potential outliers in IVW regression

(20). Since the lipid contents could have reciprocal genetic effects

on each other and obesity has been considered closely associated

with lipid metabolism (21), we conducted MVMR to estimate the

direct causal relationship between urinary sodium and circulating

lipid levels by considering the effect of BMI and other two

lipid contents.
Mendelian randomization assumptions and
results interpretation

The MR analysis should meet the following three assumptions

to guarantee the robustness of results: 1) the IVs should robustly

associate with the exposure, 2) the IVs cannot associate with

confounders, and 3) the IVs should only affect the outcome

through exposure (19). To meet assumption 1, we only selected

genetic variants significantly associated with LDL-C and HDL-C,

triglycerides, and urinary sodium (p-value < 1 × 10−8 for urinary

sodium and p-value < 5 × 10−8 for circulating lipid level) as IVs.

Moreover, the calculated F-statistics for exposures were all larger

than 10 (Supplementary Table 2), which minimized the bias from

weak instruments (22). Furthermore, to meet assumptions 2 and 3,

we identified and excluded genetic variants that are in a state of
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linkage disequilibrium (LD) (r2 < 0.01, LD distance > 10,000kb) and

performed sensitivity analyses (MR-Egger, weighted median, and

weighted mode methods), Steiger filtering, and MR-PRESSO to

diminish potential pleiotropic effects (19). Furthermore, we

conducted Cochran ’s Q statistic for the estimation of

heterogeneity to further test assumptions 2 and 3 since the

existence of heterogeneity may result in pleiotropy of SNPs.

The MR analyses were conducted in R version 4.1.1 with

TwoSampleMR, MendelianRandomization, MR‐PRESSO, and

MVMR R packages. All the p-values are two-tailed. When the p-

value is less than 0.05 in the IVW method and the association

direction remained consistent in the results of MR-Egger, weighted

median, or weighted mode, the suggestive causal associations were

considered. The causal effects were reported in beta coefficients

since all the outcomes are continuous. The unit for urinary sodium

and lipid traits was in the SD scale.
Results

UVMR: bidirectional relationship between
urinary sodium and circulating lipid levels

In the discovery analysis, we initially included 48 SNPs for

urinary sodium. After using the MR-PRESSO and Steiger filter

method, there were 10, 16, and 12 SNPs excluded when LDL-C,

HDL-C, and triglycerides were utilized as outcomes, respectively

(Supplementary Figure 1). We observe that per 1-SD genetically

increased log-transformed urinary sodium would reduce circulating

HDL-C levels (beta = −0.32; 95% CI: −0.43, −0.20; p = 7.25E−08)

but increase triglyceride levels (beta = 0.22; 95% CI: 0.03, 0.4; p =

0.02) (Figure 1 and Supplementary Table 3). Consistent results in

IVW estimates were obtained in weighted median and weighted

mode methods (Supplementary Table 3). However, there was no

evidence that the change in urinary sodium would affect circulating

LDL-C levels (Figure 1 and Supplementary Table 3).

When the lipid levels were utilized as exposures, there were 175

SNPs for LDL-C, 434 SNPs for HDL-C, and 374 SNPs for

triglycerides included in the discovery analysis (Supplementary

Figure 2). An attenuated urinary sodium level was observed when

circulating HDL-C levels increased (beta = −0.010; 95% CI: −0.018,

−0.003; p = 0.008). Reversely, increased triglyceride levels were

indicated to elevate urinary sodium level (beta = 0.030; 95% CI:

0.020, −0.039; p = 2.12E−10) (Figure 2 and Supplementary Table 5).

The F-statistic values are 45–46 for instruments in lipid traits

(Supplementary Table 2). Heterogeneity was found between SNPs

of urinary sodium and lipid level, but no evidence for the presence

of horizontal pleiotropy was provided by the MR-Egger intercept

(Supplementary Table 3).
MVMR: bidirectional relationship between
urinary sodium and circulating lipid levels

When accounting for the effect of BMI and the other two lipid

contents, the decreased trend in circulating HDL-C level per 1-SD
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genetically increased log-transformed urinary sodium found in

UVMR remained unchanged although the statistical power was

weakened (beta = −0.21; 95% CI: −0.40, −0.02; p = 0.029). However,

the direct causal effect of urinary sodium on triglycerides was not

significant (Figure 3).

When lipid levels were utilized as exposures, there was evidence

that increased triglyceride levels had a direct causal effect on urinary

sodium (beta = 0.029; 95% CI: 0.019, 0.037; p = 8.13E−10). No

significant causal effect of LDL-C and HDL-C on urinary sodium

was found (Figure 4).
Replication analysis

In the replication analysis, we initially included 28 SNPs for

urinary sodium. After using the MR-PRESSO and Steiger filter

method, there were 2, 2, and 8 SNPs excluded when LDL-C, HDL-

C, and triglycerides were utilized as outcomes, respectively

(Supplementary Figure 1).
Frontiers in Endocrinology 04
In UVMR, a reduced HDL-C level per 1-SD increased urinary

sodium remained significant although the statistical power was

reduced (beta = −0.37; 95% CI: −0.60, −0.14; p = 0.001) (Figure 1

and Supplementary Table 4). However, the causal effect of urinary

sodium on triglyceride levels was weakened to null (beta = 0.24; 95%

CI: −0.01, 0.49; p = 0.061) (Figure 1 and Supplementary Table 4).

When the lipid levels were utilized as exposures, there were 93 SNPs

for LDL-C, 116 SNPs for HDL-C, and 65 SNPs for triglycerides

included in the discovery analysis (Supplementary Figure 2). The

effect of circulating HDL-C levels on urinary sodium level was not

found to be significant (beta = −0.001; 95% CI: −0.009, 0.007; p =

0.869). On the contrary, a significant effect of higher triglyceride

levels on increased urinary sodium level was found (beta = 0.014;

9 5% CI : 0 . 0 0 2 , 0 . 0 2 5 ; p = 0 . 0 21 ) ( F i gu r e 2 and

Supplementary Table 6).

In the replication analysis of MVMR, no significant association

was found when urinary sodium was utilized as the exposure

(Figure 3). However, when lipids were utilized as outcomes, a

direct causal effect of increased triglyceride levels on urinary
FIGURE 2

Forest plot of univariable Mendelian randomization analysis for the effect of circulating lipid level on urinary sodium. LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol.
FIGURE 1

Forest plot of univariable Mendelian randomization analysis for the effect of urinary sodium on circulating lipid level. LDL-C, low-density lipoprotein
cholesterol; HDL-C, high-density lipoprotein cholesterol.
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sodium still holds (beta = 0.014; 95% CI: 0.003, 0.025; p =

0.011) (Figure 4).
Discussion

In this genetics-based causal investigation, we reported genetic

evidence for the bidirectional causal association between urinary

sodium and circulating lipid levels. The results of UVMR

supported that increased urinary sodium would decrease circulating

HDL-C levels, but only a weak association was found in the further

MVMR. Meanwhile, higher genetically predicted triglycerides could

increase urinary sodium, and the tendency holds in both UVMR and

MVMR analyses. Collectively, our results suggested the bidirectional

association between urinary sodium and circulating lipid levels.

Our findings for the relationship between urinary sodium and

circulating HDL-C levels are comparable to previous publications. A

cross-sectional study involving 223 Chilean individuals (6.9–65.0

years old) indicated an inverse correlation between urinary sodium
Frontiers in Endocrinology 05
and HDL-C (r = −0.2093, p = 0.0018), but it was not significant after

adjusting for age, gender, and BMI (23). González and colleagues

included 490 patients with mild essential hypertension (144 ± 9/94 ±

9 mmHg, 49.5 ± 13.9 years), and they found significantly low HDL-C

levels in the high urinary sodium group (24). Similarly, another cross-

sectional study with a larger sample size (1,738 boys aged 10–18

years) also demonstrated a reverse association between higher urinary

sodium excretion to urinary specific gravity ratio and lower HDL-C

levels (p = 0.033) (25). However, the observational studies above

failed to assess the causal relation due to the study design. Consistent

with a previous MR study with a smaller sample size (n = 187,167 vs.

ours n = 403,943) (26), we demonstrated the causal effect of higher

urinary level on lower HDL-C levels. Although the further discovery

MVMR analysis indicated a direct causal effect, this effect failed to

hold in the replication analysis. It is essential to emphasize that our

study is an MR study, designed to offer genetic evidence of potential

causal relationships. Although our study hints at a weak causal link

between increased urinary sodium and reduced circulating HDL-C

levels, caution should be exercised when interpreting this finding
FIGURE 4

Forest plot of multivariable Mendelian randomization analysis for the effect of circulating lipid level on urinary sodium. LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
FIGURE 3

Forest plot of multivariable Mendelian randomization analysis for the effect of urinary sodium on circulating lipid level. LDL-C, low-density
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
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since it only suggests a possible causal connection, and further

research is needed to validate these results.

The pathophysiology of the association between sodium intake

and HDL-C has not been fully elucidated. Emerging evidence

suggests that the kidney plays a pivotal role in lipid metabolism,

particularly concerning HDL-C. This involvement includes the

tubular handling of filtered HDL-C apolipoprotein constituents

through the cubilin–megalin–amnionless system (27). Krikken and

colleagues proposed a hypothesis that reduced glomerular filtration of

HDL-C apolipoproteins contributes to HDL-C catabolism although

their findings, indicating that short-term dietary sodium restriction

would decrease HDL-C, contradict our results (28). Furthermore,

urinary sodium excretion has been positively linked to insulin

resistance (29), which can lead to abnormalities in HDL-C levels.

In this context, hyperinsulinemia resulting from insulin resistance

can promote triglyceride contents in HDL-C particles by enhancing

cholesteryl ester transferase activity. This hyperinsulinemia is also a

critical factor in reducing plasma HDL-C levels (30). Taken together

with our findings, these results suggest that urinary sodium excretion

may indeed have a causal impact on HDL-C levels although it may be

influenced by other confounding factors. Further studies with larger

sample sizes are warranted to provide a more comprehensive

understanding of this relationship.

In UVMR, the causal effect of urinary sodium on serum

triglycerides was indicated in the discovery analysis. Although it

has been reported that higher sodium excretion was related to higher

triglyceride levels in several publications (5, 23, 24, 31), these findings

were not demonstrated in the replication and further MVMR

analysis. Conclusions about such relationships should therefore be

treated with caution since they could be confounded by factors like

obesity. Reversely, our study has further provided evidence that

increased serum triglycerides could elevate urinary sodium in both

discovery and replication analyses. In line with previous studies

showing that high triglycerides were reported to be associated with

high urinary sodium excretions in patients with nephrolithiasis (32,

33), our findings have expanded the causality and supported the

direct effects of triglycerides on urinary sodium. In animal

experiments, focal and segmental glomerulosclerosis has been

found in Dahl salt-sensitive hypertensive rats with a high-salt diet,

and Hirano and colleagues found pronounced hypertriglyceridemia

in these rats even when they were fed a standard rat chow. Hirano

believed that hypertriglyceridemia could be a result of both

overproduction and impaired catabolism of very-low-density

lipoprotein and triglycerides (34). Furthermore, mineralocorticoid

receptor activation has been indicated to promote triglyceride

accumulation post-feeding (35). In mice fed with high Na+ and

high-fat diet, a lower expression of mineralocorticoid receptor was

found in the liver (36). Therefore, we hypothesized that the

relationship between urinary sodium and triglycerides may be

related to the alteration of mineralocorticoid receptors.

There are some strengths in our study. Firstly, compared with a

previous MR study (26), a GWAS with a larger sample size was

included, and the potential reverse causality between urinary

sodium and lipid levels was evaluated. Secondly, we conducted

both discovery and replication analysis using samples from the

UKB and the Global Lipids Genetics Consortium, which guaranteed
Frontiers in Endocrinology 06
the robustness of the results. Thirdly, we additionally applied

several rigorous MR methods to assess causality throughout the

analysis. However, we acknowledged some limitations. Firstly, the

generalizability of our findings may be limited because only

individuals with European ancestry were included. Secondly, the

sample for urinary sodium and lipid levels is partially overlapped in

the UKB part. Although the two-sample MR can still be applied in

this situation (32), it may bring the winner’s curse bias, which refers

to the phenomenon where the initial results of an association often

appear to be exaggerated, deviating significantly from the null

hypothesis, while subsequent replication studies tend to yield

more conservative estimates (37). Third, although we used

MVMR to estimate the association between urinary sodium and

the three lipids and the other pleiotropy-resistant MR methods

provided consistent results, there remains a potential residual bias

due to pleiotropic associations among the lipid variants.
Conclusion

The major finding is that our study provided genetic evidence

that increased urinary sodium may have weak causal effects on

decreased circulating HDL-C levels. Furthermore, genetically higher

triglyceride levels may have independent causal effects on increased

urinary sodium excretion. Moreover, reducing sodium intake may be

beneficial for lipid regulation, especially HDL-C. Further

interventional studies are warranted to confirm these results.
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