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Background: ICSI (intracytoplasmic sperm injection) leads to a reducedmale-to-

female ratio at birth, whereas blastocyst transfer results in an increased male-to-

female ratio. However, limited knowledge exists regarding the impact of these

factors on the live birth rate for each gender. This study aimed to investigate the

influence of patient characteristics and treatment parameters on the live birth

rate for each gender, as well as the ultimate male-to-female ratio at birth in

frozen-thawed embryo transfer (FET) cycles.

Method: This retrospective cohort study involved a total of 28,376 FET cycles

and 9,217 subsequent deliveries, spanning from January 2003 to December

2015. The study consisted of two parts. First, logistic regression models were

constructed to determine the factors influencing the male-to-female ratio

among babies born after FET. Second, we aimed to investigate the

mechanisms underlying this sex ratio imbalance by analyzing data from all

transfer cycles. Generalized estimated equations were employed to assess the

impact of risk factors on rates of male and female live births separately.

Results: ICSI resulted in a lower proportion ofmale offspring compared to in vitro

fertilization (IVF) (50.1% vs. 53.7%, aOR: 0.87, 95% CI: 0.80-0.96). Conversely,

blastocyst transfer yielded a higher proportion of male offspring than cleavage-

stage embryo transfer (58.7% vs. 51.6%, aOR: 1.32, 95% CI: 1.17-1.48). Analysis of

all cycles indicated that ICSI resulted in a reduced likelihood of male live birth in

comparison to IVF (19.8% vs. 21.6%, aOR: 0.90, 95% CI: 0.83-0.97). However, the

transfer of blastocysts rather than cleavage-stage embryos not only increased

the chance of male live birth (26.9% vs. 20.2%, aOR: 1.70, 95% CI:1.56-1.85) but

also facilitated female live birth (20.3% vs. 19.3%, aOR: 1.26, 95% CI: 1.15-1.39).
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Conclusion: ICSI was associated with a reduction in themale-to-female sex ratio

and a lower rate of male live births, while blastocyst transfer was associated with

an increased male-to-female sex ratio at birth and a higher rate of male live

births.
KEYWORDS
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Introduction

Ever since the first birth accomplished through in vitro

fertilization (IVF) in 1978 (1), the advent of IVF has brought

approximately 10 million infants into the world (2). In recent

years, IVF births have accounted for approximately 1% and 2% of

all deliveries in China and in the United States, respectively (3, 4).

Nevertheless, anxiety lingers in society regarding the potential

repercussions of this artificial mode of conception, particularly

with regard to its impact on the resulting offspring.

The general male-to-female ratio of all births (i.e., the

p r opo r t i on o f ma l e n ewbo rn s ) t end s t o hov e r a t

approximately 51.2% (male:female=105:100) (5); this ratio

plays a critical role in facilitating social equilibrium and

warding off undesirable socioeconomic consequences (6). The

ratio itself, in turn, is dependent on a multitude of factors

spanning the realms of biology (e.g., the age and body mass

index (BMI) of the mother and father), the environment (e.g.,

exposure to pollutants and pesticides), society (e.g., gender
02
selection and selective abortion), and economics (e.g.,

economic downturns and stressors) (7–17).

Additionally, the impact of procedures used in assisted

reproduction technology (ART) on the male-to-female ratio

cannot be disregarded. As presented in Table 1, studies have

suggested that intracytoplasmic sperm injection (ICSI) may

increase the proportion of female offspring by 2.2–5.4% compared

to IVF (19–21, 24). In contrast, blastocyst transfer has been found to

be associated with a sex-ratio imbalance, resulting in 2.7–3.8% more

male offspring (19, 21, 25–27). Although these two outcomes have

been extensively documented, there has been limited research

investigating the relationships of various factors involved in ART

(such as the underlying characteristics of infertile couples,

reproductive history, and treatment interventions) with male-to-

female ratio at birth. Furthermore, it remains unknown whether

these factors have a gender-specific impact on the live birth rate.

The objective of this study was to analyze the potentially differential

impact of various risk factors on live birth rate for each gender in

couples undergoing frozen-thawed embryo transfer (FET).
TABLE 1 Summary of previous and current studies on sex ratio
†
.

Study Region Study
design

Period Sample
size

Reported sex ratio †

Overall Cleavage
transfer

Blastocyst
transfer

IVF ICSI

Cirkel et al.,
2018 (18)

Germany Population-
based

1997–
2009

59,628 50.8%* NA NA 52.2% 50.0%

Dean et al., 2010
(19)

Australia and New
Zealand

Population-
based

2002–
2006

13,368 51.3% 49.9% 54.1% 53.0% 50.0%

Bu et al., 2014
(20)

China Cohort 2002–
2012

121,247 51.8% 51.4% 54.9% 52.3% 49.7%

Luke et al., 2009
(21)

United States Population-
based

2005 15,164 52.5% 48.9% 51.6% 51.4% 48.8%

Arikawa et al.,
2016 (22)

Japan Cohort 2007–
2012

27,158 50.9% 49.9% 52.9% 53.1% 47.7–
48.2%

Ishihara et al.,
2014 (23)

Japan Population-
based

2008–
2010

47,895 52.6%* 50.0%, 50.2%*# 53.1%, 53.9%*# NA NA

Current study China Cohort 2003–
2015

10,576 52.3%
(6982/
6380)

51.2%
(5864/5580)

58.3%
(1118/800)

53.1%
(5026/
4436)

50.2%
(1956/
1944)
front
†Sex ratio at birth is defined as the proportion of male offspring.
*Values calculated in the form of original male-to-female odds.
#For fresh and frozen transfer cycles, respectively.
IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; NA, not available.
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Methods

Ethical approval

This study was approved by the Institutional Review Board of

Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University

School of Medicine (SH9H-2021-T271-1).
Study design and population

This retrospective cohort study was conducted at the

Department of Assisted Reproduction of Shanghai Ninth People’s

Hospital, Shanghai Jiao Tong University School of Medicine. The

study screened patients who underwent FET treatment between

January 2003 and December 2015, ensuring that complete

information was available. In the analyses of data on live births,

patients who delivered twins of different genders and those with

multiple deliveries during the study period were excluded.
Treatment

The IVF/ICSI procedures followed have been described in our

previous publications (28). In brief, fertilization was performed

either by IVF or by ICSI 4–6 hours after oocyte retrieval. On Day 3,

embryos were evaluated according to the Cummins criteria (29).

Embryos graded as I and II were cryopreserved on Day 3, while

culture of embryos classified as III/IV was extended until Day 7 to

enable the selection of morphologically good blastocysts using the

Gardner and Schoolcraft grading system; blastocysts meeting the

minimum requirement of 3CC were considered eligible for

cryopreservation on Day 7 (29, 30).

Endometrial preparation and the FET procedure have

previously been described in detail (28). In brief, endometrial

preparation was conducted using modified natural cycles, mild

stimulation cycles, or hormonal therapy treatments for patients

with regular menstrual cycles, irregular menstrual cycles, or a

history of thin endometrium, respectively. A progestin

supplement was administered until 10 weeks of gestation after

achievement of pregnancy.
Statistical analysis

Data are presented in the form of % (n/N). Between-groups

differences were assessed using the Chi-square test or Fisher’s exact

test, whichever was appropriate. Statistical significance was

determined by a P-value <0.05, and odds ratio (ORs) and 95%

confidence intervals (CIs) were calculated as indicators of

statistically significant effects. Data analysis was conducted using

the SPSS software package, version 23.0 (SPSS Inc., Chicago, USA).

Factors analyzed in this study includedmaternal age (≤29, 30-34, 35-

37, 38-40, 41-43, or≥44),maternal BMI (<18.5, 18.5-24, or >24), partner

age (≤29, 30-39, 40-49, or ≥50), duration of infertility (≤1, 2-4, 5-9, ≥10

years), previous miscarriages (0, 1, or ≥2), previous ectopic pregnancy
Frontiers in Endocrinology 03
(yes or no), tubal factor infertility (yes or no), PCOS (yes or no),

endometriosis (yes or no), male factor infertility (yes or no), treatment

year (2003-2009, 2010-2011, 2012-2013, or 2014-2015), fertilized

method (IVF or ICSI), endometrial preparation for FET (natural cycle,

hormone therapy treatment, ormild stimulation), endometrial thickness

at transfer (≤8, 8-15, or ≥15mm), number of embryos transferred (1, 2,

or 3), and embryonic stage at transfer (cleavage or blastocyst).

First, we analyzed the male-to-female ratio among live-born

babies. Univariate logistic regression was employed to examine the

potential effects of various characteristics on the male-to-female

ratio. Multivariate logistic regression analysis, using the conditional

backward method, was conducted to identify variables with a

significant influence on the male-to-female ratio among offspring,

and to calculate adjusted odds ratios (aORs) and 95% confidence

intervals (CIs). The significance of the models was assessed based on

the −2 log likelihood, and their goodness of fit of models was

evaluated using Nagelkerke’s R2.

Second, we investigated the impact of the aforementioned risk

factors on live birth rate for each gender across all transfer cycles.

Generalized estimated equation (GEE) models were conducted to

address the issue of clustered data (multiple cycles for the same

woman), and to calculate ORs and 95% CIs. Significant variables

(defined as P < 0.2 in a Chi-square test or Fisher’s exact test) were

included in multivariate models. GEE models were evaluated based

on the quasi-likelihood under independence model criterion.

Finally, we investigated the relationships between each of the

aforementioned characteristics and the gender of newborns in all

cases of live births involving twins. A multivariate logistic regression

model (using the simultaneous entry method) was constructed to

calculate aORs and 95% CIs.
Results

Figure 1 illustrates the analysis of 29,370 cycles conducted

between January 2003 and December 2015, with the aim of

examining the relationships between various risk factors and the

live birth rate for each gender. Among these cycles, a total of 10,576

cycles resulted in live births. After the exclusion of twin deliveries

involving babies of different genders (n = 1,304) and repeated

deliveries by the same women (n = 55), a total of 9,217 deliveries

were included for assessment of the associations between the risk

factors and the male-to-female ratio at birth; these consisted of

5,639 male babies and 5,047 female babies.
Association between risk factors and
male-to-female ratio among all
live-born babies

Table 2 presents the male-to-female ratio among all live-born

babies when stratified based on patient and treatment

characteristics. In comparison to IVF, ICSI resulted in a lower

proportion of male offspring (50.1% vs. 53.7%, aOR: 0.87, 95% CI:

0.80–0.96). However, blastocyst transfer was associated with a
frontiersin.org
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higher likelihood of male offspring compared to cleavage embryo

transfer (58.7% vs. 51.6%, aOR: 1.32, 95% CI: 1.17–1.48).
Association between risk factors and
newborn gender among all transfer cycles

Table 3 presents a comprehensive overview of the male and

female live birth rates based on patient and treatment

characteristics. Table 4 shows the results of multivariate analysis.

In the adjusted analysis, it was observed that women undergoing

ICSI had a reduced likelihood of male live birth (aOR: 0.90, 95% CI:

0.83–0.97). The chances of both male and female live birth were

increased when blastocysts were transferred rather than cleavage-

stage embryos (male: aOR 1.70, 95% CI 1.56–1.85; female: aOR

1.26, 95% CI 1.15–1.39).
Association between risk factors
and newborn gender among all
live birth of twins

The results of the subgroup analysis are displayed in Table 5.

When blastocyts were transferred, as opposed to cleavage-stage
Frontiers in Endocrinology 04
embryos, the likelihood of delivery of two male twins was

significantly higher, whereas the likelihood of delivery of two

female twins was noticeably lower (two male twins: aOR 1.78,

95% CI 1.42–2.24; two female twins: aOR 0.64, 95% CI 0.48–0.84).
Discussion

This retrospective cohort study not only confirmed previous

findings regarding the association between blastocyst transfer and a

skew towards male offspring, as well as the tendency for ICSI to

result in fewer male offspring, but also expanded upon these

findings by analyzing the rate of live births of each gender. The

findings revealed that ICSI was linked to a lower rate of male live

births, and that blastocyst transfer favored male live births over

female live births.

Jacobsen et al. analyzed a population of over 800,000 babies

born in Denmark between 1980 and 1993, establishing a natural

reference point for the male-to-female ratio at birth of

approximately 51.2% males (5). As summarized in Table 1,

previous studies have reported male-to-female ratios following

IVF ranging from 50.8% males to 52.6% males (18–23). In the

present study, the overall male-to-female ratio was 52.3% males,

surpassing the figures reported in previous studies. This discrepancy

may be attributed to variations in the incidence of various risk

factors. Our study involved a lower rate of use of ICSI (29.5%)

compared to previous studies (44.8%–61.9%) (18, 19, 22), while a

larger proportion of patients in our study underwent blastocyst

transfer (14.5%) compared to a study conducted in 2014

(10.9%) (20).

The relationship between maternal age and the male-to-female

ratio at birth remains controversial. Rueness et al. have reported a

positive association between maternal age and male-to-female ratio

at birth, attributing this association to an increased risk of

miscarriage related to adverse events during pregnancy in female

fetuses (7). Conversely, Matsuo et al. have reported that advanced

maternal age is associated with a higher likelihood of female

offspring (31). Beyond these two studies, most research has failed

to establish a significant relationship between maternal age and the

male-to-female ratio at birth (18, 21, 22, 32). In our study, we

observed that advanced maternal age was associated with a

decreased live birth rate for both genders, but did not influence

the final male-to-female ratio.

Our study identifies a possible mechanism underlying the

alteration in sex ratio associated with ICSI (19–21, 24). Specifically,

we found that ICSI was correlated with a decreased likelihood of male

live births, and this may be attributable to selection preference in ICSI

procedures. Unlike IVF, ICSI involves the artificial selection of

spermatozoa, primarily based on their morphology and motility. A

prospective randomized study has shown that intracytoplasmic

morphologically selected sperm injection (IMSI), in which a high-

magnification microscope is employed for sperm selection, results in

a higher proportion of female embryos compared to standard ICSI

(66.9% vs. 52.5%, respectively). Additionally, it was observed that

morphologically normal spermatozoa were less likely to carry the Y

chromosome (33). Consequently, Y-bearing spermatozoa might be
FIGURE 1

Flow chart of the study.
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TABLE 2 Sex ratio by patient characteristics and treatment parameters for all live births.

Male offspring,
n (%)

Live births, n
(N=9217)

P
Crude OR
(95% CI)

Adjusted OR (95% CI)

Maternal age 0.886

≤29 1478 (52.2) 2834 Reference

30-34 2223 (52.7) 4219 1.02 (0.93-1.12)

35-37 748 (53.6) 1396 1.06 (0.93-1.20)

38-40 306 (53.0) 577 1.04 (0.87-1.24)

41-43 85 (49.1) 173 0.89 (0.65-1.21)

≥44 10 (55.6) 18 1.15 (0.45-2.91)

Maternal BMI 0.56

<18.5 3405 (52.5) 6491 0.98 (0.86-1.11)

18.5-24 575 (51.9) 1108 Reference

>24 870 (53.8) 1618 1.05 (0.95-1.18)

Male partner age 0.515

≤29 917 (51.4) 1784 Reference

30-39 3300 (52.9) 6233 1.06 (0.96-1.18)

40-49 593 (53.1) 1116 1.07 (0.92-1.25)

≥50 40 (47.6) 84 0.86 (0.56-1.33)

Duration of infertility (years) 0.854

≤1 894 (53.2) 1618 Reference

2-4 2437 (52.3) 4656 0.97 (0.87-1.08)

5-9 1268 (53.0) 2392 0.99 (0.88-1.13)

≥10 251 (51.4) 488 0.93 (0.76-1.14)

Previous miscarriages 0.566

0 2622 (52.1) 5029 Reference

1 1303 (53.0) 2459 1.04 (0.94-1.14)

≥2 925 (53.5) 1729 1.06 (0.95-1.18)

Previous ectopic pregnancy 0.781

No 4383 (52.7) 8322 Reference

Yes 467 (52.2) 895 0.98 (0.85-1.13)

Tube factor 0.394

No 2418 (52.2) 4634 Reference

Yes 2432 (53.1) 4583 1.04 (0.96-1.12)

PCOS 0.083

No 4541 (52.9) 8590 Reference

Yes 309 (49.3) 627 0.87 (0.74-1.02)

(Continued)
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less likely to be selected in the artificial selection process involved in

ICSI, leading to a reduced chance of male live births. Furthermore, it

is noteworthy that oocytes exhibit higher susceptibility to Y-bearing

spermatozoa, which suggests that oocytes might have a greater

tendency to be fertilized by Y-bearing spermatozoa in IVF

compared to ICSI (34–36). However, it is important to note that

the advantage of Y-bearing spermatozoa in IVF, in terms of

fertilization chance, may be eliminated in ICSI procedures.

Although ICSI is commonly recommended for patients with severe
Frontiers in Endocrinology 06
male factor infertility, such as severe oligoasthenoteratozoospermia

(37), neither previous studies (21, 38) nor our current study have

identified any association between male factor infertility and the

male-to-female ratio at birth, suggesting that the ICSI procedure itself

may act as an independent factor influencing the male-to-

female ratio.

In line with previous studies (19, 21, 25–27), our findings also

showed that blastocyst transfer was associated with a significantly

higher male-to-female ratio at birth compared to cleavage embryo
TABLE 2 Continued

Male offspring,
n (%)

Live births, n
(N=9217)

P
Crude OR
(95% CI)

Adjusted OR (95% CI)

Endometriosis 0.550

No 4473 (52.5) 8515 Reference

Yes 377 (53.7) 702 1.05 (0.90-1.22)

Male factor 0.009

No 3272 (53.6) 6105 Reference

Yes 1578 (50.7) 3112 0.89 (0.82-0.97)

Treatment year 0.003 0.97 (0.95-0.99)

2003-2009 283 (52.1) 543

2010-2011 984 (56.6) 1737

2012-2013 2217 (51.5) 4303

2014-2015 1366 (51.9) 2634

Fertilization method 0.001

IVF 3477 (53.7) 6474 Reference Reference

ICSI 1373 (50.1) 2743 0.86 (0.79-0.95) 0.87 (0.80-0.96)

Endometrial preparation for FET 0.086

Natural cycle 1418 (53.7) 2643 Reference

Mild stimulation 1615 (53.4) 3023 0.99 (0.89-1.10)

HRT 1817 (51.2) 3551 0.91 (0.82-1.00)

Endometrial thickness at transfer, mm 0.238

≤8 316 (54.1) 584 Reference

8-15 4146 (52.3) 7931 1.08 (0.91-1.27)

≥15 388 (55.3) 702 1.13 (0.97-1.32)

Embryo stage at transfer <0.001

Cleavage stage 4057 (51.6) 7865 Reference Reference

Blastocyst stage 793 (58.7) 1352 1.33 (1.19-1.50) 1.32 (1.17-1.48)

No. of embryos transferred 0.516

1 554 (54.3) 1020 Reference

2 4145 (52.4) 7908 0.93 (0.81-1.06)

3 151 (52.2) 289 0.92 (0.71-1.20)
Values are presented in the form number (percentage). BMI, body mass index; PCOS, polycystic ovary syndrome; OPU, ovum pick-up; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm
injection; FET, frozen-thawed embryo transfer; HRT, hormone replacement therapy; COR, crude odds ratio; AOR, adjusted odds ratio; CI, confidence interval.
Bold indicates statistical significance.
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TABLE 3 Rates of births of male and female offspring by patient characteristics and treatment parameters for all transferred cycles.

Cycles, n Male offspring, n (%) P Female offspring, n (%) P

Total 29370 6185 (21.1) 5695 (19.4)

Maternal age <0.001 <0.001

≤29 7498 1978 (26.4) 1855 (24.7)

30-34 12215 2851 (23.3) 2624 (21.5)

35-37 4654 912 (19.6) 807 (17.3)

38-40 2615 338 (12.9) 301 (11.5)

41-43 1552 95 (6.1) 99 (6.4)

≥44 836 11 (1.3) 9 (1.1)

Maternal BMI 0.155 0.005

<18.5 20662 4355 (21.1) 682 (20.8)

18.5-24 3276 724 (22.1) 4031 (19.5)

>24 5432 1106 (20.4) 982 (18.1)

Male partner age <0.001 <0.001

≤29 4725 1219 (25.8) 1166 (24.7)

30-39 18818 4220 (22.4) 3848 (20.4)

40-49 5258 700 (13.3) 632 (12.0)

≥50 569 46 (8.1) 49 (8.6)

Duration of infertility (years) <0.001 <0.001

≤1 4886 1183 (24.2) 1070 (21.9)

2-4 14320 3184 (22.0) 2933 (20.5)

5-9 7806 1552 (19.9) 1405 (18.0)

≥10 2358 302 (12.8) 287 (12.2)

Previous miscarriages <0.001 <0.001

0 15166 3366 (22.2) 3154 (20.8)

1 7818 1659 (21.2) 1503 (19.2)

≥2 6386 1160 (18.2) 1038 (16.3)

Previous ectopic pregnancy 0.003 0.002

No 26781 5580 (20.8) 5132 (19.2)

Yes 2589 605 (23.4) 563 (21.7)

Tubal factor 0.751 0.406

No 14759 3097 (21.0) 2890 (19.6)

Yes 14611 3088 (21.1) 2805 (19.2)

PCOS <0.001 <0.001

No 27704 5764 (20.8) 5264 (19.0)

Yes 1666 421 (25.3) 431 (25.9)

(Continued)
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transfer. Remarkably, this association was also observed in the

subgroup of all live births of twins. Furthermore, our study

revealed a possible previously unrecognized mechanism

underlying this association: a sex-related differential response to

blastocyst culture in vitro. We found that blastocyst culture in vitro

increased the chance of live birth by 70% for male embryos, whereas

the increase for female embryos was only 26%. Two potential

explanations for this effect can be considered.
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First, it is possible that male embryos exhibit faster growth rates

than female embryos, resulting in better morphological grades.

Alfarawati et al. found that male embryos were 2.6 times more

likely to develop into grade 5 or 6 blastocysts compared to female

embryos. Additionally, they reported that among the slowest-

growing embryos (grade ≤ 3), 60% (124 of 207) were female,

while only 40% (83 of 207) were male (39). A study by Ray

additionally showed that male embryos have more cells on Day 2
TABLE 3 Continued

Cycles, n Male offspring, n (%) P Female offspring, n (%) P

Endometriosis 0.222 0.834

No 27336 5735 (21.0) 5297 (19.4)

Yes 2034 450 (22.1) 398 (19.6)

Male factor 0.994 <0.001

No 19912 4193 (21.1) 3746 (18.8)

Yes 9458 1992 (21.1) 1949 (20.6)

Treatment year <0.001 <0.001

2003-2009 2527 359 (14.2) 336 (13.3)

2010-2011 5992 1261 (21.0) 1024 (17.1)

2012-2013 13379 2832 (21.2) 2700 (20.2)

2014-2015 7472 1733 (23.2) 1635 (21.9)

Fertilization method <0.001 0.224

IVF 20586 4443 (21.6) 3954 (19.2)

ICSI 8784 1742 (19.8) 1741 (19.8)

Endometrial preparation for FET <0.001 <0.001

Natural cycle 8769 1795 (20.5) 1599 (18.2)

Mild stimulation 10491 1988 (18.9) 1780 (17.0)

HRT 10110 2402 (23.8) 2316 (22.9)

Endometrial thickness at transfer (mm) <0.001 <0.001

≤8 24920 5307 (21.3) 332 (13.4)

8-15 2476 380 (15.3) 4943 (19.8)

≥15 1974 498 (25.2) 420 (21.3)

Embryo stage at transfer <0.001 0.164

Cleavage stage 25780 5220 (20.2) 4968 (19.3)

Blastocyst stage 3590 965 (26.9) 727 (20.3)

No. of embryos transferred <0.001 <0.001

1 3953 565 (14.3) 470 (11.9)

2 24136 5417 (22.4) 5035 (20.9)

3 1281 203 (15.8) 190 (14.8)
fron
Values are presented in the form number (percentage). BMI, body mass index; PCOS, polycystic ovary syndrome; OPU, ovum pick-up; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm
injection; FET, frozen-thawed embryo transfer; HRT, hormone replacement therapy.
Bold indicates statistical significance.
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TABLE 4 ORs of live birth of male and female offspring according to patient characteristics and treatment parameters across all transferred cycles.

Male offspring Female offspring

COR (95% CI) AOR (95% CI) COR (95% CI) AOR (95% CI)

Maternal age

≤29 Reference Reference Reference Reference

30-34 0.85 (0.79-0.91) 0.89 (0.82-0.96) 0.83 (0.78-0.89) 0.91 (0.84-0.99)

35-37 0.68 (0.62-0.74) 0.75 (0.68-0.84) 0.64 (0.58-0.70) 0.74 (0.67-0.83)

38-40 0.41 (0.37-0.47) 0.49 (0.42-0.58) 0.40 (0.35-0.45) 0.50 (0.42-0.58)

41-43 0.18 (0.15-0.23) 0.23 (0.18-0.29) 0.21 (0.17-0.26) 0.27 (0.21-0.34)

≥44 0.04 (0.02-0.07) 0.05 (0.03-0.09) 0.03 (0.02-0.06) 0.04 (0.02-0.09)

Maternal BMI

<18.5 1.06 (0.97-1.16) 0.94 (0.86-1.04) 1.09 (0.99-1.19) 0.98 (0.89-1.07)

18.5-24 Reference Reference Reference Reference

>24 0.96 (0.89-1.03) 1.01 (0.94-1.10) 0.91 (0.84-0.99) 0.93 (0.86-1.01)

Male partner age

≤29 Reference Reference Reference Reference

30-39 0.86 (0.79-0.92) 1.02 (0.94-1.12) 0.79 (0.73-0.85) 0.97 (0.89-1.07)

40-49 0.46 (0.41-0.51) 1.03 (0.90-1.18) 0.42 (0.38-0.46) 0.96 (0.84-1.10)

≥50 0.26 (0.19-0.35) 0.88 (0.63-1.23) 0.29 (0.21-0.39) 0.95 (0.68-1.31)

Duration of infertility (years)

≤1 Reference Reference Reference Reference

2-4 0.88 (0.82-0.95) 0.86 (0.80-0.94) 0.92 (0.85-0.99) 0.90 (0.83-0.98)

5-9 0.78 (0.71-0.85) 0.84 (0.76-0.92) 0.78 (0.72-0.86) 0.86 (0.78-0.94)

≥10 0.46 (0.40-0.53) 0.73 (0.63-0.85) 0.49 (0.43-0.57) 0.81 (0.69-0.94)

Previous miscarriages

0 Reference Reference Reference Reference

1 0.94 (0.88-1.01) 1.00 (0.94-1.08) 0.91 (0.85-0.97) 0.99 (0.92-1.07)

≥2 0.78 (0.72-0.94) 0.94 (0.87-1.03) 0.74 (0.68-0.80) 0.92 (0.85-1.01)

Previous ectopic pregnancy

No Reference Reference Reference Reference

Yes 1.16 (1.05-1.28) 1.00 (0.90-1.12) 1.17 (1.06-1.30) 1.05 (0.94-1.17)

PCOS

No Reference Reference Reference Reference

Yes 1.29 (1.15-1.45) 1.08 (0.95-1.21) 1.49 (1.33-1.67) 1.24 (1.10-1.39)

Male factor

No – – Reference Reference

Yes - – 1.12 (1.05-1.19) 1.10 (1.07-1.12)

(Continued)
F
rontiers in Endocrinology
 09
 frontiersin.org

https://doi.org/10.3389/fendo.2023.1188433
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Du et al. 10.3389/fendo.2023.1188433
compared to female embryos (40). Similarly, Pergament et al.

observed that the percentage of male embryos with four or more

cells on Day 2 was six times higher than that of female embryos (41).

Animal studies have indicated that male embryos tend to develop at

a faster rate than female embryos, resulting in a higher proportion

of good-quality male embryos on Day 3 (42–44). Dumoulin et al.

counted blastocyst cell numbers and found that male blastocysts

derived from ICSI had more cells than female blastocysts (106.00 ±

9.06 vs. 65.00 ± 9.17, P < 0.01) (45). One possible explanation for

the delayed development observed in female embryos is their higher

requirement for glucose during the pre-implantation stage

compared to male embryos (46–48). Although several studies

have shown that there is no sex imbalance among blastocysts (39,

49), it is important to consider the selection process of blastocysts

for transfer, which was primarily based on morphological criteria,

such as cell number and degree of tightness, as well as

developmental stage according to the Gardner and Schoolcraft

grade system (29). Hence, when embryos are assessed at roughly

the same time point, male embryos (with their higher cell count)

may tend to receive better grades, potentially resulting in an

increased chance of selection of male embryos for transfer.
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Second, there is a possibility that the in vitro environment may

have an adverse effect in terms of X chromosome inactivation

(XCI), which in turn may impair the development of female

embryos. At the appropriate time, XCI is a crucial step in the

normal development of female embryos (50). However, studies have

suggested that an unphysiological environment might lead to

precocious random XCI in human embryonic stem cells (51). In

the context of bovine embryos, Oliveira et al. found that in vitro

culture was associated with higher expression of XIST, a major

controller of XCI, compared to in vivo conditions (52). Interference

with the appropriate timing of XCI during in vitro culture could

potentially disrupt the normal process of implantation and

development, and even lead to early embryonic death.

To the best of our knowledge, this study is the first to explore

the influence of risk factors on the live birth rate for each gender,

providing new insights into the mechanisms underlying the skewed

male-to-female ratio associated with IVF/ICSI and FET. Another

key strength of this study lies in the comprehensive exploration of

the association between the male-to-female ratio at birth and

various factors involved in ART, including the clinical

characteristics of infertile couples and treatment interventions, on
TABLE 4 Continued

Male offspring Female offspring

COR (95% CI) AOR (95% CI) COR (95% CI) AOR (95% CI)

Treatment year 1.08 (1.06-1.10) 1.08 (1.06-1.10) 1.10 (1.09-1.13) 1.10 (1.07-1.12)

Fertilization method

IVF Reference Reference – –

ICSI 0.90 (0.84-0.96) 0.90 (0.83-0.97) – –

Endometrial preparation for FET

Natural cycle Reference Reference Reference Reference

Mild stimulation 0.91 (0.85-0.98) 0.90 (0.84-0.97) 0.92 (0.85-0.99) 0.90 (0.83-0.97)

HRT 1.21 (1.13-1.30) 1.05 (0.97-1.13) 1.33 (1.24-1.43) 1.14 (1.06-1.23)

Endometrial thickness at transfer, mm

≤8 0.67 (0.60-0.75) 0.78 (0.70-0.88) 0.63 (0.56-0.71) 0.76 (0.67-0.86)

8-15 Reference Reference Reference Reference

≥15 1.25 (1.12-1.39) 1.19 (1.06-1.32) 1.09 (0.98-1.22) 1.02 (0.91-1.15)

Embryo stage at transfer

Cleavage stage Reference Reference Reference Reference

Blastocyst stage 1.45 (1.34-1.57) 1.70 (1.56-1.85) 1.06 (0.98-1.16) 1.26 (1.15-1.39)

No. of embryos transferred

1 Reference Reference Reference Reference

2 1.74 (1.58-1.91) 1.95 (1.76-2.15) 1.95 (1.77-2.16) 1.97 (1.77-2.19)

3 1.14 (0.96-1.36) 1.79 (1.47-2.18) 1.29 (1.08-1.55) 1.95 (1.59-2.38)
BMI, body mass index; PCOS, polycystic ovary syndrome; OPU, ovum pick-up; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; FET, frozen-thawed embryo transfer; HRT,
hormone replacement therapy; COR, crude odds ratio; AOR, adjusted odds ratio; CI, confidence interval. AORs were adjusted for all those covariates with adjusted OR in the table using a binary
logistic regression model.
Bold indicates statistical significance.
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TABLE 5 AORs for live birth of two male twins and two female twins according to patient characteristics and treatment parameters.

AOR (95% CI)

Two male twins (N=794) Two female twins (N=683)

Maternal age

≤29 Reference Reference

30-34 1.03 (0.83-1.29) 1.03 (0.82-1.29)

35-37 1.11 (0.81-1.53) 0.91 (0.64-1.28)

38-40 1.18 (0.68-2.07) 1.49 (0.84-2.66)

41-43 0.36 (0.08-1.66) 0.96 (0.25-3.65)

≥44 - -

Maternal BMI

<18.5 0.73 (0.55-0.96) 1.48 (1.14-1.92)

18.5-24 Reference Reference

>24 0.96 (0.77-1.21) 0.99 (0.78-1.25)

Male partner age

≤29 Reference Reference

30-39 0.93 (0.73-1.18) 0.97 (0.75-1.24)

40-49 1.13 (0.75-1.68) 0.70 (0.45-1.10)

≥50 0.58 (0.15-2.20) 2.21 (0.73-6.75)

Duration of infertility (years)

≤1 Reference Reference

2-4 0.94 (0.75-1.18) 1.19 (0.93-1.51)

5-9 1.05 (0.80-1.36) 1.31 (0.98-1.73)

≥10 0.81 (0.49-1.35) 1.33 (0.79-2.25)

Previous miscarriages

0 Reference Reference

1 1.04 (0.85-1.28) 0.88 (0.71-1.10)

≥2 1.09 (0.84-1.39) 0.91 (0.70-1.19)

Previous ectopic pregnancy

No Reference Reference

Yes 0.88 (0.65-1.20) 1.17 (0.85-1.61)

Tubal factor

No Reference Reference

Yes 1.04 (0.88-1.24) 0.99 (0.83-1.19)

PCOS

No Reference Reference

Yes 1.04 (0.76-1.42) 0.98 (0.71-1.35)

Endometriosis

No Reference Reference

Yes 1.36 (0.98-1.90) 1.05 (0.74-1.51)

(Continued)
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which is there is little information in the existing literature.

Additionally, the relatively large sample size of this study ensures

more reliable modeling and reduces potential bias.

The major weakness of this study is its retrospective and non-

randomized design, which introduces the possibility of unknown

confounding factors. In addition, data on known confounders such

as adverse environmental exposure and psychological conditions

(14, 16, 17) were not available in our database. Another limitation is

the absence of data on the gender of embryos with an outcome of

embryonic death or miscarriage, which constrains further

exploration of the underlying mechanisms contributing to the

gender bias.
Conclusion

ICSI was found to be associated with a decreased male-to-

female ratio and a lower rate of male live births in FET cycles, while
Frontiers in Endocrinology 12
blastocyst transfer was associated with an increased male-to-female

ratio at birth and a higher likelihood of male live birth compared to

female live birth.
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TABLE 5 Continued

AOR (95% CI)

Two male twins (N=794) Two female twins (N=683)

Male factor

No Reference Reference

Yes 1.09 (0.89-1.35) 1.04 (0.84-1.30)

OPU Year 0.99 (0.93-1.06) 1.01 (0.95-1.08)

Fertilization method

IVF Reference Reference

ICSI 0.92 (0.73-1.14) 1.04 (0.83-1.31)

Endometrial preparation for FET

Natural cycle Reference Reference

Mild stimulation 1.04 (0.83-1.30) 1.06 (0.84-1.34)

HRT 0.94 (0.77-1.16) 1.08 (0.87-1.34)

Endometrial thickness at transfer, mm

≤8 0.95 (0.65-1.39) 1.24 (0.85-1.83)

8-15 Reference Reference

≥15 1.18 (0.88-1.58) 0.91 (0.66-1.26)

Embryo stage at transfer

Cleavage stage Reference Reference

Blastocyst stage 1.78 (1.42-2.24) 0.64 (0.48-0.84)

No. of embryos transferred

1 1.09 (0.42-2.85) 4.32 (1.71-10.93)

2 Reference Reference

3 0.96 (0.58-1.59) 0.80 (0.46-1.40)
BMI, body mass index; PCOS, polycystic ovary syndrome; OPU, ovum pick-up; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; FET, frozen-thawed embryo transfer; HRT,
hormone replacement therapy; AOR, adjusted odds ratio; CI, confidence interval. AORs were adjusted for all covariates presented in the table using a binary logistic regression model.
Bold indicates statistical significance.
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