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exocytosis: takes from maturity
onset diabetes of the young

Sama Samadli 1,2†, Qiaoli Zhou3†, Bixia Zheng1*, Wei Gu3

and Aihua Zhang1*

1Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University,
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Monogenic diabetes gave us simplified models of complex molecular processes

occurring within b-cells, which allowed to explore the roles of numerous

proteins from single protein perspective. Constellation of characteristic

phenotypic features and wide application of genetic sequencing techniques to

clinical practice, made the major form of monogenic diabetes – the Maturity

Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as

neonatal diabetes mellitus and understanding underlying molecular events for

each type of MODY contributed to the advancements of antidiabetic therapy and

stem cell research tremendously. The functional analysis of MODY-causing

proteins in diabetes development, not only provided better care for patients

suffering from diabetes, but also enriched our comprehension regarding the

universal cellular processes including transcriptional and translational regulation,

behavior of ion channels and transporters, cargo trafficking, exocytosis. In this

review, we will overview structure and function of MODY-causing proteins,

alterations in a particular protein arising from the deleterious mutations to the

corresponding gene and their consequences, and translation of this knowledge

into new treatment strategies.

KEYWORDS

MODY, maturity onset diabetes of the young, glucokinase, channelopathy, unfolded
protein response, transcription factors, carboxy ester lipase
Abbreviations: bHLH, Basic Helix-Loop-Helix; CTD, C-terminal domain; HD, Homeodomain; HH,

Hyperinsulinaemic Hypoglycemia; L0, Loop; LBD, Ligand-binding domain; NBD, Nucleotide-binding

domain; NDM, Neonatal Diabetes Mellitus; NTD, N-terminal domain; SU(s), Sulfonylurea(s); TMD,

Transmembrane domain.
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Introduction

The incidence of Maturity Onset Diabetes of the Young

(MODY) is accounted for 1-2% of total diabetes cases and is

expected to rise due to increasing awareness and better

identification from more prevalent forms of diabetes by

endocrinologists (1). Clinically, MODY patients present with

following features: a strong family history of diabetes with an

apparent autosomal-dominant inheritance, onset of diabetes

before 25 years of age in at least one generation of the same

family, sustained endogenous insulin production without insulin

resistance and absence of b cell-specific autoantibodies (2).

However, it often shares common features with the frequently

seen forms of diabetes, which in turn creates challenges for

making diagnosis. Luckily, wide application of genetic sequencing

methods in clinical settings helps to avoid pitfalls in most cases (3).

Despite of the fact that genetic testing methods are gold standard in

the discovery of MODY-causing genes, the etiology of MODYX

cases are yet to be identified (4). Besides, by means of more sensitive

approaches, the later genotype-phenotype correlation studies

revealed that some genes from the previous established list of 14

MODY genes should not be regarded as causative for MODY (5, 6).

Understanding molecular basis of MODY gave comprehensive

knowledge concerning the physiological processes in functional b-
cells during glucose-stimulated insulin secretion (GSIS) and insulin

synthesis. Glucose sensing of b-cells is the first step in maintaining

normoglycemia, characterized by transfer of glucose – which is

entered into the cell through cell membrane related glucose-

transporter-2 protein (GLUT-2) – to glucose-6-phosphate by

glucokinase (GCK). Glucose-6-phosphate enters the Krebs cycle

inside the mitochondria and results in enhanced production of

ATP. Increased level of ATP induces closure of KATP channels and

depolarize the cell membrane to approximately -30 mV. This in

turn leads to opening of L-type voltage-gated calcium channels,

increased entry of Ca2+ ions into the cell and subsequent release of

insulin (7). Glucose homeostasis of an organism is also maintained

by proper and adequate insulin synthesis. Insulin is translated in the

cytosol as 110 amino acids-length preproinsulin, and then

undergoes posttranslational modification to form proinsulin in

the endoplasmic reticulum. Following transitioning of proinsulin

to the Golgi apparatus culminates in formation of secretory

granules composing of Zn2+ ion coupled insulin, proinsulin, C-

peptide, amylin and regulatory proteins which are responsible for

completion of “ready to use” insulin maturation (8, 9). Key steps of

insulin biosynthesis and secretion are regulated by transcriptional

network constituting of hierarchical, auto- and inter-regulatory

complex of transcription factors (TFs), some of which involved in

the pathogenesis of MODY (10) (Figure 1).

Accumulated knowledge regarding the molecular events in the

basis of MODY allows better management strategies and resultant

improved quality of life in MODY patients (11). Nevertheless,

increased understanding of core molecular processes offers

benefits beyond the high-quality care for MODY patients.

Considering the fact that TFs such as PDX1, NEUROD1, HNF

family proteins, play a crucial role in the development and
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differentiation of embryogenic pancreas and in the maintenance

of functional mature islet cells (Table 1), the use of these key

regulatory proteins in the establishment of insulin-producing

b-cells from stem cells paved the way for radical treatment of

insulin-dependent forms of diabetes mellitus (12, 13). In this

review, we will overview structure and function of MODY-

causing proteins, alterations in a particular protein arising from

the deleterious mutations to the corresponding gene and their

consequences, and translation of this knowledge into new

treatment strategies.
Impaired glucose sensing

GCK mutations (MODY2)

GCK is a glycolytic enzyme initiates glucose utilization and acts

as a glucose-sensor through controlling glucose phosphorylation in

b-cells (14). Heterozygous inactivating mutations in GCK gene are

responsible for MODY2, which constitutes the highest proportion

of all MODY cases (15). Heterozygous activating GCK mutations
FIGURE 1

The association between MODY-causing proteins. 1. Influx of
glucose to b-cell through GLUT-2. Blue hexagon represents
glucose. 2. Transition of glucose to glucose-6-phosphate by GCK
enzyme. Pink oval, green oval, purple cylinder and orange cylinder
represent large domain, small domain, glucose-binding site and
ATP-binding site of GCK, respectively. 3. Increased ATP production
in mitochondria after the entry of G6P to Krebs cycle. 4. Closure of
ATP-sensitive potassium channels. 5. Opening of voltage-gated
calcium channels. 6. GIP and GLP-1 bind to their receptors and
initiate number of events which result in enhanced insulin synthesis
and secretion (There is apparent link between GIP/GLP-1 and
MODY-causing molecules such as PDX1, RFX6. Molecular basis of
this is unknown but it has therapeutic implications). 7. Preproinsulin
biosynthesis in cytosol. 8. Preproinsulin processing in ER by
endopeptidases (purple dots) and subsequent cleavage of signal
peptide. 9. ER-membrane located wolframin interacts with
proinsulin in one end and COP-II proteins in other end and helps
formation of COP-II-coated proinsulin vesicles. 10. Proinsulin
processing in Golgi apparatus, final vesicle formation, release of C-
peptide from insulin in Golgi apparatus and inside the vesicles and
exocytosis. 11. Transcriptional regulation in the nucleus. Black
arrows indicate regulation of a given gene by the relevant TF in
mature b-cell. Green arrows indicate that a given protein has
binding site for the relevant TF and/or had been regulated by it at
some point of pancreatic development.
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TABLE 1 The characteristics of MODY-causing proteins.

Protein
name

Amino
acid
length

Molecular
weight

Functions in
pancreas

Phenotype
Treatment

considerationsHomozygosity Heterozygosity

HNF4a or
TCF14

452
(isoform-

7) 50 kDa

Foregut differentiation;
insulin synthesis and
secretion in mature b-cells Not reported

MODY1; often accompanied
with dyslipidemia, transient
neonatal hypoglycemia and
macrosomia

Low-dose SUs or DPP-4
inhibitors in uncomplicated
cases

GCK or
Hexokinase-
4

465
(isoform-

1) 52 kDa
Glucose-sensing and
phosphorylating enzyme

Inactivating mutations
cause PNDM

Activating mutations cause
HH; while inactivating
mutations lead to MODY2

Diet and exercise are sufficient
in majority of MODY cases.
GCK activators are promising
for T2DM

HNF1a or
TCF1 631 76 kDa

Foregut differentiation;
insulin synthesis and
secretion in mature b-cells Not reported

MODY3; often accompanied
with higher HDL-cholesterol
and lower LDL-cholesterol
levels, and transient neonatal
hypoglycemia and
macrosomia

Low-dose SUs or DPP-4
inhibitors in uncomplicated
cases. MODY3 patients may
show exaggerated response to
SUs

PDX1 or
IPF1 or
STF1 or
IDX1 or
GSF or
IUF1 283 30.8 kDa

Master regulator of
pancreas formation,
differentiation and
maturation of islet cells;
insulin synthesis and
secretion in mature b-cells

Pancreatic agenesis or
ND

MODY4 or gestational
diabetes

From diet to insulin
replacement. PDX1 mutations
are linked to lower levels of
incretins and DPP-4
inhibitors show efficacy in
heterozygous cases

HNF1b or
TCF2

557
(isoform-

A) 61 kDa

Pancreatic development
since primitive gut stage;
function in mature b-cells
is unknown Not reported

MODY5 or Renal-cysts-
diabetes syndrome Mainly insulin replacement

NEUROD1
or BETA2 356 39 kDa

Normal endocrine cell
development and insulin
synthesis and secretion in
mature b-cells

PNDM with more
severe neurological
phenotype

MODY6 characterized with
ketoacidosis-prone diabetes
with microvascular sequelae
and neurological
abnormalities

From diet to insulin
replacement

CEL or
BSDL 753 74 kDa

Pancreatic exocrine
enzyme secreted to
digestive tract No report on diabetes

MODY8 characterized with
pancreatic exocrine
insufficiency with DM Currently, insulin replacement

INS 51 5.8 kDa

Hormone that regulates
glucose metabolism in
organism PNDM MODY10

Currently, insulin
replacement. UPR targeting
agents might be beneficial

SUR or
SUR1

1581
(isoform-

1) 177 kDa

b-cell excitation as a part
of ATP-sensitive K+
channel

Inactivating mutations
cause HH, activating
mutations lead to
DEND syndrome,
TNDM, PNDM or
MODY12

Inactivating mutations cause
HH, activating mutations lead
to DEND syndrome, TNDM,
PNDM or MODY12

High-dose SUs for patients
harboring activating
mutations

Kir6.2

390
(isoform-

1) 44 kDa

b-cell excitation as a part
of ATP-sensitive K+
channel

Inactivating mutations
cause HH, activating
mutations lead to
DEND syndrome,
TNDM, PNDM or
MODY13

Inactivating mutations cause
HH, activating mutations lead
to DEND syndrome, TNDM,
PNDM or MODY13

High-dose SUs for patients
harboring activating
mutations

Wolframin

890
(isoform-

1) 100 kDa

Cargo receptor involved in
vesicle formation and
exocytosis Wolfram syndrome Wolfram syndrome or MODY

Currently, insulin
replacement. UPR targeting
agents might be beneficial

RFX6 928 102 kDa

Formation of dorsal
pancreatic bud and insulin
synthesis and secretion in
mature b-cells

Mitchell-Riley
syndrome

Non-autoimmune, late-onset
diabetes

The association between RFX6
mutations and lower levels of
incretins supports treatment
with DPP-4 inhibitors
F
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lead to HH, while inactivating mutations in both alleles cause

permanent neonatal diabetes occurring in the first 6 months of

life, explaining the vital role of GCK enzyme in glucose homeostasis

(Table 1) (16).

Pancreatic glucokinase is composed of large and small domains

separated by glucose binding active site, also known as deep cleft

(Figure 2) (17). Lower affinity for glucose in its passive super-open

form and lack of inhibition by the end product are their main

properties, allowing to exhibit its rate-limiting catalytic activity.

According to the mnemonic model hypothesis (18), under the

influence of 5 mM or higher glucose concentration, super-open

form transforms into open form, which directly binds to ATP and

changes into closed form. Ongoing influx of glucose, sustains the

transition between open and closed forms and this step is termed as

fast cycle. On the contrary, lower level of glucose makes the

molecule to regain its super-open form in a slow cycle fashion

(19, 20). To date, more than 600 missense and nonsense mutations

were discovered in the GCK gene of families suffering fromMODY2

which alter glucose and ATP-binding abilities of the enzyme

through directly impairing its kinetic parameters, or interfering

with either structural stability or posttranslational regulation of the

protein (16, 21). Certain missense mutations impede kinetic activity

of GCK enzyme via stabilizing its inactive form or causing

electrostatic repulsion of particles within active (closed)

configuration (22). On the other hand, some mutations are

associated with thermal instability affecting the three-dimensional

structure of GCK (23). Functional analysis found that mutations

remote to the active site of GCK enzyme prevented GCK-

containing granules translocate to the cytoplasm by unidentified

posttranslational regulator in insulin-producing pancreatic cells

(24). Lastly, a rare mutation in the GCK b-cell promoter revealed

Sp1 as one of the human transcription factors, although it is
Frontiers in Endocrinology 04
considered that inclusion of promoter analysis to routine

sequencing methods would yield higher detection of such

mutations (25).

Taking advantage of central role of GCK in glucose homeostasis,

its activators – which are able to bind to the allosteric site, change

kinetic parameters of GCK, and render the molecule more sensitive to

glucose – have gained a lot of attention for better management of

Type 2 Diabetes Mellitus (T2DM). While majority of these agents

failed to show sustained glycemic control (26), brand-new drug –

dorzagliatin passed phase 3 trial successfully and is hoped to fulfill the

need for more effective hypoglycemic agent with less undesirable

events (27). SomeMODY2mutations may decrease efficient targeting

of GCK by these agents (28). Nevertheless, since MODY2 mutations

cause GCK to be hyposensitive rather than insensitive to glucose,

most MODY2 patients have mild fasting hyperglycemia and lower

chance of complications and they achieve good control over glucose

levels for several years with only lifestyle modifications (16).
Channelopathies

KATP channelopathies

KATP channel are composed of four pore-forming Potassium

inward rectifier 6.2 (Kir6.2) subunits and four regulatory

sulfonylurea receptor 1 (SUR1) subunits, which are encoded by

two neighboring genes: ABCC8 and KCNJ11, respectively (29).

SUR-1 shows both stimulatory and inhibitory effect on Kir6.2

through sensitizing or desensitizing Kir6.2 to ATP, which are best

represented by the impact of activating and inactivating mutations

on this channel. Gain-of-function mutations of these genes cause

DEND syndrome, permanent or transient NDM, MODY or T2DM
FIGURE 2

Linear cartoon structure of MODY-causing proteins. AF1(2) – activation function 1(2), bHLH – basic helix-loop-helix, CTD – C-terminal domain, DBD
– DNA-binding domain, DD – dimerization domain, H – hinge, HD – homeodomain, L0 – loop, LBD – ligand binding domain, NBD – nucleotide
binding domain, NTD – N-terminal domain, TAD – transactivation domain, TMD – transmembrane domain.
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susceptibility depending on the degree of metabolic impairment

within b-cells and other cell types (30). Loss-of-function mutations,

on the other hand, produce HH attributed to either loss of channels

on the cell surface or decreased channel activity (Table 1) (31).

Compelling amount of knowledge regarding the molecular basis of

KATP channelopathies extrapolated from the mutational analysis of

NDM or HH. MODY emerges as a mild form of NDM due to lesser

increase in KATP channel current (30) or as a consequence of

exhausted b-cells in HH (32).

ABCC8 mutations (MODY12)
SUR1 subunit comprised of a functionally active five-helix

transmembrane domain 0 (TMD0), six-helix TMD1 and TMD2, a

cytosolic loop (L0) between TMD0 and TMD1 and cytosolic

nucleotide-binding domains NBD1 and NBD2 (Figure 2). NBDs act

as cytosolic sensors and channel openers and are modified by Mg-

nucleotides to create 2 nucleotide-binding sites. Nucleotide-binding

sites 1 and 2 are formed by Walker A and B motifs of one NBD with

the signature sequence located betweenWalker A and B of the head-to-

tail aligned opposite NBD. Dimerization of nucleotide-binding sites is

translated into conformational change of the TMD1 and TMD2, then

subsequent transformation of Lasso motif of the L0 loop and TMD0,

and eventually, clockwise rotation of Kir6.2 cytoplasmic domains to

open the pore (33). Substitutions in the linker region is associated with

impaired transduction, rather than altered Mg-nucleotide-binding and

hydrolysis. This indicates NBDs interact with TMDs via linker region

(34). Mutations that elicit the impairment of Mg-nucleotide-binding

and/or catalytic hydrolyzation at the nucleotide‐binding sites abolish

stimulatory effect of SUR1 on Kir6.2 and result in closure of channels

(35, 36). On the other hand, activating mutations of NBD1 and NBD2

hyperpolarize pancreatic b-cells and lead to hyperglycemia owing to

reduced KATP channel inhibition caused by slow deactivation of Mg-

ADP from its bound state (37–39), although nucleotide-binding sites

show asymmetry with their distinct preference to binding and

hydrolysis of nucleotides (40). Interestingly, the effects of the

interaction of Mg-nucleotides with SUR1 on Kir6.2 are best

represented in the reports, which same residues cause opposing

phenotypes – either diabetes or hyperinsulinism depending on the

amino acid substitution (41). NDM mutations at TMDs are

characterized by disrupting the transduction and abrogating the

stimulatory effect of NBDs on Kir6.2 (42, 43). Moreover, unusual

phenotype of alternating hypoglycemia and hyperglycemia are

reported in a patient with homozygous ABCC8 mutation, even

though heterozygous inheritance of the same mutation caused severe

trafficking defect (44). Above reports indicate that slight differences in

the molecular mechanism of ABCC8 mutations manifest with

completely distinct clinical picture.

KCNJ11 mutations (MODY13)
Kir6.2 subunit is formed by N- and C-terminal cytoplasmic

domains, TMD containing M1 and M2, between which pore loop

and selectivity filter locate, and tether helix linking TMD to CTD

(Figure 2). It possesses ATP-binding domain which plays crucial role

in coupling channel inhibition tometabolic activation (45). Disrupted

ATP-binding and hydrolysis, altered intersubunit interactions and

morphology of the channel, transduction abnormalities, deranged
Frontiers in Endocrinology 05
allosteric regulation of ATP sensitivity and disconnection with SUR1

interfere with proper functioning of Kir6.2 and lead to imbalance

between KATP inhibition and high glucose levels (46–51). ATP

interacts with Kir6.2 as proposed: G334 residue of the solvent-

exposed helical segment with a-phosphate of ATP, K185 residue of

the C-terminal b-sheet with both a- and b-phosphates and R50

residue of the N-terminal peptide with g-phosphate. ATP brings

NTD and CTD of Kir6.2 subunits with L0 of SUR1 together and locks

the channel in closed state (45). The mutations in these residues are

well documented in patients suffering from ND and DEND

syndrome (49). On the other hand, mutations which are located far

from ATP-binding site could also prevent normal ATP-binding and

hydrolysis. Some substitutions to opposite charged amino acid

increase steric repulsion between two adjacent ATP-binding pocket

monomers (50), while others derange ATP-binding site, which make

them less flexible for ATP to be able to fit (47). Impaired transduction

from ATP-binding pocket to gate is another mechanism for Kir6.2

related diabetes, mostly associated with the mutations of slide helix

(48). Structural integrity is key for effective channel behavior, which

could be disrupted by the mutations through compression of the ion

conducting part of the channel or halted intersubunit interactions

(50). Mutations that cause disconnection between Kir6.2 and SUR1

decrease ATP sensitivity of the channel, even though intrinsic gating

properties are unchanged (46). In addition to nucleotides, other

allosteric regulators such as PIP2 also play major role in gating.

Hypersensitivity to PIP2 due to cysteine substitutions increases open

probability of KATP via enhancing S-palmitoylation (51).

Furthermore, understanding underlying molecular mechanisms of

channelopathies gives clue to why identical mutations show

phenotypic heterogeneity. In MODY13 patients, late occurrence of

the disease is not just accounted for lesser half maximal inhibitory

concentration of ATP (52) and also additional trafficking defect of the

channel which compensate for the increased open probability (53).

Molecular basis of MODY12 and MODY13 warranted to switch

treatment option from insulin to sulfonylurea, which has 90%

success rate (54, 55). Cryo-EM structure analysis revealed that

glibenclamide binds to its binding site, which is formed by helices

6-8,11 of TMD1 and helices 16,17 of TMD2 of SUR1, and stabilize

the interactions between N-terminus of Kir6.2 and L0 and TMD0 of

SUR1 to prevent opening of the channel (45). Treatment failure is

partly explained by the type of the mutation (56). It is obvious that

mutations causing morphological changes in pore-forming subunit

(50) or abnormal SUR1-Kir6.2 transduction (57) render the

channel insensitive to SUs. There is no report on the SU binding

site defect related treatment failure.
Impaired insulin trafficking

INS mutations (MODY10)

Mature insulin (Table 1) is a small molecule composed of A and B

chains linked with 3 disulfide bonds. After synthesizing in the cytosol,

preproinsulin is subjected to SRP facilitated translocation to ER, where

it is cleaved to form proinsulin. Proinsulin in turn is liberated from C

peptide via the recruitment of ER chaperons (Figures 1, 2) (58).
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Dominant and recessive mutations to the INS gene give rise to wide

range of phenotypes varying from late-onset mild hyperglycemia to

severe neonatal diabetes. Type of mutation is the main determinant of

clinical phenotype (59) and as the best characterized monogenic

mutations, analysis of insulin substitutes provided with broad

knowledge regarding the insulin biosynthesis, action, and tight

control of all these processes.

Cysteine substitutions interrupting formation of the disulfide

bonds (B7-A7, B19-A20 and A6-A11) are classic examples of

protein misfolding which lead to: 1) ER retention of both mutant

and wild-type protein due to inappropriate interactions between

unpaired cysteine of mutant protein and wild-type molecule (60);

2) impairment of b-cell proliferation by subsequent ER stress (61).

Besides, any substitution to cysteine outside of the disulfide bonds

produce similar effect (62). However, non-cysteine substitutions are

also able to perturb normal folding of proinsulin (63). Preproinsulin

recognition by signal peptidases and translocation of it to ER are

initiating events in insulin maturation, which are disrupted by

mutations to the signal peptide of preproinsulin (64). In order to

fold and deliver properly to Golgi apparatus, proinsulin must be

cleaved by endopeptidases at the junctions between C-peptide and

each of the chain (58). Notably, mutations to these junctions underlie

mild and late-onset diabetes accompanied by hyperproinsulinemia

(65). Furthermore, some mutations may also interfere with insulin

binding to its receptor. Resultant hyperinsulinemia is explained by

disrupted degradation of insulin which fails to uptake by hepatocytes

(65). Apart from the coding regions, the mutations affecting

regulatory sequences are also described. Mutations to the promoter

region of INS gene preventing the TFs to bind to its cis-elements;

substitutions at the start codon abolishing translation; and alterations

at the untranslated sites of mRNA sensitizing the molecule to RNA

decay – all fall into this category (66).

As expected, MODY10 predominantly is managed by insulin

injections (67), albeit understanding of underlying molecular

mechanisms of INS mutations offered new perspectives for better

therapeutic options. Regarding this, rescuing trapped wild-type

proinsulin from ER through either degradation of mutant

molecule or acceleration of oxidative folding is suggested by some

laboratories (68, 69).

WFS1 mutations (Newly proposed
MODY type)

Wolframin (Table 1) is a cargo-protein receptor, located in the

ER membrane and contains two hydrophilic N- and C-terminal
Frontiers in Endocrinology 06
domains and the hydrophobic transmembrane domain between

them (Figure 2) (70). Patients bearing homozygous and compound

heterozygous mutations of WFS1 gene present with different

combinations of young-onset diabetes mellitus, diabetes insipidus,

optic atrophy and hearing loss, which are classical features of

Wolfram syndrome (71). Wide application of sequencing

techniques in diverse populations brought to light significant

number of heterozygous WFS1 gene mutations contributing to

MODY phenotype (72–75), although homozygosity is not always

exception in MODY incidence (76). The knock-out mice generated

with CRISPR-Cas9 technique highlighted the role of wolframin in

proinsulin trafficking and vesicle formation. The study showed that

NTD mutations disrupt interactions with Coat Protein Complex II

(COPII) vesicle subunits, while CTD mutations interrupt

wolframin-proinsulin bonds, both of which activated unfolded

protein response pathway (70).

In the recent years, induced pluripotent stem cell models

derived from MODY patients, have gained a lot of attention as an

exciting tool to deepen the understanding of cellular and molecular

processes of mature and developing b-cells in healthy and

pathological states of pancreas, as well as to introduce new

treatment strategies (77). b-cell iPSC models derived from

patients with Wolfram syndrome helped to demonstrate that

curative treatments such as CRISPR-Cas9 correction of a mutant

gene or chemical chaperons targeting UPR pathways are not far-

fetched for patients suffering from variety of ER stress causing

diseases (78, 79).
Impaired transcriptional regulation

TFs are the group of proteins bind to cis-acting elements of the

promoter of particular genes and regulate their transcriptional

activity. MODY-related TFs (PDX1, NEUROD1, HNF1a, HNF4a,
HNF1b, RFX6) are indispensable for the development of pancreas,

b-cell identity and function of mature b-cells (Table 1) (80) and

they all have direct binding sites at the insulin promoter (Figure 3)

(81–84). Recently, detailed in silico analysis of available published

data revealed that two TF genes, namely KLF11 and PAX4 – which

previously enlisted as MODY-causing proteins – can not be

included in the MODY list due to lack of co-segregation with

diabetes and higher rate of same mutant genes in healthy

population in addition to two other non-TF genes –BLK and

APPL1 (5, 6). Thus, accurate co-segregation analysis of genetic

test results is crucial to avoid misinterpretations.
FIGURE 3

Schematic illustration of the binding sites of insulin promoter for MODY-related transcription factors. HNF1a HNF4a NEUROD1/

E47 PDX1 RFX6.
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HNF4a mutations (MODY1)

HNF4a (Table 1) has a N-terminal AF1 domain that shows ligand-

independent transactivation ability, a highly-conserved DNA-binding

domain containing zinc-finger motif, a lipophilic ligand-binding

domain, and a regulatory F domain (Figure 2). The domains are

interrelated in such a way that the remote residues may have allosteric

modulation over other sites owing to domain-domain interactions (85).

Hyperglycemia in MODY1 is frequently accompanied by dyslipidemia

and preceding transient neonatal diabetes with macrosomia (86). The

latest report on MODY3 patient-derived iPSC lines solved the long

debate of biphasic nature of disease by determining direct binding sites

of ABCC8 and KCNJ11 genes for HNF4a (87). Detailed analysis of

biphasic MODY1-causing LBD mutations revealed that dimerization

of HNF4a allows it to conform to more structurally stable form and to

expose more hydrophobic sites at the surface so that LBD may able to

be occupied by its lipid ligands to the fullest extent (88). In DNA-

binding motif, negatively charged amino acid substitutions for serine

residues result in both lesser DNA-binding and transcriptional activity.

Additionally, these findings also discovered the inhibitory effect of

PKA-phosphorylation on DNA-binding and transactivation of

HNF4a (89). While most single amino acid substitutions lead to

structural and/or binding defect, some of them induce proteolytic

degradation which turn the protein into a smaller truncated form (90).

In addition to coding region, MODY1 is also originates from the

mutations in the pancreas-specific P2 promoter (91). Functional

studies found the binding sites of the P2 promoter for the TFs

including HNF1a, HNF1b, PDX1 (91) along with direct binding of

HNF4a to the INS, and HNF1a promoters (82, 92, 93), all of which

indicate that b-cell function is controlled by complex and multifaceted

hierarchical and interregulatory network.

MODY1-derived iPSC lines provided with model that represents

the early stages of formation of human hepatopancreatic tissues.

According to these models, insufficient amount of HNF4a
downregulates foregut-specifying genes while upregulating hindgut

markers and impacts normal foregut endodermal cell fate

acquisition (94).
HNF1a mutations (MODY3)

HNF1a (Table 1) is a homeodomain-containing transcription

factor of HNF family and it consists of a dimerization domain, a

DNA-binding domain with POU-like and homeodomain-like motifs,

and a transactivation domain in an order from amino-terminus to

carboxy-terminus (Figure 2) (95). HNF1a binds to promoters of

different genes including PDX1, INS, GLUT-2 and controls glucose

sensing, mitochondrial metabolism, insulin secretion and exocytosis

in b-cells (96–99). MODY3 mutations are dominant loss-of-function

mutations (100) that cause the clinical phenotype identical to

MODY1, if higher levels of HDL-cholesterol are excepted (86).

Mutations affecting dimerization domain are characterized with

more severe disruption of DNA-binding abilities which manifest

with younger age at onset due to thermodynamic destabilization and

structural abnormality of the protein (100, 101). In silico analysis in

combination with in vitro methods revealed the characteristics and
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functions of POU-like and a homeodomain-like motifs of HNF1a in

detail. According to the results of the study (102), the substitutions

located in the residues of DNA-binding domain give rise to direct

(through interrupted hydrogen bonds) and indirect (through

perturbed local environment) disruption of bindings between DNA

and HNF1a, impaired interdomain interactions, hindered nuclear

translocation, and structural instability, which in turn cause

accumulation of misfolding protein. Mutations to transactivation

domain destabilize interactions with co-activators or other regulatory

proteins and reduce transactivation with or without diminishing

DNA-binding activities (100).

Interdependency of HNF1a and HNF4a is in consistent with

the similarities in the clinical phenotype and treatment option of

MODY1 and MODY3 (4, 82, 91). Currently, the first-line treatment

of both types is SU and/or incretin-based agents (103, 104). The

exaggerated sensitivity of MODY3 patients to SUs (87) and negative

role of HNF1a mutations on glucagon secretion and incretin levels

favored the treatment with DPP-4 inhibitors (105). Comparative

study is required to define the best therapeutic agent(s) in

accordance with the mutational characteristics of MODY1 and

MODY3, as well as HNF1a and HNF4a variants of T2DM.
PDX1 mutations (MODY4)

PDX1 (Table 1) is a homeodomain-containing transcription

factor, possesses a N-terminal transactivation domain, a C-terminal

domain and a DNA-binding homeodomain (HD), which are hot-

spot regions for mutations (Figure 2) (106). Depending upon the

mode of inheritance, location and penetrance of the mutation,

PDX1 gene alterations result in partial and total pancreatic

agenesis (107), ND without exocrine insufficiency (108),

gestational diabetes (93), and MODY with variable age at onset

and severity (106). Since PDX1 is a master regulator of embryonic

pancreas development, islet formation and b-cell differentiation
(109), it is not surprising that its homozygous and compound

heterozygous missense and frameshift mutations underlie the

pancreatic agenesis (107). In the recent study, MODY4 patient-

derived iPSC line was differentiated into pancreatic progenitors and

genome-wide analysis of transcriptional targets of PDX1 was

carried out in different stages of pancreatic cells. The analysis

indicates that PDX1-binding sites for target genes evolve during

embryonic development and change significantly. For instance,

while PDX1 activates HNF1a, HNF1b and RFX6 during early

developmental stage, KCNJ11 regulation becomes apparent only

after islet formation (110). Recently, interesting case of ductal

pancreatic agenesis is reported in a family carrying heterozygous

frameshift mutation (111). We assume that because PDX1 is

activated by different factors in ventral and dorsal pancreatic bud

(Hex1 in ventral bud, Hb9 in dorsal bud) (10), mutations may affect

interaction between PDX1 and its upstream regulators differently in

an early developmental stage. Further work is needed to examine

this assumption.

At least 33 MODY4 related mutations were reported so far (4,

106, 112) and their phenotypes are explained by dysregulation of

glucose stimulated INS promoter activity at the transcriptional level
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by PDX-1 (113). Structural stability is vital for PDX1 in order to be

capable of binding to gene promoter and the mutations to both

NTD and HD are known to cause structural instability (93, 114).

Reduced transcriptional activity is mostly derived from NTD

mutations interfering with protein-protein interactions (93, 115).

Although the function of CTD is still unclear, functional studies

indicate that CTD mutations lead to diminished transactivation

(115). However, according to the in vitro study with unnaturally

generated CTD mutations, it also plays pivotal role in subnuclear

localization of PDX1 through phosphorylation (116).

Management of MODY4 ranges from diet to insulin

replacement depending on the degree of insulin synthesis defect.

Recent studies propose DPP-4 inhibitors as a best treatment option

since it is proved that PDX1mutations are also responsible for lower

levels of incretins (106).
HNF1b mutations (MODY5)

Similar to HNF1a, HNF1b (Table 1) has a N-terminal

dimerization domain, a bipartite DNA-binding POU domain and

a C-terminal transactivation domain (Figure 2). Its highly

conserved dimerization domain and DBD permit HNF1b to be

able to bind to DNA as a homodimer and heterodimer with

HNF1a, while flexible transactivation domain and interdomain

linkers allow it to cooperate with wide range of variable proteins

in diverse tissues (117). MODY5 or renal cyst-diabetes syndrome

occurs due to loss-of-function mutations and is characterized by

phenotypic heterogeneity regarding the organ involvement and

higher penetrance of renal anomalies than diabetes even among

same family members (118). Intron 2 is the hot spot for splice-site

mutations, which result in complete loss of exon 2 through yet-

unidentified mechanisms and consequent truncated inactive

protein (119). Most single amino acid substitutions are located in

the DBD and disrupt the bonds with DNA directly or indirectly via

perturbing local environment such as creating superfluous

interactions with neighboring residues. Besides, some mutations

to the same region affect protein structure and stability and leads to

misfolded protein response (117).

Although the pancreatic development by HNF1b at the

primitive gut stage is well demonstrated (120), the results of the

studies indicating whether HNF1b is involved in GSIS and even is

present or absent in mature b-cells are ambiguous (121, 122).

Despite of the 70% homology in sequence identities of HNF1a
and HNF1b (116), the management of MODY5 is different from

MODY3. Unlike MODY3, MODY5 shows poor response to SUs

and insulin replacement is the only option in majority of

cases (123).
NEUROD1 mutations (MODY6)

With the aid of its basic helix-loop-helix and transactivation

domains, NEUROD1 (Table 1) displays DNA-binding,

dimerization and transactivation abilities (Figure 2) (124).
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NEUROD1 is highly expressed in neuroendocrine tissues and its

central function in their development is evident from the mutations

causing ketoacidosis-prone diabetes with microvascular sequelae

and neurological abnormalities such as cerebellar hypoplasia,

hearing and visual impairments, low IQ (125). Up to now, at least

26 missense and nonsense mutations found in NEUROD1 gene,

which four of them were homozygous mutations (125–129).

Homozygous inheritance shows more severe phenotype, earlier

onset and higher penetrance than heterozygous state (130). The

analysis of the first case of MODY6 revealed that NEUROD1

heterodimerize with another bHLH (basic Helix-Loop-Helix)

transcription factor – E47 and binds to E-box element of the

insulin promoter to induce its synthesis through the interaction

between p-300 and C-terminal glutamine-rich domain (131). Two

distinct transactivation domains, namely AD1 and AD2, have

different transactivation capabilities (132) and whether regulators

other than p300 interacts with NEUROD1 is unclear, since studies

related to the structure and function of this protein are scarce.

Moreover, the role of disease-causing substitutions outside of the

bHLH and C-terminal domains (132) needs to be investigated.

Treatment of MODY6 is not specific and varies from diet to

insulin replacement depending upon the severity of the

disease (125).
RFX6 mutations (Newly proposed
MODY type)

RFX6 (Table 1) is a winged-helix transcription factor and

encompasses DBD, dimerization domain D and extended

dimerization domains B and C according to the homology

modeling of RFX protein family (Figure 2) (133). Homozygous

and compound heterozygous truncating mutations lead to Mitchell-

Riley syndrome, the syndrome characterized with neonatal/early-

onset diabetes, hypoplastic/annular pancreas, gallbladder

hypoplasia/agenesis, intestinal atresia with or without intestinal

malrotation (134). On the other hand, patients harboring

heterozygous mutations suffer from late-onset diabetes, which

show reduced penetrance (135). As an upstream regulator of

PDX-1 and NEUROD1, RFX6 is vital for islet formation (81).

Consistent with the pancreatic anomalies observed in patients

bearing RFX6 mutations, iPSC line derived from the family

suffering from Mitchell-Riley syndrome exhibited the absence of

body and tail of pancreas. Besides, the study also proposed the

possible regulatory loop between PDX1 and RFX6 in the pancreatic

progenitor stage (136). RFX6 is able to homodimerize and

heterodimerize with RFX3 to bind to X-box motif of target

promoter and its role in GSIS is linked to modulatory effect on

SUR1, GCK and L-type Ca2+ channels (84, 137). While

substitutions in the conserved region of DBD completely abrogate

DNA-binding, alterations in other regions partially interfere with

DNA-binding abilities (81). Since RFX6 is a newly discovered

protein, there is a hope that the molecular characterization of

RFX6-MODY will provide with valuable knowledge regarding its

structure and activity.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1188301
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Samadli et al. 10.3389/fendo.2023.1188301
The association between RFX6 mutations and GIP levels has

been demonstrated (134). Patients with RFX6-MODY are

responsive to treatment with DPP-4 inhibitors (138).
MODY beyond the b-cell

CEL mutations (MODY8)

Carboxyl ester lipase (Table 1) is a pancreatic enzyme produced in

acinar cells, but not in b-cells (139). It has signal peptide, bile-salt

binding sites and catalytic sites containing globular domain, and

multiple O-glycosylation sites containing polymorphic variable

number tandem repeats (Figure 2) (140). Gain-of-function mutations

to CEL gene give rise to pancreatic exocrine insufficiency during

adolescence or young adulthood and a couple of decades later, to

insulin-dependent diabetes (141). Recent few preliminary studies shed

light into the impact of external CEL protein to b-cells (142–145). O-
glycosylation sites at the VNTR render the CEL enzyme soluble and

frameshift mutations at the VNTR turn the molecule into positively

charged insoluble aggregates which is prone to bind with negatively

charged structures including cell and organelle membranes (142). In

acinar cells, mutant cell enzyme causes ER retention and UPR

activation. In spite of acinar cells induce yet-to-be-dentified

degradative machinery, the acinar cells can not overcome the excess

amount of misfolded protein (144). Modified misfolded CEL protein

gain access to extracellular space through induction of exocytosis and

then forms insoluble aggregates (143). Cross-talk between acinar and

islet cells allows the insoluble aggregates to be re-uptaken by

neighboring b-cells via endocytosis (145). Eventually, the capability

of b-cells to degrade endocytic substrates through lysosomal pathways

depletes (145). We assume that “sticky” CEL aggregates interact with

the membranes inside the cell and this in turn triggers dysfunction of

different organelles displayed as altered mitochondrial activity and ER

stress (Figure 4) (143). In fact, direct interaction of another toxic

misfolded protein product – Islet Amyloid Polypeptide Oligomers with

the membranes in b-cells had been demonstrated by electron

microscopy (146). On the other hand, other possible toxic pathways

such as expression of “disallowed” genes or b-cell-senescence can not

be ruled out (145). However, structural characteristics of CEL

aggregates, mechanism of exocytosis and endocytosis, behavior of

internalized macromolecules within b-cells and involved pathways

are largely unknown and further in vitro studies using variety of

approaches are highly demanded, which may also have

therapeutic implications.
Summary

Monogenic diabetes gave us simplified models of complex

molecular processes occurring within b-cells, which allowed to

explore the roles of numerous proteins from single protein

perspective. Clarification of the structural and functional abnormality

of a particular protein, which arose from amutation to its gene, helps to

define the crystal structure, function and interaction with other

molecules of this protein. The characteristics of the mutations also
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help to identify phenotypical heterogeneity and have implications for

personalized medicine. Most importantly, all of these enlightenments

pave the way for the new treatment strategies. In fact, understanding of

the kinetic parameters of GCK enzyme brought in new antidiabetic

agents which have potential to fulfill the need for an optimum drug to

control glucose levels efficiently with minimum side effects in the

management of T2DM (27). KATP channel is the target for SUs and

switching therapy to SUs free the patients from the burden of insulin

therapy (54, 55). SUs are also effective in the management of MODY1

and MODY3, probably due to regulation of KATP channel subunits by

HNF1a (87, 104). On the other hand, insulin requirement in almost all

cases of MODY5 might be explained by the central role of HNF1b in

the early pancreatic development rather than its involvement in glucose

homeostasis (123). Clinically observed association between GLP-1/GIP

and some MODY-related genes (at least PDX1 and RFX6), of which

molecular basis is unknown, made the treatment with GLP-1 analogs

or DPP-4 inhibitors to be favorable (106, 134). INS, WFS1 and CEL

mutations that lead to ER retention and UPR (61, 70, 145), might be

rescued by therapies targeting these toxic pathways. Moreover,

extrapolation of data related to the aforementioned transcription

factors into the stem cell research has potential to provide the radical

treatment for T1DM patients.

In the last century, the approach to MODY was based on the

investigation of the previously known proteins (147) and this

approach broadened our comprehension regarding their role in

developing and mature b-cells. The application of sequencing

methods to experimental and clinical medicine (148) introduced

new molecules involved in b-cell development, identity, and

function. Extensive exploration of these proteins not only resulted in

better medical care to diabetes patients, but also enriched our

understanding about the universal cellular processes including
FIGURE 4

Illustrative picture of the cross-talk between acinar cell and b-cell in
CEL-mutated pancreas. 1. CEL synthesis in acinar cell; 2. Misfolded
CEL protein causing increased UPR in ER during post-translational
modification; 3. UPR initiated retro-translocation of misfolded CEL
protein; 4. CEL protein containing vesicles; 5. Disrupted vesicle; 6.
Lysosome; 7. Exocytosis of CEL protein through either fusion of
vesicles with plasma membrane or direct accumulation of the
protein in the plasma membrane which later becomes core of CEL
aggregates in the ECM; 8. Endocytosis of CEL aggregates; 9.
Endosomes; 10. Fusion of lysosome to the endosome; 11.
Autophagosome; 12. Interaction of free aggregates with the
membranes (?). CEL, carboxyl ester lipase; ECM, extracellular matrix;
ER, endoplasmic reticulum; UPR, unfolded protein response.
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transcriptional and translational regulation, behavior of ion channels

and transporters, cargo trafficking, exocytosis. Noteworthy, b-cells are
important model to test similar events in other cells. In the recent

years, state-of-the-art technique – the establishment of MODY

patient-derived stem cell lines – has been added to ongoing diabetes

research and is expected to yield breakthrough treatment options in

the near future, of which benefits might exceed diabetes management.
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