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A multicenter study
on the application of
artificial intelligence
radiological characteristics
to predict prognosis after
percutaneous nephrolithotomy

Jian Hou1†, Xiangyang Wen1†, Genyi Qu2†, Wenwen Chen3†,
Xiang Xu1, Guoqing Wu1, Ruidong Ji1, Genggeng Wei1,
Tuo Liang1, Wenyan Huang1 and Lin Xiong1*

1Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital,
ShenZhen, China, 2Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China, 3Department
of Radiology, Zixing First People’s Hospital, Chenzhou, China
Background: A model to predict preoperative outcomes after percutaneous

nephrolithotomy (PCNL) with renal staghorn stones is developed to be an

essential preoperative consultation tool.

Objective: In this study, we constructed a predictive model for one-time stone

clearance after PCNL for renal staghorn calculi, so as to predict the stone

clearance rate of patients in one operation, and provide a reference direction

for patients and clinicians.

Methods: According to the 175 patients with renal staghorn stones undergoing

PCNL at two centers, preoperative/postoperative variables were collected. After

identifying characteristic variables using PCA analysis to avoid overfitting. A

predictive model was developed for preoperative outcomes after PCNL in

patients with renal staghorn stones. In addition, we repeatedly cross-validated

their model’s predictive efficacy and clinical application using data from two

different centers.

Results: The study included 175 patients from two centers treated with PCNL. We

used a training set and an external validation set. Radionics characteristics, deep

migration learning, clinical characteristics, and DTL+Rad-signature were

successfully constructed using machine learning based on patients’ pre/

postoperative imaging characteristics and clinical variables using minimum

absolute shrinkage and selection operator algorithms. In this study, DTL-Rad

signal was found to be the outstanding predictor of stone clearance in patients

with renal deer antler-like stones treated by PCNL. The DTL+Rad signature

showed good discriminatory ability in both the training and external validation

groups with AUC values of 0.871 (95%CI, 0.800-0.942) and 0.744 (95% CI, 0.617-

0.871). The decision curve demonstrated the radiographic model’s clinical utility

and illustrated specificities of 0.935 and 0.806, respectively.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1184608/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1184608&domain=pdf&date_stamp=2023-09-15
mailto:xiongl@hku-szh.org
https://doi.org/10.3389/fendo.2023.1184608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1184608
https://www.frontiersin.org/journals/endocrinology


Hou et al. 10.3389/fendo.2023.1184608

Frontiers in Endocrinology
Conclusion: We found a prediction model combining imaging characteristics,

neural networks, and clinical characteristics can be used as an effective

preoperative prediction method.
KEYWORDS

artificial intelligence, clinical-radionics model, decision support system, renal staghorn
stones, percutaneous nephrolithotomy
Introduction

As a widespread urological disorder, the incidence of kidney

stones varies from 1% to 20%. The prevalence of kidney stones is

exceptionally high in western countries (>10%). Kidney stones are a

widespread disease, affecting 5% of the US population (1), of which

10% to 20% are staghorn stones (2). Staghorn calculus includes both

intact and partial integrity. Intact staghorn stones occupy more than

80% of the renal pelvis and collecting system, while partial stones

occupy the renal pelvis and at least two calyces (3). Invasive

procedures to treat this disease include percutaneous

nephrolithotomy (PCNL) and retrograde intrarenal surgery (RIRS).

PCNL has been the widely accepted method for staghorn stones (4),

and the number of PCNL for staghorn stones has been significantly

expanded for many years. Despite improvements in PCNL technical

equipment, the high rate of perioperative complications and stone

recurrence in PCNL remains a challenge for urologists (5, 6).(Figure 1)

At the same time, the Clinical Research Department of Sponge

Urology Association (CROES) showed that the expected stoneless

rate of staghorn calculi patients treated with PCNL was 56.9%. In

comparison, the stoneless rate of non-staghorn calculi patients was

82.5% (7). Although several studies have demonstrated that the

postoperative stoneless rate of PCNL is much better than various

other procedures, there are still some cases of incomplete stone

removal. Therefore, reducing the incidence of residual stone

fragments after PCNL operation is essential to reducing patients’

financial stress and improving their quality of life.

Current research studied several leading scoring systems

(STONE renal stone measurement, Geiger stone score-GSS and

CROES nomination chart). In terms of predicting the results of

patients with staghorn calculi after PCNL, their results confirmed

that STONE nephroscopy was the only predictor of staghorn calculi

without stones after PCNL (8, 9). In addition, their results indicated

that stone-burden was strongly correlated with postoperative

stoneless rate (10). Some mainstream analysis methods, i.e. GSS,

STONE, CROES nomination map, and kidney stone test, have been

proposed to provide a simple method for kidney stones. They all

have two sides, and studies have shown that they are not

comparable in the capabilities to calculate stoneless rates. Those

limited prediction models of single-order parameters still do not

achieve satisfactory results. Therefore, developing models with

higher predictive power is essential to rapidly provide better

guidance for treating renal deerstalker stones and optimize the

outcomes of patients with renal deerstalker stones (11–13).
02
The latest development in computer auxiliary imaging

technology makes it possible to conduct quantitative analysis

from digital images in a high-throughput manner. In fact, this

new approach, called radiology, has been shown to influence

diagnostic and therapeutic strategies in oncology (14, 15).

Additionally, some studies have shown that models based on

radiology and neural network have the ability to predict the

postoperative effects of specific surgical treatments (PCNL or

SWL) (16, 17). This study performed a comparative analysis of

several predictive models constructed by artificial intelligence deep

transfer learning related to the postoperative prognosis of deer

antler stones. Parameters of three recent mainstream models and

radiologically relevant parameters were incorporated to screen for

the best prognostic factors. The aim is to provide better guidance in

developing treatment plans for renal deerstalker stones and to

achieve optimal care for patients with renal deerstalker stones for

better prediction.

This work presents a deep learning model for the prediction of

conditions after PCNL in patients with renal staghorn stones.

Hand-made characteristics were extracted from CT images by

radiology. Depth characteristics are extracted from CT images by

cropping the maximum area slice of the ROI. Depth characteristics

are extracted from pre-trained resnet50 by transfer learning. The

most robust non-redundant and predictive characteristics are

selected using correlation filters and Lasso. Finally, a map of

radiological characteristics and nominations was developed, and

the content was shown in Figure 2.
Methods

Patients and population

This retrospective analysis obtained ethical approval and gave

up informed consent requirement. Then we retrospectively

included 175 patients who received PCNL from December 2017

to March 2022, including 112 patients from Shenzhen Hospital of

Hong Kong University and 63 patients from Zhuzhou Hospital

affiliated to Xiangya Medical College of Central South University.

We actually have collected information on 175 patients (67 patients

in the training set and 108 in the testing set) (Table 1).Relevant

clinical data and characteristics of patients with renal calculi were

extracted before surgery, including age, gender, degree of

hydronephrosis, stone load and surgical experience, as well as
frontiersin.org
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other relevant data, such as surgeons’ experience. Postoperative

follow-up procedures were carried out one month after the

operation, and evaluation was made according to the CT or X-ray

examination results (18).
Radionics procedure

Image acquisition. Baseline clinical, including age, sex and BMI,

preoperative and intraoperative clinical characteristics were

obtained from the medical records. The patient had a

preoperative 64-row CT of the urinary tract (Discovery CT750

HD, GE. Healthcare, USA) perfected. The experienced radiologist

also reviewed the pre-processed CT images and recorded data from

the CT images. Any differences shall be resolved through

consultation. Open source software 3D Slicer (www.slicer.org) is

used to obtain CT images, segment regions of interest, and

annotate ROI.

Image preprocessing: Heterogeneous voxel spacing is prevalent

in multicenter medical volumes due to differences in scanners or

acquisition protocols. Under different imaging, the range of pixel

values in medical images varies widely from center to center. We

use resampling methods to ensure intensity consistency across

all data.
Frontiers in Endocrinology 03
The manually extracted characteristics are divided into three

main groups: geometric characteristics, intensity characteristics,

and texture characteristics. Geometric characteristics describe the

3-D shape characteristics of the stone, and strength characteristics

describe the first-order statistical analysis characteristics of the

internal strength of the stone.

The geometric characteristics describe the three-dimensional

shape characteristics of the stone, and the intensity characteristics

describe the first-order statistical analysis characteristics of the internal

intensity of the stone. In contrast, the texture, second-order, and high-

intensity spatial distribution characteristics are extracted using several

different methods. The content of the hand-crafted characteristics can

be found in Figure 3. All hand-crafted characteristics were extracted

using the internal feature analysis procedure implemented in

Pyradionics (http://pyradionics.readthedocs.io).

Feature selection: For characteristics with high repeatability, the

Spearman rank correlation coefficient is used to calculate the correlation

between characteristics. Only one of any two characteristics with a

correlation coefficient greater than 0.9 was retained.
Deep transfer learning procedure

Neural network characteristics are extracted from pre-trained

CNN. In this study, resnet50 was chosen as the model and trained
FIGURE 1

Diagram of kidney cast stone formation and surgery.
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on the ILSVRC-2012 dataset. Select the slice with the largest ROI

area to represent each patient. In addition, the conversion value was

used to normalize the gray value to the range (– 1, 1). Next, each

cropped sub-region image is adjusted to 224 × 224 using the nearest

interpolation method. the resulting image can be used as model

input. Next, principal component analysis (PCA) is used to reduce

the dimension of depth migration features to ensure the balance

between features. We reduce the dimensionality of deep learning to

100 dimensions to improve the model’s generalization ability and

reduce the risk of overfitting.
Frontiers in Endocrinology 04
Construction of radionics signature and
deep transfer learning signature

After PCA compresses deep learning characteristics, all

radiological characteristics are normalized by the z-score

normalization method. Then, applying the minor absolute

shrinkage and selection operator logistic regression algorithm to

select features with non-zero coefficients from the training cohort

through 10-fold cross-validation for penalty parameter adjustment.

A radiographic feature is generated by combining the selected
FIGURE 2

The study flowchart and the workflow of radionics.
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TABLE 1 Baseline characteristics of the patients.

Extra validation Cohort Inner training cohort

Name
Left2
ALL

Left2-
train

Left2-
test

P
value

Left1-
ALL

Left1-
train

Left1-
test

P
value

Gender 0.5398 0.3723

Female 32 (0.5079) 18 (0.5455) 14 (0.4667) 50 (0.4464) 13 (0.3824) 37 (0.4744)

Male 31 (0.4921) 15 (0.4545) 16 (0.5333) 62 (0.5536) 21 (0.6176) 41 (0.5256)

Age (years) 0.6185 0.9274

<65 48 (0.7619) 26 (0.7879) 22 (0.7333) 83 (0.7411) 25 (0.7353) 58 (0.7436)

≥65 15 (0.2381) 7 (0.2121) 8 (0.2667) 29 (0.2589) 9 (0.2647) 20 (0.2564)

Stone laterality 0.9836 0.6094

Bilateral 3 (0.0476) 2 (0.0606) 1 (0.0333) 11 (0.0982) 6 (0.1765) 5 (0.0641)

Left 34 (0.5397) 17 (0.5152) 17 (0.5667) 45 (0.4018) 10 (0.2941) 35 (0.4487)

Right 26 (0.4127) 14 (0.4242) 12 (0.4000) 56 (0.5000) 18 (0.5294) 38 (0.4872)

Pre-operative infection 0.0683 0.3176

No 11 (0.1746) 3 (0.0909) 8 (0.2667) 64 (0.5714) 17 (0.5000) 47 (0.6026)

Yes 52 (0.8254) 30 (0.9091) 22 (0.7333) 48 (0.4286) 17 (0.5000) 31 (0.3974)

Duration of surgery (minutes) 0.614

<90 17 (0.2698) 8 (0.2424) 9 (0.3000)

≥90 46 (0.7302) 25 (0.7576) 21 (0.7000) 112 (1.0000) 34 (1.0000) 78 (1.0000)

Operator experience 0.6245 0.7026

Senior Physicians 23 (0.3651) 13 (0.3939) 10 (0.3333) 85 (0.7589) 25 (0.7353) 60 (0.7692)

Junior Physicians 40 (0.6349) 20 (0.6061) 20 (0.6667) 27 (0.2411) 9 (0.2647) 18 (0.2308)

Number of surgeries (total) 0.0526 0.0287

1 53 (0.8413) 25 (0.7576) 28 (0.9333) 33 (0.2946) 7 (0.2059) 26 (0.3333)

2 9 (0.1429) 7 (0.2121) 2 (0.0667) 53 (0.4732) 13 (0.3824) 40 (0.5128)

3 1 (0.0159) 1 (0.0303) null 19 (0.1696) 12 (0.3529) 7 (0.0897)

4 7 (0.0625) 2 (0.0588) 5 (0.0641)

Number of channels 0.0351 0.3074

1 55 (0.8730) 26 (0.7879) 29 (0.9667) 71 (0.6339) 20 (0.5882) 51 (0.6538)

2 7 (0.1111) 6 (0.1818) 1 (0.0333) 33 (0.2946) 10 (0.2941) 23 (0.2949)

3 1 (0.0159) 1 (0.0303) null 8 (0.0714) 4 (0.1176) 4 (0.0513)

BMI 0.5292 0.3971

Normal 27 (0.4286) 14 (0.4242) 13 (0.4333) 54 (0.4821) 20 (0.5882) 34 (0.4359)

Thin 5 (0.0794) 2 (0.0606) 3 (0.1000) 5 (0.0446) 2 (0.0588) 3 (0.0385)

Overweight 25 (0.3968) 12 (0.3636) 13 (0.4333) 32 (0.2857) 3 (0.0882) 29 (0.3718)

Obesity 6 (0.0952) 5 (0.1515) 1 (0.0333) 21 (0.1875) 9 (0.2647) 12 (0.1538)

Pre-operative DJ stenting 0.6916 0.4154

No 49 (0.7778) 25 (0.7576) 24 (0.8000) 69 (0.6161) 19 (0.5588) 50 (0.6410)

Yes 14 (0.2222) 8 (0.2424) 6 (0.2000) 43 (0.3839) 15 (0.4412) 28 (0.3590)

Pre-operative ESWL 0.0673 0.089

(Continued)
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characteristics and weighting them by their respective coefficients.

Next, the mean and variance (STD) were calculated for each feature

column. Each column of characteristics is subtracted from the

mean, divided by the variance, and then transformed into a

standard normal distribution. Continue to use the minimum

absolute shrinkage and selection lasso to filter out characteristics

with non-zero coefficients, select and reduce the dimensionality of

the fused characteristics, and find the best subset of fused

characteristics. Finally, 76-dimensional deep migration learning

characteristics are obtained.
Frontiers in Endocrinology 06
DTL+Rad-signature

Based on selected radiological signatures, and 100 compressed

deep migratory learning signatures, we aim to construct a deep

learning radiological signature. We follow the same pipeline as for

the radiology signature or the deep migration learning signature.

After Lasso feature screening, we feed the final characteristics into a

machine learning model for risk model construction to obtain the

final DTL+Rad signature. See also Deep Learning Radiology

Signature (DLR).
TABLE 1 Continued

Extra validation Cohort Inner training cohort

Name
Left2
ALL

Left2-
train

Left2-
test

P
value

Left1-
ALL

Left1-
train

Left1-
test

P
value

No 57 (0.9048) 32 (0.9697) 25 (0.8333) 98 (0.8750) 27 (0.7941) 71 (0.9103)

Yes 6 (0.0952) 1 (0.0303) 5 (0.1667) 14 (0.1250) 7 (0.2059) 7 (0.0897)

History of previous multiple
surgeries 0.3884 0.0274

No 45 (0.7143) 22 (0.6667) 23 (0.7667) 40 (0.3571) 7 (0.2059) 33 (0.4231)

Yes 18 (0.2857) 11 (0.3333) 7 (0.2333) 72 (0.6429) 27 (0.7941) 45 (0.5769)

Degree of hydronephrosis 0.9253

Mild 40 (0.6349) 21 (0.6364) 19 (0.6333) 60 (0.5357) 14 (0.4118) 46 (0.5897)

Moderate 13 (0.2063) 7 (0.2121) 6 (0.2000) 29 (0.2589) 7 (0.2059) 22 (0.2821)

Severe 10 (0.1587) 5 (0.1515) 5 (0.1667) 15 (0.1339) 8 (0.2353) 7 (0.0897)

None 7 (0.0625) 4 (0.1176) 3 (0.0385)

Hypertension 0.1559 0.4576

No 45 (0.7143) 21 (0.6364) 24 (0.8000) 78 (0.6964) 22 (0.6471) 56 (0.7179)

Yes 18 (0.2857) 12 (0.3636) 6 (0.2000) 34 (0.3036) 12 (0.3529) 22 (0.2821)

Diabetes 0.4009 0.6775

No 53 (0.8413) 29 (0.8788) 24 (0.8000) 93 (0.8304) 29 (0.8529) 64 (0.8205)

Yes 10 (0.1587) 4 (0.1212) 6 (0.2000) 19 (0.1696) 5 (0.1471) 14 (0.1795)

Maximum diameter of the stone
(mm) 0.3884 0.7235

<50 45 (0.7143) 22 (0.6667) 23 (0.7667) 88 (0.7857) 26 (0.7647) 62 (0.7949)

≥50 18 (0.2857) 11 (0.3333) 7 (0.2333) 24 (0.2143) 8 (0.2353) 16 (0.2051)

Maximum CT value of the stone
(Hu) 0.9339 0.8779

<700 15 (0.2381) 8 (0.2424) 7 (0.2333) 14 (0.1250) 4 (0.1176) 10 (0.1282)

≥700 48 (0.7619) 25 (0.7576) 23 (0.7667) 98 (0.8750) 30 (0.8824) 68 (0.8718)

Volume of the stone (cm3) 0.9616 0.2702

<11.9 25 (0.3968) 13 (0.3939) 12 (0.4000) 68 (0.6071) 18 (0.5294) 50 (0.6410)

≥11.9 38 (0.6032) 20 (0.6061) 18 (0.6000) 44 (0.3929) 16 (0.4706) 28 (0.3590)
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Validation of radionics models

External and internal validation was aim to validate the accuracy

of the radiology model. There are 67 patients in the training set and

108 in the testing set. Calculating the risk score for patients, according

to the risk score of patients. In addition, the model proposed in this

paper is also evaluated for discrimination and calibration.
Clinical utility of radionics models

The clinical utility of the prediction model is determined

according to obtaining the data income under different threshold.

Then, all the selected patients were analyzed by operating

parameters to compare whether the radiology model has good

efficacy and clinical application in predicting the one-time stone

removal rate after PCNL in patients with renal stones.
Statistical analysis

Using statsmodels python package version 0.13.2 to conduct

Statistical analyses. The Kolmogorov-Smirnov test assessed the

normality of all continuous variables. Logistic regression with
Frontiers in Endocrinology 07
univariate and multivariate statistical analyses was conducted to

charify critical paremeters.
Results

Clinical characteristics

Table 1 summarizes the result of the training and validation

group. About 16.0% of patients (67 of 175) had residual stones after

undergoing a PCNL procedure. In the training set, 31% of patients

had residual stones after undergoing another PCNL procedure. The

incidence of residual stones was 31%, and the rate of one-time stone

removal was 69%. In contrast, the incidence of residual stones after

PCNL was 53% in the external validation group. Table 1 shown the

stone composition parameters of all enrolled patients. By analyzing

the covariance of each characteristic, we found that the clinical

characteristics showed less correlation (Figure 3A).
Feature selection, radionics signature
construction, and validation

According to the CT images, 1734 radiological parameters were

obtained. The expected reproducibility of inter-observer feature
B

C D

A

FIGURE 3

Construction of the clinical-radionics signatures. (A) We use the extra reels model to fit these clinical characteristics and establish the correlation
map of clinical characteristics. The X and Y axes represent the characteristics used by the model. Each square code feature is related—the darker the
color, the more correlation between artificial characteristics. In the figure, except for the diagonal, the highest score of feature correlation is 0.566
(volume of the stone, maximum diameter of the stone). The higher the grid score, the weaker the fitting ability of the model fitting. (B, C) Sixty-three
characteristics of non-zero coefficients were selected to establish the DTL-score + Rad-score with a least absolute shrinkage and selection operator
(LASSO) logistic regression model (l _= 0.18). (D) The histogram of the Rad-score.
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extraction was achieved because the edges of urinary stones were

evident in the CT images. We used the extracted 1734 radiological

characteristics, 2048 deep learning characteristics based on

migration learning, and early fusion techniques to fuse these

characteristics to obtain 3782 deep learning radiological

characteristics. We performed lasso analysis, correlation

coefficient screening, and PCA dimensionality reduction for these

characteristics. We filtered out 48 characteristics with non-zero

coefficients, including 14 radiology characteristics and 34 migration

learning characteristics. Then, we built DLR characteristics.

(Figures 3B, C). These radiological characteristics and their

corresponding characteristics are as follows (Figure 3D).
Prediction models

We constructed radiology-clinical correlation models by

machine learning and transfer learning algorithms. Then, we

compared the different models in the training and validation

group and discovered that DTL+Rad signature performed the

best predictions. The AUC values of DTL+Rad-Signature were

0.871 and 0.744, the sensitivities were 0.634 and 0.733, and the

specificities were 0.806 and 0.935 in the external and training

validation groups (Table 2). It indicated that DTL+Rad-signature

has good predictive efficacy in predicting stone clearance after

PCNL. The DTL+Rad signature was calculated as follows:

DTL+Radionics score = 0.6534968892241029 -0.124189 * DTL-2 +

0.009462 * DTL-3 -0.028079 * DTL-4 -0.022059 * DTL-5 + 0.072624 *

DTL-6 -0.004288 * DTL-7 + 0.016654 * DTL-9 -0.074388 * DTL-10

-0.049319 * DTL-12 -0.015766 * DTL-20 -0.025414 * DTL-22

-0.007556 * DTL-24 -0.001361 * DTL-29 + 0.013734 * DTL-32 +

0.043993 * DTL-35 -0.008485 * DTL-36 -0.034550 * DTL-39 -0.006323

* DTL-48 -0.023089 * DTL-51 + 0.001158 * DTL-54 + 0.005054 *

DTL-55 + 0.018219 * DTL-57 + 0.003968 * DTL-64 + 0.001042 * DTL-

68 -0.060856 * DTL-69 + 0.005685 * DTL-70 -0.012981 * DTL-76 +

0.001676 * DTL-80 + 0.001739 * DTL-84 -0.080262 * DTL-86

-0.014884 * DTL-87 + 0.023936 * DTL-91 -0.019297 * DTL-

93 + 0.003644 * DTL-97 + 0.044201 * gradient_glszm_

LargeAreaHighGrayLevelEmphasis -0.037085 * lbp-3D-k_glszm

_SmallAreaHighGrayLevelEmphasis -0.123581 * lbp-3D-

m1_gldm_LargeDependenceLowGrayLevelEmphasis -0.055118 * lbp-

3D-m1_glszm_SmallAreaLowGrayLevelEmphasis +0.028711
Frontiers in Endocrinology 08
* lbp-3D-m2_glcm_InverseVariance -0.005210 * log-sigma-2-0-mm-

3D_glszm_LargeAreaHighGrayLevelEmphasis -0.009336 *

squareroot_glszm_SizeZoneNonUniformityNormalized +0.066162 *

wavelet-HHH_firstorder_Kurtosis -0.049268 * wavelet-HHH_

firstorder_Median +0.032635 * wavelet-HHL_glcm_ClusterShade

+0.079756 * wavelet-HLL_glcm_ClusterShade -0.013344 * wavelet-

LHH_firstorder_Mean +0.029856 * wavelet-LHH_glszm_

LargeAreaLowGrayLevelEmphasis -0.000432 * wavelet-LLL_glszm

_LargeAreaHighGrayLevelEmphasis

The probability of one-time clearance of renal cast stones

treated with PCNL was obtained by 1/[1 þ exp (risk score)]. A

nomogram via the radiological model is developed to offer a

convenient method is shown as the radiological model

(Figure 4A, Table 2).
Radionics model validation

The proposed model showed good discrimination ability in the

training group, with the AUC of 0.871 (95% CI, 0.800-0.942)

(Figure 4B). Figure 4C shows the better accuracy of the model.

Unexpectedly, the validation group obtained great result with an

AUC of 0.744 (95% CI, 0.617-0.871) (Figure 4C). Encouragingly, its

calibration curve showed an excellent radiological model calibration

(Figures 5A, C). The above results demonstrate the consistency,

generalization ability and good fit of the DTL+Radionics signature.
Clinical usefulness of the radionics model

The prediction performance of DLR combined with radiological

signatures and deep migration learning signatures was improved

based on comparing each individual signature. A nomogram for

visual recognition was built using the predictive model of DLR

combined with clinical signatures (Figure 4A,Table 2). We also

validated the nomogram’s results and found that integrating deep

learning radiology signature and clinical signature gave better

results (AUC=0.777) than dtl+rad Signature (AUC=0.744)

(Table 2). Decision curve analysis showed promising efficacy in

using the radiological model to predict one-time stone clearance

after receiving PCNL for renal stones (Figures 5B, D). The above

evidence hypothesizes that the model yields good predictive power
TABLE 2 Comparison of Signatures: We used ROC to compare the effectiveness of different signatures in the final prediction results, as follows:.

Signature Accuracy A.U.C. 95% CI Sensitivity Specificity Threshold Task

Clinic-Signature 0.7321 0.8839 0.8087 - 0.9591 1.0000 0.6765 0.6206 Train

Clinic-Signature 0.4761 0.6010 0.4589 - 0.7431 0.2667 0.9394 0.8123 Test

Rad-Signature 0.7560 0.8190 0.7372 - 0.9008 0.6667 0.8125 0.7000 Train

Rad-Signature 0.5873 0.7051 0.5748 - 0.8353 0.6333 0.7667 0.9000 Test

DTL+Rad-Signature 0.7157 0.8707 0.7999 - 0.9416 0.6338 0.9355 0.7115 Train

DTL+Rad-Signature 0.4762 0.7440 0.6166 - 0.8713 0.7333 0.8064 0.7067 Test

Nomogram 0.7460 0.7768 0.6616 - 0.8919 0.7333 0.7576 0.4870 Test
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in predicting postoperative one-time stone clearance treated with

PCNL direction.
Discussions

Staghorn stones are a unique and complex subtype of kidney

stones. PCNL is the basic guidelines for the therapy of staghorn

stones. Despite the continuous development of PCNL techniques,

staghorn stones remain a challenge for doctors because of higher

perioperative complication rates than non-staghorn stones.

Common intraoperative complications include hemorrhage, renal

collecting system injury, visceral organ injury, pulmonary

complications, extrarenal stone displacement, nephrostomy tube

dislocation, and complications of venous thromboembolism (19).

Therefore, it is crucial to accurately assess the outcome of PCNL

surgery in advance and select the right patients. Precision medicine

promotes in-depth research on targeted disease treatment, and the

extraction of individual disease phenotypes is a prerequisite for the

development of precision medicine. Imaging histology uses

radiological imaging techniques to extract various radiological

markers with the help of specific algorithms. In other words,

imaging histology is applied by converting characteristics of MRI,

CT, and other images into quantifiable data through computer-

aided diagnostic techniques. With this technique, abstract image

characteristics can be expressed indirectly in terms of concrete

objective numbers, and the extracted data are analyzed to build
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predictive models. Imaging histology has been widely used to

identify malignancy of urological tumors, postoperative survival

prediction, and preoperative lymph node metastasis (20–23). With

the increasing popularity of imaging histology, it is now used to

diagnose kidney stones (24–26). For example, the prognosis and

prevention of kidney stones can be guided depended on analyzing

composition of the patient’s urinary tract stones. The timing and

extent of laser or ultrasound lithotripsy and the parameters of the

stones are considered essential factors in determining the surgical

options for urinary stones (27, 28). Antler-shaped stones require a

longer operative time. They are more likely to remobilize during

surgery, and movement may result in stone retention.

However, a comprehensive analysis of stones before surgery

remains a significant challenge. Firstly, the current analysis method

can only rely on postoperative or intraoperative detection. Neither

postoperative nor intraoperative testing is feasible for preoperative

evaluation. Then, simple measurement of stone density using HU

(units of CT) is not advisable because of the heterogeneous and

complex situation within the renal deuterostomes. This may explain

why many studies have not yet included stone density in their

assessment scoring systems (29, 30).

This article establishes an easy-to-apply and standardized

preoperative assessment tool for PCNL that will aid in clinical

decision-making, evaluation of surgical outcomes, and academic

research in patients with kidney stones (31, 32).

These tools allow analysis of the safety and reliability of kidney

stone surgery and clinical studies (33). The most common, validated
A

B C

FIGURE 4

Performance of the clinical-radionics model. (A) Nomogram developed based on the clinical-radionics model. (B, C) Receiver operating
characteristic (ROC) curves of the radionics model in the training and external validation groups for the radionics model, respectively.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1184608
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hou et al. 10.3389/fendo.2023.1184608
analysis systems predict SFR and complications after PCNL (34).

The GSS consists of four grades due to the stone structure and the

patient’s condition. CROES is based on global data and is highly

versatile. While the STONE divides patients into three groups,

which is helply to make decisions (35, 36). Although these analysis

systems include different parameters. Stone location, number of

stones, and staghorn stones are critical variables in all analysis

systems (35). However, no comprehensive analysis system for

predicting the prognosis of patients after PCNL surgery, and

there is an apparent conflict between different authors on the

analysis system for the prognostic prediction function. Several

experts reported that all anslysis systems were valid and so as the

SFR when estimated and compared in 246 post-PCNL patients (37).

Tailly reported similar result of the three analysis systems for SFS by

comparing the three analysis systems in 586 post-PCNL patients.

However, there was no association between the three analysis

systems and complications (13).

The present study identified a set of 76 strongly correlated

features as an independent factor for stone clearance rate (SFR) in

patients with PCNL. This multi-feature-based radiological signature

successfully divided patients into a clearance group and a residual

group in the validation dataset. Other studies on extracorporeal
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shock wave lithotripsy (SWL) have found that quantitative analysis

of enhanced CT can ameliorate medical decision-making with

ESWL (38). Similarly, some studies suggest that building

predictive models using radiology or machine learning may help

improve preoperative outcome prediction in PCNL (16, 39, 40). A

single strong risk indicator (radiological features) may not be

sufficient to assess the postoperative situation of patients. Hence,

a deep learning-based clinical-radiological model is conducted by

combining the clinical characteristics of patients. It is a combination

of radiological characteristics and potentially valuable clinical

characteristics. To validate the value of different data and

algorithms for the final stoneless rate goal, we constructed

different signatures using the Extra-Trees algorithm for three

different data: clinical data, imaging characteristics, and deep

migration learning characteristics + imaging characteristics to

investigate the impact of additional data and methods. This study

found that nomograms that combine deep learning, imaging, and

clinical characteristics yield better results. In addition, decision

curve analysis showed that the benefit of deep learning-based

clinical-radiological nomograms was more significant. Decision

curve analysis shows that clinical-radiological nomograms are

more beneficial than all-or-none treatment options.
B

C D

A

FIGURE 5

Decision curve analysis of the radionics model. The blue line represents the DTL+ radionics model. The black line represents the assumption that all
patients have no stones remaining after PCNL in patients with renal cast stones. The yellow line represents the radionics model. The green line
represents the clinical-only model (A) training set. (B) External validation set. (C, D) Calibration curves of the DTL+ radionics model. x- and y-axes
show the predicted and actual probability of complete clearance of one-time stones after PCNL in patients with renal cast stones, respectively. The
calibration curve depicts the calibration of the model, i.e, the agreement between the predicted and actual probabilities. Agreement between
predicted and observed probabilities.
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In terms of clinical predictors, the evaluation of our findings is

consistent with the current mainstream studies. These mainstream

studies also agree that kidney stone location and volume, degree of

hydronephrosis are important parameters for SFR after PCNL (29,

34, 41). Domenico Viola and Silvia Proietti reported that the size of

the stone influenced the success of PCNL, and our study showed

similar results (42, 43). As the stone size increases, it takes longer

and the stone fragments migrate more easily. It also increases the

chance of intraoperative bleeding, negatively affects the surgical

field, and results in residual stones after surgery. In addition, our

findings are consistent with Chen Ke’s research. We believe that the

degree of hydronephrosis correlates with SFR due to renal pelvis

and calyx, complicating lithotripsy and increasing residual stones

after surgery (44). In addition, an experienced surgeon is a critical

factor in the outcome of PCNL, mainly in terms of safety (43, 45). In

previous study, surgeons had to perform approximately 24 PCNLs

to achieve good proficiency, operate on 60 patients to achieve

standard PCNL competence, and perform more than 100 PCNL

procedures to achieve excellence (32). Likewise, it was found that

operators with more than 100 surgical experience had a high level of

familiarity and could effectively manage complications. In addition,

skilled use of ureteroscopes and assistive devices during surgery can

prevent some life-threatening complications.

Although Bozzini reported that FURS provided better SFR and

lower retreatment rates among the various treatments for kidney

stones (46), this study showed that FURS had better results than

PCNL. However, De et al. (47)showed that the stoneless rate was

strong correlation with PCNL than with fURS. In a preliminary

search of 553 articles, Amelia Pietropaol compared different

approaches to kidney stone surgery, including PCNL, URS, and

SWL, with final SFRs of 67%-97.7%, 43%-100%, and 73%-80% (48).

Our study’s overall SFR for PCNL was approximately 72%,

consistent with other studies (range 67% to 97%). Several

investigators have studied specific factors that influence SFR, such

as the pelvic floor angle (IPA). They reported that IPA and other

pelvic anatomy-related parameters were associated with lower SFR

(49). However, the result shown that it was impossible to

demonstrate the effect of pelvic collection system anatomy on

stone fragment removal from the hypocalyx, and the effect of

hypocalyx anatomy on stoneless rates remains controversial (50).

In addition, the measurement of IPA is controversial: urologists rely

on intravenous urography (IVU) or contrast-enhanced CT (CCT)

to measure IPA. However, patients generally do not receive either of

these tests. In addition, patients who are allergic to contrast agents

or have moderate to severe renal insufficiency are not candidates for

this test. Finally, due to the perfusion of water during the procedure,

the renal pelvis and calyces are distended and preoperative

measurements cannot be an accurate predictor during

this procedure.

In this study, imaging histological characteristics variables were

used for analysis in combination with pre-clinical treatment factors.

This is a non-invasive and reproducible technique that is not

influenced by the individual patient. In addition, using computer-

aided diagnostic methods to extract and analyze information from a

patient’s image picture, construct predictive models, and plot

histograms can help clinicians read image information that
Frontiers in Endocrinology 11
cannot be identified by the naked eye. Thus, imaging histology

has good potential for clinical application due to its high utility as an

important tool for precision medicine. But this paper still has some

deficiencies. First, this article is a review of previous research, and

may miss some duplicative results. Furthermore, our proposed

model is built on one dataset and validated on two other datasets,

which may not be convincing enough. Therefore, more verification

work will be carried out in the future.
Conclusions

We found that a prediction model combining deep migration

learning, imaging characteristics and clinical characteristics can be

used as an comprehensive method for stone removal rate in PCNL

surgery for clinical decision making in patients with renal staghorn

stones. When choosing a PCNL treatment strategy, criteria like a

smaller volume of stones, a lesser degree of hydronephrosis, and an

experienced surgeon are more likely to be successful.
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