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Cell cycle activation in thyroid
hormone-induced apoptosis
and stem cell development
during Xenopus
intestinal metamorphosis

Yuta Tanizaki , Yuki Shibata, Wonho Na and Yun-Bo Shi*

Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and
Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
Amphibian metamorphosis resembles mammalian postembryonic development,

a period around birth when many organs mature into their adult forms and when

plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for

amphibian metamorphosis. This and its independence from maternal influence

make metamorphosis of amphibians, particularly anurans such as pseudo-

tetraploid Xenopus laevis and its highly related diploid species Xenopus

tropicalis, an excellent model to investigate how T3 regulates adult organ

development. Studies on intestinal remodeling, a process that involves

degeneration of larval epithelium via apoptosis and de novo formation of adult

stem cells followed by their proliferation and differentiation to form the adult

epithelium, have revealed important molecular insights on T3 regulation of cell

fate during development. Here, we review some evidence suggesting that T3-

induced activation of cell cycle program is important for T3-induced larval

epithelial cell death and de novo formation of adult intestinal stem cells.

KEYWORDS

programmed cell death, metamorphosis, Xenopus laevis, Xenopus tropicalis,
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Introduction

The development of vertebrate intestine, like many other organs, takes place in two

phases, the initial formation of a neonatal/juvenile form and subsequent maturation into

the adult form. This second phase often occurs during postembryonic development, a

perinatal period when plasma thyroid hormone (T3) level peaks (1–3). This period

corresponds the first 2-3 weeks after birth in mouse and metamorphosis in amphibians

such as the highly related anurans pseudo-tetraploid Xenopus laevis and diploid Xenopus

tropicalis (Note that due to the conservations between the two species, we will simply refer

to both as Xenopus unless specified, although earlier studies on anuran metamorphosis

were mainly on Xenopus laevis while more recent ones, particularly gene knockout studies,
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have been on Xenopus tropicalis). Importantly, maturation of the

intestine during this second phase appears to be highly conserved

(4–10). For example, the mouse intestine has villi but no crypts,

where adult stem cells reside, at birth and develop crypts during the

first 3 weeks after birth when T3 levels are high. Similarly, the

intestine in a premetamorphic Xenopus tadpole, when there is little

or no T3, is also simple in structure, consisting of mostly a single

layer of epithelial cells, surrounded by thin layers of connective

tissue and muscles (Figure 1A) (12–17). As T3 levels rises after stage

54 (about 4 weeks of age) (18, 19), metamorphosis begins and larval

epithelial cells undergo programmed cell death (12, 13, 20). Some

larval epithelial cells undergo dedifferentiation during

metamorphosis to form clusters of cells that proliferate rapidly

and express well-known adult intestinal stem cell markers such as

Lgr5 by climax of metamorphosis, e.g., stage 61 (about 6-7 weeks of

age) (Figure 1A) (11, 21, 22). By the end of metamorphosis or stage

66 (about 2 months after fertilization), these proliferating stem cells

differentiate to form a multi-folded epithelium surrounded by

elaborate connective tissue and muscles (4, 16, 17, 23, 24). In the

adult frog, the intestinal stem cells are localized at the bottom of the

epithelial fold while cell death occurs mainly at the crest of the fold,

similar to those taking place in the crypt-villus unit in adult

mammalian intestine (16, 25).

T3 not only has peak levels during postembryonic development

but also plays critical roles during this period, with T3 deficiency

causing severely developmental problems in all vertebrates

including human (1, 2, 26, 27). T3 is both necessary and sufficient

for anuran metamorphosis. Thus, preventing the synthesis of

endogenous T3 allows Xenopus tadpoles to remain in tadpole

form for years while wild type animals typically finish

metamorphosis by around 2 months of age (1, 2, 15). Conversely,

treating premetamorphic Xenopus tadpoles with physiological levels

of T3 in the rearing water causes precociously metamorphosis.

Making use of the ability to easily manipulate anuran

metamorphosis by controlling the availability of T3 to tadpoles or

even organ or primary cell cultures and the advancement in genetic

technologies, especially gene-editing for knockout studies in the

diploid Xenopus tropicalis (28–35), we and others have been

studying the molecular mechanism by which T3 regulates cell fate

and tissue transformation during metamorphosis. Here, we review

some recent studies on intestinal remodeling, with an emphasis on

the potential role of cell cycle activation in larval epithelial cell death

and adult stem cell development.
T3 induces larval epithelial cell death
and adult stem cell development
in an organ autonomous manner via
T3 receptor

Intestinal remodeling, just like any other events during

metamorphosis, requires T3. Treatment of premetamorphic

Xenopus tadpoles with T3 leads to premature intestinal

metamorphosis (16). The most noticeable changes during

intestinal metamorphosis are the nearly 90% reduction in the
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length of the small intestine, while the most dramatic tissue

transformation occurs in the epithelium with the larva epithelial

cells induced to undergo apoptosis by T3, followed by rapid

proliferation of newly formed cell clusters in the epithelium
A

B

FIGURE 1

(A). Schematic diagram of Xenopus intestinal metamorphosis. Both
tadpole and frog intestine are structurally simple, consisting of
mainly three tissue layers: inner epithelium, connective tissue, and
outer muscle layers. The tadpole intestine is much simpler, with only
a single epithelial fold, the typhlosole. In contrast, the frog intestine
has multiple epithelial folds with elaborate connective tissue and
muscle layers. The major events underlying the change from
tadpole to frog intestine during metamorphosis include the
apoptosis of essentially all larval epithelial cells, as indicated by
circles. Concurrently, the adult epithelial stem cells, with high level
expression of known stem cell markers such as Lgr5, are formed de
novo through dedifferentiation of some larval epithelial cells and
rapidly proliferate at the climax metamorphosis, as indicated by the
dots. The connective tissue and muscle cells also develop
extensively during metamorphosis. (B). Apoptotic and proliferating
cells are non-overlapping epithelial cells during T3-induced
intestinal metamorphosis. Premetamorphic Xenopus laevis tadpoles
at stage 54 were treated with 10 nM T3 for 0, 3, or 6 days and
sacrificed one hour after injection with EdU to label proliferating
cells. Intestinal cross-sections were double stained for EdU and by
TUNEL for apoptotic cells. A higher magnification of the boxed
areas labeled with a’-c’ is shown on the right. The dotted lines
depict the epithelium-mesenchyme boundary. Note that apoptosis
as shown by the TUNEL signal in the epithelium occurred prior to
the appearance of the clusters (islets) of EdU-labeled cells and in
distinct epithelial cells during T3 treatment (c’). Arrows point to
some apoptotic cells. See (11) for more details.
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(Figure 1B) (11). Importantly, these proliferating cells express high

levels of known markers of adult mammalian intestinal stem cells

such as Lgr5 (Figure 1B) (11), suggesting that T3 induces the

formation of adult stem cells during metamorphosis.

Importantly, T3-treatment of intestinal organ cultures from

premetamorphic tadpoles also leads to larval epithelial cell death

and de novo formation of adult stem cells, indicating that the adult

stem cells develop organ-autonomously in an T3-dependent

manner. More importantly, by using recombinant organ cultures

generated from isolated intestinal epithelium and non-epithelial

tissues (the rest of the intestine after separating the epithelium)

from premetamorphic wild type tadpoles and transgenic tadpoles

expressing GFP ubiquitously, we have shown that T3-induced stem

cells originate from larval epithelium, likely due to dedifferentiation

of some larval epithelial cells (23) since there has been no evidence

of pre-existing epithelial stem cells in the tadpole intestine and that

the differentiated larval epithelial cells are capable of proliferation

(16, 36). These findings also indicate that T3 is both necessary and

sufficient for larval intestinal cell death and adult stem cell

development during metamorphosis.

T3 functions mainly by binding to T3 receptors (TRs) to

regulate target gene transcription (37–40). There are two types of

TR genes, TRa and TRb, in all vertebrates. TRs can activate or

repress target gene transcription in the presence or absence of T3,

respectively, by binding, as heterodimers with 9-cis retinoic acid

receptors (RXRs), to specific DNA sequences called T3-response

elements (TREs) within target genes (41–45). Earlier studies on the

expression patterns and molecular properties of TRs in Xenopus

laevis have led to a dual function model for TRs during Xenopus

metamorphosis (46). According to the model, TRs are mainly

unliganded in premetamorphic tadpoles when there is little or no

T3 and thus repress target genes to prevent precocious

metamorphosis. During metamorphosis when T3 level is high, T3

binds to TR to activate target genes, thus leading to tadpole

metamorphosis. Extensive molecular and transgenic studies in

Xenopus laevis and gene knockout studies in Xenopus tropicalis

have provided strong support for this model (47–58).

A critical role of TR in intestinal metamorphosis was demonstrated

by studies with recombinant organ cultures made of intestinal

epithelium and non-epithelial tissues from premetamorphic wild

type tadpoles or transgenic ones containing a heat shock-inducible

dominant positive TR (dpTR) that cannot bind to T3 but functions like

a constitutively liganded TR (59, 60). In these recombinant organ

cultures, T3 signaling can be activated in either the epithelium or non-

epithelial tissues or both by heat shock treatment of the organ cultures

without the presence of T3. Such studies have revealed that dpTR

expression in both epithelium and non-epithelium can induce

intestinal metamorphosis, including larval epithelial apoptosis and

adult intestinal stem cell formation and their subsequent

proliferation and differentiation, in the absence of T3 (60). These

findings indicate that TR is sufficient for mediating all effects of T3 for

intestinal metamorphosis, including larval epithelial cell death and

adult stem cell development. Interestingly, activating T3-signaling by

expressing dpTR in either the epithelium or non-epithelial tissues alone

can induce larval epithelial degeneration, indicating that larval

epithelial apoptosis can be induced by T3-signaling both cell
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autonomously and via cell-cell interaction. However, dpTR

expression in either the epithelium or the non-epithelial tissues alone

fails to induce the formation of adult stem cells, although dpTR

expression in the epithelium alone results in dedifferentiation of

some larval epithelial cells (60). These findings suggest that epithelial

T3-signaling induces larval epithelial cell dedifferentiation while T3-

signaling in the non-epithelial tissues is required to help such

dedifferentiated cells to develop into stem cells, likely via the

formation of a proper stem cell niche through cell-cell and/or cell-

ECM (extracellular matrix) interactions (60–63).
TR is not needed for adult intestinal
morphogenesis but is essential for
larval epithelial cell death and adult
intestinal stem cell development
during metamorphosis

The role of endogenous TR in regulating intestinal

metamorphosis was first suggested by transgenic studies with

dominant negative mutant TRs that cannot bind to T3. The

expression of such dominant negative TRs was found to inhibits

Xenopus laevismetamorphosis, including intestinal remodeling (50,

61, 64, 65). Since the dominant negative TRs compete functionally

against endogenous wild type TR that can bind T3, the findings are

not surprising given the causative role of T3 in all aspects of

metamorphosis but demonstrate an essential role for TR to

mediate the metamorphic effects of T3, including larval intestinal

cell death and adult stem cell development.

With the advancement of gene editing technologies, it became

possible to knock out endogenous TR genes in Xenopus. Indeed,

individual TRa and TRb genes or both have been knocked out

recently in the diploid Xenopus tropicalis and found to have distinct

tissue-dependent effects during metamorphosis (52, 55–58, 66–70).

Consistent with the high but relatively constant expression of TRa
during intestinal metamorphosis (71), knocking out TRa delayed

intestinal remodeling (66, 69, 72). Surprisingly, knocking out TRb
had relatively subtle effect on intestinal remodeling during natural

metamorphosis (52, 55), although TRb expression, which is very

low in premetamorphic tadpole intestine, is dramatically

upregulated during intestinal metamorphosis (71). On the other

hand, when premetamorphic wild type and TRb knockout tadpoles

were induced to metamorphose with exogenous T3 treatment, both

larval epithelial cell death and adult intestinal stem cell formation,

which occurred within 2-3 days in wild type tadpoles after the

treatment, were delayed or inhibited in the TRb knockout tadpoles

(55). These findings suggest that TRa and TRb have distinct but

compensatory roles during intestinal metamorphosis. As T3-

induced metamorphosis occurs much faster than the 2-3 weeks

required for the premetamorphic tadpoles at stage 54 to develop to

the climax (stages 60-62, when larval cell death and adult epithelial

stem cell formation occur) during the natural metamorphosis, the

compensation by TRamay be too slow to prevent the effects of TRb
knockout on intestinal remodeling during T3-induced

metamorphosis but fast enough to prevent any major defect in
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intestinal remodeling during natural metamorphosis in TRb
knockout animals.

When both TRa and TRb genes were knocked out in Xenopus

tropicalis, the tadpoles could develop to the climax stage 61 and died

after about 2 weeks at stage 61, in contrast to wild type tadpoles that

develop from stage 61 to the end of metamorphosis in a week (56).

While the wild type intestine at stage 61 had extensive larval

epithelial cell death and proliferation of new formed adult

epithelial stem cells, TR double knockout tadpoles at stage 61 had

little larval cell death or adult stem cell proliferation (Figure 2A)

(73). In addition, as predicted, T3 treatment of premetamorphic TR

double knockout animals had no effect on the intestine (56, 73), in

contrast to the wild type animals (Figure 1B). Surprisingly, the

intestine of TR double knockout tadpoles developed adult

morphology (with numerous epithelial folds and thick layers of

connective tissue and muscles) precociously, by as early as stage 58,

mimicking the wild type intestine at the end of metamorphosis

(stage 66) (Figure 2A) (73). These findings indicate that TR is

required for T3-induced larval epithelial cell death and adult

epithelial stem cell development but not for adult intestinal

morphogenesis during metamorphosis.
Cell cycle activation by liganded TR is
involved in larval epithelial cell death
and adult stem cell development

As a transcription factor, TR regulates target gene transcription

in a T3-dependent manner. Toward understanding how T3

regulates intestinal remodeling, various approaches have been

used to isolate and characterize T3-response genes during

Xenopus intestinal metamorphosis (74–78). These studies have

revealed, perhaps expectedly, that many genes in signaling

pathways known to be important for stem cell proliferation and

function are induced by T3 during intestinal remodeling. These

pathways include hedgehog pathway (21, 79–82), Wnt signaling

(83–85), Notch pathway (86), and BMP signaling (87, 88), etc. In

addition, many other genes, such as the methyl-CpG binding

domain protein 3 (MBD3) (89) and tRNA methyltransferase-like

1 (Mettl1) (90), that were not previously known to associated with

cell death or stem cells, were found to be highly upregulated by T3

during intestinal metamorphosis, suggesting that they may be novel

regulators of cell death or stem cells during development.

When global gene expression analyses with RNA-seq were

carried out on wild type and TR knockout intestine during

metamorphosis, it was revealed that many more genes in gene

ontology (GO) terms related to stem cells, cell proliferation, and

apoptosis were upregulated in the wild type tadpole intestine at the

climax of metamorphosis (stage 61) compared to premetamorphic

stage 54 than in the TR double knockout intestine (73), consistent

with the massive larval epithelial cell death and formation/

proliferation of adult stem cells at the climax of metamorphosis

in the wild type but not TR double knockout intestine. In addition,

GO and KEGG pathway analyses of the genes that were regulated

between stage 54 and stage 61 in the intestine of wild type and TR
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double knockout animals showed that many GO terms and KEGG

pathways, particularly cell cycle/proliferation-related ones, were

enriched among the upregulated genes in the wild type but not

TR double knockout intestine. In fact, several cell cycle/

proliferation-related GO terms were even enriched among genes

downregulated at stage 61 compared to stage 54 in the TR double

knockout intestine. Furthermore, when GO and KEGG pathway

analyses were performed on the genes expressed at higher levels in

the intestine of wild type than TR double knockout tadpoles at stage

61, it was again found that many cell cycle-related GO terms/
A

B

FIGURE 2

(A) TR double knockout tadpoles have abnormal intestinal
morphology with premature adult type epithelial folding. Cross-
sections of the intestine of indicated genotypes stages were stained
with methyl green-pyronin Y. (a, c): Wild type TRa (+/+)TRb (+/+); and
(b, d): TR double knockout TRa (−/−)TRb (−/−). Dashed boxes in c and
d are shown in higher magnification in c’ and d’, respectively. White
arrowheads point to the clusters of proliferating adult epithelial stem
cells adjacent to/underneath the degenerating larval epithelium
(vacuole-like, poorly stained) at the climax of metamorphosis (stage
61) in wild type tadpoles. Note that the knockout tadpoles lacked
such clusters at stage 61 and the epithelium appeared to be uniform
without any obvious degeneration, but with numerous folds. Bars:
100 mm. See (73) for details. (B) TRa is required for the activation of
many cell cycle genes during early phase of T3-induced intestinal
remodeling. Genes regulated by at least 2.0-fold after 18 hours of
T3 treatment in stage 54 wild type but not TRa knockout tadpoles
were mapped onto the KEGG pathway for cell cycle. Pink boxes
indicate upregulation and blue boxes indicate downregulation. Note
that most of the regulated genes were upregulated by T3. See (72)
for more details.
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pathways were enriched among these genes (73). These findings

suggest that T3-bound TR activates cell cycle programs to facilitate

intestinal metamorphosis. Given the rapid proliferation of adult

stem cells at the climax of intestinal metamorphosis in the wild type

(Figure 1) but not TR double knockout tadpoles, it is not surprising

to find the upregulation of genes in the cell cycle program in the

wild type intestine compared to the TR double knockout ones at the

climax of metamorphosis.

A recent RNA-seq analysis of intestinal gene expression in

premetamorphic wild type and TRa knockout tadpoles at stage 54

after 18 hours of T3 treatment suggests that activation of cell cycle

program may also be important for T3-induced larval epithelial cell

death during metamorphosis (72). During T3-induced

metamorphosis, larval epithelial cell death is induced dramatically

after 2 days while epithelial cell proliferation is increased

significantly only after 3 days, due to the formation of adult

epithelial stem cells (Figure 1) (11, 91). Thus, it was expected that

T3 would not induce cell proliferation program, e.g., cell cycle

activation, in the first 2 days of treatment. Surprisingly, GO and

KEGG pathway analyses of the genes regulated by 18 hour T3

treatment of wild type tadpoles showed significant enrichment of

GO terms and KEGG pathways related to cell cycle (72). This raises

a possibility that the activation of the cell cycle program by T3 is an

important early step for T3 to induced larval epithelial cell death

(11, 72, 91). Furthermore, when the gene expression in the intestine

of wild type and TRa knockout tadpoles with or without 18 hour

T3-treatment were compared, it was found that the endogenous

TRa was important for the regulation of the cell cycle program (72),

including the KEGG cell cycle pathway, where many genes were

upregulated by T3 in the wild type but not TRa knockout tadpoles

(Figure 2B). This important role of TRa in gene regulation by T3

during the early phase of T3-induced metamorphosis is consistent

with the fact that there is little TRb expression in premetamorphic

tadpole intestine (71). Thus, T3 likely activates the cell cycle

program via TRa early during metamorphosis to facilitate

epithelial cell fate determination in the intestine: apoptosis vs.

dedifferentiation into adult stem cells.

Whether cell cycle activation leads to larval epithelial cell death

and adult stem cell development remains to be elucidated. As cell

cycle activation is typically associated with cell proliferation in

development, the discovery of a role of cell cycle activation in

developmental cell death was surprising. On the other hand, there

has been evidence for involvement of cell cycle regulators in

apoptosis. For example, c-Myc, a well-known oncogene that

activate target gene transcription and promote cell proliferation,

can induce cell death when overexpressed, at least in cell cultures

(92–102). It is possible that that over activation of cell cycle

pathways may lead to apoptosis in some cells. As the larval

intestinal epithelial cells are mitotically active, even though

differentiated sufficiently to function in the tadpole (16), T3-

induced further activation of the cell cycle/proliferation pathways

in such mitotically active yet differentiated cells may force to them

to change their fate, either death via apoptosis or dedifferentiation

to become adult stem cells to accommodate the faster proliferation

needed for intestinal metamorphosis. Such a mechanism may

explain why cell cycle/proliferation pathways are activated in the
Frontiers in Endocrinology 05
larval epithelium prior to and throughout the two major epithelial

transformations, apoptotic larval epithelial degeneration, and de

novo format ion of the adul t epi the l ium, dur ing T3

intestinal remodeling.
Conclusion

The ability of vertebrate intestinal epithelium for self-renewal

throughout adulthood has made the intestine a well-studied model

for analyses of the properties and regulation of adult organ-specific

stem cells (4–10). The formation of the adult intestinal stem cells

during vertebrate development is much less known but appears to

be conserved in vertebrates. In both mouse and Xenopus, the

formation of the adult intestinal stem cells occurs during

postembryonic development (the neonatal period in mouse and

metamorphosis in Xenopus) when plasma T3 level peaks, and T3-

signaling is important for the development and/or maintenance of

the adult intestine (6, 103–111). These suggest a conservation in T3-

regulation of adult intestinal development.

Studies on intestinal metamorphosis in Xenopus laevis and

Xenopus tropicalis have revealed important and novel insights on

how T3 regulates the development of the adult intestine. First, T3

induces de novo formation of adult intestinal epithelial stem cells via

larval epithelial cell dedifferentiation. Second, T3-signaling in both

the epithelium and non-epithelial tissues are required for adult stem

cell development, likely involving the formation of adult stem cell

niche. Third, TR is essential to mediate T3 signaling for both larval

epithelial cell death and the formation of adult stem cells while adult

intestinal morphogenesis does not require TR. Finally, and

importantly, global gene expression studies on intestinal

development in wild type and TR knockout tadpoles have not

only revealed the regulation of diverse GO terms and pathways by

T3 during intestinal metamorphosis but also implicate a surprising

and novel role of cell cycle activation by T3 in cell fate

determination. It would be interesting to test whether the

activation of cell cycle by T3 is indeed a prerequisite for larval

epithelial cells to choose between apoptosis or dedifferentiation into

stem cells during intestinal metamorphosis. Future studies on the

potentially conserved functions of the T3-induced GO terms and

pathways in the development of the adult intestine in other species

should improve our understanding of the development and

function of adult stem cells in human intestinal homeostasis

and diseases.
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