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Role of ADMA in the
pathogenesis of microvascular
complications in type 2
diabetes mellitus

Xinyang Guo, Yiqiao Xing* and Wei Jin*

Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Diabetic microangiopathy is a typical and severe problem in diabetics, including

diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic

cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular

compl icat ions have s ignificant ly e levated levels of Asymmetr ic

dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide

synthase (NOS). ADMA facilitates the occurrence and progression of

microvascular complications in type 2 diabetes through its effects on

endothelial cell function, oxidative stress damage, inflammation, and fibrosis.

This paper reviews the association between ADMA and microvascular

complications of diabetes and elucidates the underlying mechanisms by which

ADMA contributes to these complications. It provides a new idea and method for

the prevention and treatment of microvascular complications in type 2 diabetes.

KEYWORDS
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1 Introduction

As the global economy progresses and lifestyles change, the prevalence of diabetes is

increasing annually in both developed and developing countries (1–3). According to recent

statistical research, by 2040, it is anticipated that 642 million people will be diagnosed with

diabetes (2). Meanwhile, there has been a significant increase in the incidence of diabetic

microvascular complications (3). Diabetic microvascular complications include diabetic

retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy.

These complications can significantly impact patients’ quality of life and increase their risk

of mortality (4, 5). The pathogenesis of diabetic microangiopathy involves several

mechanisms, including activation of the protein kinase C (PKC) pathway and

accumulation of advanced glycation end products (AGEs), chronic inflammation

mediated by the kinin system, oxidative stress injury induced by the NADPH oxidase-

reactive oxygen species (NOX-ROS) pathway, and transforming growth factor-beta (TGF-

b)-induced fibrosis (6).
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Previous studies have suggested that asymmetr ic

dimethylarginine (ADMA), an endogenous inhibitor of nitric

oxide synthase, plays an important role in the pathogenesis of

diabetic microangiopathy (7). AGEs can enhance ADMA synthesis,

leading to endothelial dysfunction (8). Furthermore, ADMA is

positively correlated with C-reactive protein (CRP) (9), and can

activate macrophages and monocytes to mediate inflammatory

responses (10, 11). Additionally, ADMA may promote tissue

fibrosis by upregulating TGF-b expression (12). However, the

precise mechanisms underlying the effects of ADMA in diabetic

microvascular complications remain poorly understood. The aim of

this literature review is to provide an overview of the role of ADMA

in the pathogenesis of microvascular complications in diabetes and

to suggest potential therapeutic strategies and novel therapeutic

targets for the prevention and treatment of these complications.
2 Synthesis and metabolism of ADMA

2.1 Synthesis of ADMA

Asymmetric dimethylarginine (ADMA) is generated from post-

translational methylation modification of arginine residues in

proteins by protein arginine methyltransferases (PRMTs) and is

released during proteolysis (13). ADMA is widely present in

mammalian bodies, including plasma, tissue fluids, and

cytoplasm. There are three known arginine residues, namely NG-

monomethyl-L-arginine (L-NMMA), asymmetric NG, NG-

dimethyl-L-arginine (ADMA), and symmetric NG, N’G-dimethyl-

L-arginine (SDMA) (14, 15). Type I protein arginine

methyltransferases (PRMT-I) or type II protein arginine

methyltransferase (PRMT-II) can catalyze the formation of L-

NMMA, whereas PRMT-I and PRMT-II catalyze the formation of

ADMA and SDMA, respectively (16, 17). As endogenous nitric

oxide synthase (NOS) inhibitors, L-NMMA and ADMA play an
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essential role in inhibiting nitric oxide (NO) production (14).

However, while SDMA does not significantly affect NOS

expression, it still inhibits NO synthesis, most likely due to its

ability to competitively inhibit arginine transport (18). Interestingly,

the concentration of ADMA in the blood is significantly higher than

that of NMMA (15). As a result, over the past few decades, a

growing number of studies have focused on the effects of ADMA on

vascular diseases, while NMMA and SDMA have received less

attention (19, 20) (Figure 1).

Under normal physiological conditions, healthy adults have an

average plasma ADMA level ranging between 0.4-0.6mmol/L (21).

However, in pathological conditions such as hypertension and

hypercholesterolemia, the plasma level of ADMA in patients can

increase up to two times (21). In patients with chronic renal failure,

the plasma level of ADMA can increase by almost eight times (22).

This increase in ADMA levels in pathological conditions may be

due to the increased synthesis and decreased degradation or

excretion of ADMA. Physiologically, the intracellular

concentration of ADMA is around 3.6 mmol/L, resulting in a

mere 10% reduction in the production of nitric oxide (NO).

However, if the plasma level of ADMA is increased by 3-9 times,

it can significantly impact the intracellular concentration of ADMA,

leading to a much greater inhibitory effect on NO synthesis, ranging

from 30% to 70% (23, 24).

Intracellular L-arginine can produce L-citrulline and NO under

the catalysis of NOS (25). ADMA competes with the substrate L-

arginine for binding to the active site of NOS, leading to a reduction

in NO synthesis (26). Nevertheless, this inhibitory effect can be

reversed by the exogenous addition of L-arginine (22). This suggests

that maintaining an appropriate ratio of L-arginine to ADMA may

be crucial for proper NOS function. High levels of ADMA can lead

to reduced production of NO, which impairs endothelial function

and increases the risk of cardiovascular events such as

atherosclerosis and hypertension (27). However, L-arginine

therapy has been found to be effective in improving endothelium-
FIGURE 1

Synthesis and metabolism of ADMA. ADMA is formed by the post-transcriptional methylation of proteins mediated by PRMTs. Amino acids and
methylarginines such as ADMA, L-NMMA, and SDMA are subsequently released during protein proteolysis. >80% ADMA is hydrolyzed by DDAH to
dimethylamine and citrulline; <20% ADMA is degraded by AGXT2 to DMGV. ADMA can also enter circulation via CAT and excretion by the kidney or
elimination by the liver. (The figure was created using Figdraw).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1183586
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guo et al. 10.3389/fendo.2023.1183586
mediated vasodilation in individuals with elevated ADMA levels

(28). Apart from its role in mediating endothelial dysfunction,

ADMA also has the potential to induce oxidative stress by

promoting the uncoupling of NOS (29). Elevated ADMA levels

inhibit NOS activity and promote NOS uncoupling, resulting in the

generation of ROS and peroxynitrite ions (ONOO-) that mediate

intracellular oxidative stress and ultimately lead to cell damage (30).

Moreover, recent research suggests that ADMAmay have NOS-

independent functions in microangiopathy. Increased levels of

ADMA promote inflammation and fibrosis in endothelial cells,

which could potentially contribute to the onset and advancement of

microangiopathy. Research has demonstrated that ADMA activates

the nuclear factor kappa B (NF-kB), p38 mitogen-activated protein

kinase (p38 MAPK), and extracellular signal-regulated kinase

(ERK) pathways in endothelial cells, leading to the secretion of

tumor necrosis factor-alpha (TNF-a) and soluble intercellular

adhesion molecule-1 (sICAM-1) (31). These molecules mediate

the inflammatory response of endothelial cells. ADMA can also

induce tissue fibrosis by promoting Epithelial-to-Mesenchymal

Transition (EMT) or Endothelial-to-Mesenchymal Transition

(EndMT) (12). These effects were found to be unrelated to

ADMA’s inhibitory effect on NOS.
2.2 Metabolism of ADMA

The metabolism of ADMA includes three pathways. Firstly,

ADMA i s ma in l y hyd ro l y zed by d ime thy l a r g in in e

dimethylaminohydrolase (DDAH), which specifically metabolizes

ADMA and NMMA and does not hydrolyze SDMA (12, 14, 32).

Intracellular ADMA is mainly hydrolyzed by DDAH to citrulline

and dimethylamine (12, 14). Leiper et al. originally found in 1999

that two isoforms of DDAH exist in mammals, DDAH1 and

DDAH2 (33). DDAH1 is predominantly expressed in tissues that
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express neuronal nitric oxide synthase (nNOS), such as the brain

tissue, whereas DDAH2 is mainly expressed in tissues that express

endothelial NOS (eNOS) and inducible NOS (iNOS), such as

vascular endothelium and immune tissue (34).

Secondly, a minor portion of ADMA is decomposed to a-keto-
d-(NG, NG-dimethylguanidino) valeric acid (DMGV) by alanine-

glyoxylate aminotransferase 2 (AGXT2) (12, 35). Despite the

limited role of AGXT2 in clearing ADMA, there are still studies

showing reduced NO synthesis and increased blood pressure in

AGXT2 knockout mice (36).

Thirdly, ADMA exits cells into blood circulation through the

cationic amino acid transporter family (CAT) and is excreted

primarily through the kidneys or eliminated in the liver (12, 35,

37). Meanwhile, circulating ADMA also could enter cells via CAT

to exert its biological effects (12, 35). Under conditions of

inflammation, oxidative stress, and hyperglycemia, the activity of

DDAH is inhibited (35), resulting in a reduction in the degradation

of ADMA. ADMA deposition in the cells eventually leads to cellular

dysfunction (Figure 1).
3 ADMA and diabetic microangiopathy

ADMA serves as a biomarker for endothelial cell dysfunction

and is involved in a diverse range of pathological processes,

including inflammation, angiogenesis, tissue fibrosis, and

oxidative stress (12, 20, 38) (Figure 2). Notably, ADMA has been

established as a potent and independent prognostic marker of

several cardiovascular diseases and chronic kidney disease (27,

39). Meanwhile, ADMA is also closely associated with diabetic

microvascular complications. ADMA has been shown to be a more

specific predictor of diabetic microvascular complications

compared to other markers such as glycated hemoglobin and N-

e-(carboxymethyl)lysine (CML) (40). Higher plasma ADMA
FIGURE 2

Relationship between ADMA and diabetic microvascular complications. High levels of glucose increase the level of ARGs, ROS, and PRMTs while
decreasing the level of DDAH, resulting in elevated levels of ADMA. Elevated levels of ADMA can stimulate even more ROS production and further
increase ADMA levels. Elevated ADMA induces endothelial dysfunction, inflammation, oxidative stress, and fibrosis. These pathological changes cause
several diabetic microvascular complications, such as DR, DN, DF, DSP, and DCM. (The figure was created with BioRender.com).
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concentrations are strongly associated with the development of

diabetic microvascular complication (41). Additionally, the

duration of diabetes is positively correlated with plasma ADMA

concentrations, and hence the longer the duration of diabetes, the

higher the risk of microvascular complications (42, 43). Overall,

these results indicated that ADMA is an important biomarker for

warning of retinal microvascular injury in diabetes mellitus.
3.1 ADMA and diabetic retinopathy

As people’s living standards improve and their dietary habits

change, the incidence of diabetes and its associated complications

has increased significantly. Among these complications, diabetic

retinopathy (DR) is the most prevalent microvascular complication

and a leading cause of visual impairment in the working-age

population (44, 45). DR can be classified into non-proliferative

diabetic retinopathy (NPDR) and proliferative diabetic retinopathy

(PDR) based on the severity of retinal lesions. NPDR typically

occurs in the early stages of the disease and is primarily

characterized by augmented vascular permeability, which leads to

microaneurysms, hemorrhage, hard exudates, and cotton wool-like

spots (46, 47). PDR typically manifests in the late stages of DR and

is characterized by fibrovascular proliferation, resulting in

neovascularization, vitreous hemorrhage, and traction retinal

detachmentt (46, 47).

ADMA, as a risk factor for microvascular injury, has been

linked to the development and progression of DR. The association

between ADMA and DR was initially established in 2007 by

Malecki et al., who reported that increased circulating levels of

ADMA were linked to DR and that ADMA was an independent

predictor of the disease (48). This finding was later supported by

Abhary, S. et al., who also detected significantly elevated serum

ADMA levels in patients with severe DR (49). Additionally,

Motohiko et al. reported significantly higher levels of ADMA in

the serum and aqueous humor of diabetes patients with DR

compared to those without diabetes mellitus (50). ADMA is

synthesized by PRMT1, and PRMT1 gene polymorphisms have

been shown to be associated with an increased incidence of

proliferative DR (PDR), further highlighting the critical role of

ADMA in PDR (51). Elevated levels of ADMA have been found not

only in severe DR but also in prediabetic and diabetic stages,

indicating that ADMA may play an essential role in both the

development and progression of DR (52). Given the significant

correlation between plasma ADMA levels and the development of

DR, researchers have investigated the relationship between plasma

ADMA levels and retinal imaging. Dag et al. reported that plasma

ADMA levels were elevated and choroidal thickness was reduced in

patients with PDR compared to the NPDR group and controls,

indicating a potential link between ADMA and retinal imaging (53).

However, Hernández et al. did not find any correlation between

ADMA plasma levels and retinal neurological dysfunction and

structural alterations (54). Therefore, further studies are needed

to fully elucidate the relationship between ADMA and diabetic

retinopathy imaging, as well as to explore its potential correlation

with retinal neurological dysfunction and structural changes.
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Metabolomics has gained widespread attention from

researchers in recent years due to its ability to explore disease

pathogenesis and potential therapeutic targets through the

qualitative and quantitative analysis of small molecule metabolites

in an organism. Researchers have conducted metabolomics studies

on DR patients using various biological samples such as serum,

plasma, vitreous humor, atrial fluid, and cerebrospinal fluid (55).

Jun Ho Yun et al. utilized a targeted metabolomics approach to

analyze serum samples from non-DR, NPDR, and PDR patients

and identified several differential metabolites (56). They found that

total methylarginine (DMA) concentrations were significantly

higher in DR patients than in non-DR patients (56).

Furthermore, they observed that PDR patients had higher total

DMA concentrations compared to NPDR patients (56). The study

revealed that the severity of DR was positively correlated with DMA

levels, highlighting the possible role of DMA in DR progression.

Moreover, in a study by Huiyi Jin et al., the metabolism of aqueous

humor from patients with DR was analyzed using a 1H-NMR-based

metabolomics approach (57). The researchers found that DMA

levels in aqueous humor were significantly higher in patients with

DR than in diabetic patients without DR, providing further

evidence that DMA may serve as a potential biomarker for DR

(57). Total DMA included ADMA and SDMA (56). Compared with

SDMA, ADMA plays a more important role in inhibiting the

activity of NOS and inducing endothelial cell injury (58).

Additionally, researches have shown that the arginine and proline

metabolic pathways are also associated with DR patients (25, 55, 59,

60). Since ADMA is generated by the methylation of arginine

residues, elevated levels of arginine metabolic pathways may affect

the concentrations of ADMA. This increase in ADMA levels can

inhibit the activity of NOS, leading to a reduction in NO

production, and promote NOS uncoupling, which can produce

superoxide anions and lead to oxidative stress injury (55, 61).

Therefore, the dysregulation of arginine and proline metabolic

pathways may play a role in the pathogenesis of DR by affecting

ADMA levels and NO production. Further research is needed to

fully understand the relationship between these metabolic pathways

and DR, and to determine if they can be targeted for therapeutic

intervention in DR patients.

Recent studies have explored the mechanisms of microvascular

injury in DR associated with ADMA. ADMA affects NO synthesis,

resulting in hemodynamic disorders and ROS production, which

causes oxidative stress in endothelial cells (62). Oxidative stress in

endothelial cells is a critical contributor to the development of

retinal microvascular injury in patients with diabetic retinopathy

(DR). Specifically, in a high glucose environment, DDAH

expression is down-regulated, while PRMT expression is up-

regulated, leading to an increase in the synthesis of asymmetric

dimethylarginine (ADMA) (63–65) (Figure 2). Elevated levels of

ADMA can further exacerbate oxidative stress-mediated retinal

endothelial cell damage by increasing the production of ROS (64).

(Figure 2) Additionally, Huang et al. demonstrated that ADMA can

damage the blood-retinal barrier by affecting the expression of

blood-retinal barrier-specific component connexin 43 (Cx43) from

diabetic rats induced by streptozotocin (STZ) (66). The disruption

of the blood-retinal barrier is responsible for the formation of
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microaneurysms, hemorrhage, and hard exudates, which are

characteristic of NPDR. Moreover, Du et al. reported that ADMA

can induce neovascularization by promoting the proliferation,

migration, adhesion, and tube formation of choroid-retinal

endothelial cells (RF/6A) (67). Neovascularization is a hallmark of

PDR and a critical cause of vitreous hemorrhage, which can lead to

severe visual impairment. The studies mentioned above indicate

that reducing the level of ADMA may provide protective benefits to

the blood-retinal barrier in patients with diabetes and can

potentially decrease the formation of neovascularization, thereby

delaying the progression of DR. Many studies have shown that

DDAH1 is more closely related to the metabolism of ADMA (32,

68, 69). However, the expression of DDAH2 in endothelial cells is

higher than that of DDAH1, and DDAH2 co-localizes with

endothelial nitric oxide synthase (eNOS) (70, 71). In the oxygen-

induced retinopathy mouse model (OIR), both DDAH1 and

DDAH2 are expressed in retinal tissues, but DDAH2 expression

was significantly higher in retinal than in brain, indicating that

DDAH2 has higher specificity in retinal (72). Therefore, increasing

the expression of DDAH2 or enhancing its activity may alleviate

ADMA-mediated retinal microvascular endothelial cell injury.
3.2 ADMA and diabetic nephropathy

Diabetic nephropathy (DN) is a major complication of diabetes

and a leading cause of severe renal function impairment in diabetic

patients. It is characterized by the presence of albuminuria and

progressive glomerulosclerosis, which can eventually lead to renal

failure (73, 74). DN is also a primary cause of the end-stage renal

disease (ESRD) (73). The pathogenesis of DN is complex and

involves several factors, including hemodynamic changes,

oxidative stress, renal fibrosis, and inflammation (75). One critical

player in the pathogenesis of DN is ADMA, an inhibitor of NOS.

ADMA plays a crucial role not only in regulating hemodynamics,

but also in inducing oxidative stress injury, promoting fibrosis, and

mediating inflammation (9, 12).

Several studies have demonstrated the close correlation between

ADMA and DN. A study by Tanhäuserová et al. found that ADMA

is negatively correlated with renal function, such as glomerular

filtration rate (GFR), and that the ADMA/GFR ratio is an essential

biomarker for predicting the progression of DN (76). In patients

with advanced chronic kidney disease (CKD), the higher the

ADMA level, the greater the reduction in GFR and the more

severe the kidney injury (77). Furthermore, for patients who

progressed to ERSD and required hemodialysis treatment, serum

levels of ADMA were significantly higher in DN patients than in

non-DN patients both before and after dialysis (78). It suggested

that ADMA has higher specificity in DN compared to other CKD.

Among haemodialysis patients, the level of plasma ADMA is a

powerful and independent predictor for both cardiovascular events

and overall mortality (79). This highlights the potential of ADMA

as a useful biomarker for both the diagnosis and monitoring of DN.
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Albuminuria, as a prominent clinical feature of DN, is closely

related to ADMA. A prospective study conducted in Brazil revealed

that patients with elevated plasma ADMA levels had a higher risk of

developing albuminuria in both the hypertension group and the

hypertension-diabetes group (80). In addition, the odds ratio of

ADMA in the logistic regression analysis was higher in the

hypertension-diabetes group than in the hypertension group (80),

suggesting that the presence of diabetes exacerbates the risk of

ADMA-induced albuminuria. Furthermore, Yilmaz et al. observed

a positive correlation between serum level of ADMA and

proteinuria and a negatively correlated with endothelial cell

function (81). ADMA may promote the progression of

albuminuria by damaging renal microvascular endothelial cells.

Meanwhile, Kaida et al. have found that proteinuria can induce

oxidative stress injury, which further up-regulated the expression of

PRMT1 and increase the synthesis of ADMA in renal tubular cells

(82). The interaction between ADMA and proteinuria can worsen

renal function. Reducing the synthesis or promoting the breakdown

of ADMA may slow down the progression of proteinuria.

Therefore, ADMA may be a therapeutic target for alleviating

albuminuria in patients with DN, and its specific mechanism

remains to be further verified.

DDAH is a key enzyme in ADMA degradation. Wetzel et al.

have found that overexpression of DDAH1 in mice can reverse

ADMA-mediated albuminuria, oxidative stress injury, and

inflammatory response, thus improving DN (83). Meanwhile,

reduced expression of DDAH, significant accumulation of ADMA

in plasma and renal tissue, tubular necrosis, and significantly

impaired renal function was found in ischemia-reperfusion-

injured mice (84). However, in folate nephropathy and unilateral

ureteric obstruction models, renal tissue damage and renal fibrosis

were less severe in DDAH1 knockout mice than in controls (85).

Whether DDAH inhibition has a protective effect on renal function

in DN patients remains to be further verified.

Interstitial fibrosis and glomerulosclerosis are major causes of

chronic renal failure in DN patients. ADMA, as a mediator of renal

tissue fibrosis, plays an essential role in this process. ADMA has been

found to promote the deposition of collagen fibers and damage

capillaries of the glomerulus and tubule, thereby aggravating renal

fibrosis (12, 86). The underlying mechanism involves ADMA up-

regulating hypoxia-inducing factor (HIF) and its downstream target

molecule, endothelin-1(ET-1), as well as promoting the expression of

Transforming Growth Factor b (TGF-b) (87, 88). This leads to the

transdifferentiation of fibroblasts, epithelial cells, or endothelial cells

into myofibroblasts, ultimately leading to increased synthesis of

extracellular matrix and progression of chronic kidney disease (89–

91). Furthermore, Isaivani et al. demonstrated that ADMA can activate

the fibrotic signaling pathway through the NOX4/ROS/ERK pathway,

leading to increased synthesis of extracellular matrix and accelerating

kidney cell fibrosis (92). In rats induced by monocrotaline, DDAH1

knockdown significantly exacerbated oxidative stress, pulmonary

vascular remodeling, and lung fibrosis (93). Through the same

mechanism, elevated ADMA may mediate oxidative stress and
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fibrosis of renal tubular epithelial cells and glomerular microvascular

endothelial cells, eventually leading to renal failure. Therefore, the

reduction of ADMA levels may be a therapeutic strategy for delaying

the progression of CKD induced by renal fibrosis.
3.3 ADMA and diabetic neuropathy

Diabetic neuropathy is a common complication of diabetes,

seriously affecting patients’ quality of life. The most common type of

diabetic neuropathy is distal symmetric polyneuropathy (DSP), which

manifests as sensory abnormalities in a stocking-glove distribution in

the limbs, including numbness, pain, and weakness (94). Severe DSP

can progress to diabetic foot, which may ultimately lead to limb

amputation (95). High blood sugar plays a critical role in the

development of diabetic neuropathy by inducing oxidative stress and

inflammation. However, maintaining glycemic control alone is

insufficient to halt the progression of neuropathy (94), suggesting the

involvement of other crucial molecules.

As mentioned previously, ADMA is a critical mediator of

oxidative stress damage and inflammation, and its role in

exacerbating diabetic neuropathy remains controversial. Several

studies have found that patients with type 2 diabetes who suffer

from peripheral neuropathy exhibit endothelial dysfunction (94–

96). ADMA can induce endothelial dysfunction by affecting NO

synthesis and promoting oxidative stress. However, the use of

antioxidants, such as alpha-lipoic acid (ALA), can improve

ADMA-induced endothelial damage and promote the repair of

peripheral sensory nerve function (97). Stojanovic et al. found that

compared with the control group, plasma ADMA levels were

significantly increased in patients with type 2 diabetes mellitus

complicated with DSP (98). ADMA can be used as a marker to

detect the progression of diabetic neuropathy. Diabetic foot (DF) is

an important manifestation of diabetic peripheral neuropathy in

patients with diabetes. Hala et al. found that the level of circulating

ADMA was significantly higher in DM patients who had DF

compared to those without DF, and NO levels were significantly

lower in DM patients with DF (99). ADMA may affect the

microcirculation of the limbs by affecting the synthesis of NO,

resulting in aseptic ulcers in the feet.

However, Kyrillos et al. suggested that the plasma levels of ADMA

were not significantly increased in patients with DF compared with the

control group (100). Moreover, Halit et al. found no significant

difference in ADMA levels between diabetic patients with

neuropathy and without neuropathy (101). The differences in these

results may be attributed to inadequate sample size or individual

differences in the baseline disease of patients. Further clinical

controlled studies with larger samples are necessary to confirm the

relationship between ADMA and diabetic neuropathy.
3.4 ADMA and diabetic cardiomyopathy

Diabetic cardiomyopathy (DCM) refers to an abnormality in

the structure and function of the myocardium that occurs without

other traditional cardiovascular risks, such as coronary artery
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disease, valvular heart disease, hypertension, or hyperlipidemia

(102). The early manifestation of DCM includes impaired

diastolic function, which may progress to systolic dysfunction and

eventually lead to heart failure (103). Although it is commonly

believed that DCM is closely associated with diabetic

macroangiopathy, studies as early as the 1980s have found

evidence of capillary basement membrane thickening and

microangioma formation within the myocardium of diabetic

patients (104–106). These findings suggest that myocardial

microangiopathy also plays a significant role in the development

and progression of diabetic cardiomyopathy.

The pathogenesis of DCM involves various factors, including

hyperglycemia, insulin resistance, hyperlipidemia, oxidative stress,

inflammatory responses, activation of the renin-angiotensin-

aldosterone system, and abnormal function of the sympathetic

nervous system (107). Studies have shown that abnormal glucose

metabolism can lead to oxidative stress, reducing the availability of

nitric oxide (NO) and synthesis of vascular endothelial growth

factor (VEGF), causing dysfunction of myocardial microvascular

endothelial cells, and promoting vasoconstriction, ultimately

leading to reduced blood flow to myocardial cells (108, 109). In

addition, hyperglycemia increases the plasma level of ET-1 and

promotes the endothelial-to-mesenchymal transformation

(EndMT) of myocardial microvascular endothelial cells (110).

This process can further trigger myocardial fibrosis, which plays a

significant role in ventricular remodeling and the development of

myocardial systolic and diastolic dysfunction.

In diabetic rat models with DDAH2 overexpression, a decrease

in left ventricular end-diastolic pressure and an increase in systolic

pressure were observed, along with an improvement in myocardial

function (111). In addition, DDAH2 administration to

cardiomyocytes cultured in a high-glucose environment resulted

in a reduction in ADMA synthesis, an increase in NOS levels, and a

decrease in type I collagen fiber, matrix metalloproteinase 2

(MMP2), and tissue inhibitor of metalloproteinase 2 (TIMP2)

levels (111). MMP2 and TIMP2 are crucial factors in the

synthesis of myocardial extracellular matrix (ECM) and are

implicated in the progression of myocardial fibrosis (112).

Reducing ADMA levels may alleviate myocardial microvascular

injury, inhibit myocardial fibrosis, improve myocardial remodeling,

and enhance myocardial function.

In a rat model of diabetic cardiomyopathy, it was observed that

ADMA levels were elevated in cardiomyocytes, which interfered

with mitochondrial biosynthesis and affected myocardium function

(113, 114). The underlying mechanism could be that ADMA up-

regulated the expression of coupled protein 2 (UCP2) and inhibited

the activity of the peroxisome proliferator-activated receptor-g-
coactivator-1a (PGC1a) promoter, leading to the down-

regulation of PGC-1a expression and, thus affecting ATP

synthesis (113, 114). However, resveratrol treatment helped to

mitigate ADMA accumulation and reverse Adma-mediated PGC-

1a expression reduction and acetylation, which ultimately improve

myocardial mitochondrial function (115). The findings indicate that

managing ADMA levels could be an effective strategy in the

treatment of diabetic cardiomyopathy, and resveratrol might have

the potential as a therapeutic agent.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1183586
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guo et al. 10.3389/fendo.2023.1183586
4 Discussion

The above findings suggest that ADMA is an important marker of

microvascular injury in diabetic patients and is involved in the

development and progression of diabetic microvascular

complications through multiple pathways. Endothelial dysfunction,

inflammation, oxidative stress damage, and fibrosis in endothelial

cells are important risk factors for diabetic microvascular

complications. Many studies in the past have focused on the

effects of ADMA on endothelial cell function through the inhibition

of NOS activity and NO production. In recent years, more and

more studies have confirmed the important role of ADMA in

inducing oxidative stress injury and fibrosis, which brings a new

direction for the treatment of diabetic microvascular complications.

More studies are still needed in the future to further analyze the

mechanistic pathways involved in ADMA, to find key therapeutic

targets, and to provide new ideas for the prevention and treatment of

diabetic microvascular complications.

ADMA is a by-product of protein arginine methylation and can

be significantly increased in various pathological conditions like

diabetes, hypertension, coronary heart disease, and chronic kidney

disease. This elevation may be caused by an imbalance between

ADMA production and degradation. Although ADMA can be

partially eliminated through urine excretion, the main pathway

for ADMA metabolism is intracellular DDAH degradation, which

highlights the importance of PRMTs and DDAH in maintaining

normal ADMA levels. Further exploration is required to determine

the mechanism by which the expression of these two enzymes can

be affected in pathological conditions. Additionally, it has been

suggested that the occurrence of PDR could be linked to

polymorphisms in the PRMT1 gene (51). However, it is currently

unknown whether similar associations exist in other patients with

diabetic microvascular complications, as well as whether there is

concurrent DDAH gene polymorphism. Further research is

required to address these questions.

Elevated ADMA levels have been linked to adverse effects,

prompting researchers to explore methods for reducing them.

One such approach involves L-arginine, which has been shown to

reverse the inhibitory effect of ADMA on NOS (22). However, while

L-arginine has been shown to improve endothelial function in

individuals with high ADMA levels (28), some studies have

produced unexpected results. These studies have found that L-

arginine supplementation may not have any positive effects on

blood vessels and can even lead to adverse outcomes (23).

Moreover, higher L-arginine levels correlate with increased

ADMA levels (23). This phenomenon may be attributed to the

competitive inhibition of DDAH enzyme activity by higher L-

arginine levels, which subsequently reduces ADMA degradation

(23). Therefore, the role of arginine in improving endothelial

dysfunction remains controversial. Further research is needed to
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fully understand the potential benefits and adverse effects of L-

arginine supplementation for endothelial function and vascular

health. Additionally, while studies indicate that various

medications like antihypertensive, lipid-lowering, hypoglycemic,

and antioxidant drugs can reduce ADMA levels, most of these

studies lack placebo controls (116). Currently, no specific drug

targets ADMA levels. Therefore, there is a need for further

investigation into ADMA-lowering medications, and additional

clinical studies are required to determine whether reducing

ADMA levels can lead to a significant slowdown of diabetic

microvascular complications progression and better prognoses.
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