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The role of GnRH
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in endometrial cancer
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Sciences, Bethesda, MD, United States
From the time of its discovery and isolation in the mammalian hypothalamus, the

decapeptide, gonadotropin-releasing hormone (GnRH), has also been found to

be expressed in non-hypothalamic tissues and can elicit a diverse array of

functions both in the brain and periphery. In cancer, past studies have targeted

the gonadotropin-releasing hormone receptors (GnRHR) as a way to treat

reproductive cancers due to its anti-tumorigenic effects. On the contrary, its

metabolite, GnRH-(1-5), behaves divergently from its parental peptide through

putative orphan G-protein coupled receptor (oGPCR), GPR101. In this review, we

will focus on the potential roles of GnRH-(1-5) in the periphery with an emphasis

on its effects on endometrial cancer progression.
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Introduction

The gonadotropin-releasing hormone (GnRH) is a central regulator of mammalian

reproductive function through the hypothalamic–pituitary–gonadal (HPG) axis. Since its

discovery in the porcine hypothalamus, over 20 different primary structures of GnRH and

its receptors have been identified and studied across various species (1–4). The first form of

GnRH in vertebrates (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) is designated as

GnRH-I, contains highly conserved sequences on NH2 and COOH terminal residues,

pGlu-His-Trp-Ser and Pro-Gly respectively (4). While GnRH regulation of the HPG axis

have been extensively studied, its role in gonadotrope desensitization or fertility

reestablishment in hypogonadal patients has made GnRH analogues and antagonists an

appealing target for a wide variety of clinical treatments (5–12). Furthermore, a growing

number of studies have determined that GnRHR stimulation by GnRH analogs induces

antiproliferative and antimetastatic effects in various types of tumors, therefore, presenting

GnRHRs as a good candidate for therapeutic intervention for cancers (4, 13–15).

While GnRH and its pharmacologic analogs impede cancer progression, its metabolite,

GnRH-(1–5), elicits an opposing response. Our previous studies have demonstrated that

GnRH-(1–5) is a biologically active pentapeptide and its mechanism of action is autonomous
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from its parental peptide (16). In this review, we will describe the

metabolism of GnRH to generate GnRH-(1–5), provide a brief

overview on the discovery of its bioactivity, and discuss how the

biological responses elicited by GnRH-(1–5) in endometrial cancer

cells are mediated by GPR101 to stimulate cell growth and metastatic

behavior. Our studies suggests that GnRH-(1–5) is more than a

metabolic byproduct and targeting its putative receptors may offer a

therapeutic target for halting cancer progression.
GnRH is metabolized to generate
bioactive GnRH-(1–5)

The decapept ide , GnRH, i s metabo l i zed by z inc

metalloendopeptidase EC 3.4.24.15 (EC 3.4.24.15 designation

based on the International Union of Biochemistry and Molecular

Biology (IUBMB) Enzyme Nomenclature; abbreviated as EP24.15

or THOP1), to generate the pentapeptide GnRH-(1–5) (17). This

thimet oligopeptidase belongs to a class of zinc dependent

metalloendopeptidases expressed in mammalian tissues; most

notably in the brain, pituitary, and testis (18–20). First identified

as a 75kDa neuropeptide peptidase in the soluble fraction of rat

brain homogenates, it was originally thought to be predominantly

localized in the cytoplasm. However, EP24.15 has subsequently

been found temporally localized to the extracellular surface of the

plasma membrane, as well as synaptosomes and the exofacial leaflet

of the lipid raft microenvironment (21–25).

Historically, this peptidase was recognized for its sole function

as a classic degrading enzyme terminating its substrate bioactivity

by reducing or eliminating the binding potential to its cognate

receptor. However, EP24.15 has since been recognized as possessing

other abilities to regulate cellular activities. A previous study has

demonstrated that within the purified synaptosomal membrane of

the rat brain, EP24.15 was able to transform neoendorphin into

Leu-enkephalin; an example of transforming an inert precursor into

an active neuropeptide (25). EP24.15 can also modulate a peptide to

alter its bioactivity in opposition of its original physiological effect,

as exhibited by altering angiotensin-I (Ang-I) into fragment

angiotensin-(1–7) (Ang-(1–7)) (26–28). Furthermore, our lab has

demonstrated that EP24.15 can convert bioactive GnRH-I into

another bioactive pentapeptide, GnRH-(1–5), to elicit lordosis

behavior in female rats through a receptor independent of its

parental receptor, GnRHR-I (16).

The manner of specificity in which GnRH is metabolized

suggests that EP24.15 converts rather than simply generating a

degraded peptide as an inactive final byproduct. Furthermore,

EP24.15 displays preferential cleaving of hydrophobic residues at

positions P1, P2 and P30 in larger peptides and P10 in smaller

peptides; denoting this fragmentation as a highly distinctive process

(29). In vitro, the hydrolysis of GnRH involves a two-step

mechanism requiring zinc as a cofactor bound to the active site

with the classic HEXXH motif , thiol activation, and

phosphorylation of serine residue 644 (Ser644) by protein kinase

A (PKA) (18, 30–33).
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Kinetic studies in ovine hypothalamic extracts indicated that

EP24.15 phosphorylation decreases its affinity for the a-amidated

decapeptide GnRH (32, 33). However, upon cleavage of glycine

(Gly10) at the carboxyl terminal by prolyl endopeptidase (PE), the

intermediate fragment, GnRH-(1–9) becomes a greater substrate for

EP24.15 by 10-15-fold (33). This study suggests that basic structural

conditions are required for efficient and successful interaction with

the binding site and that the amidation of the carboxyl terminal is

necessary to avert any nonspecific degradation of GnRH (21).

Subsequently in the second step, EP24.15 rapidly cleaves GnRH-

(1–9) at the Tyr5-Gly6 bond to generate biologically active product,

GnRH-(1–5) (32, 33).
The discovery of GnRH-(1–5)
biological activity

The widely accepted paradigm that a cleaved peptide becomes

biologically inactive has been disputed by a growing body of

literature that suggests otherwise (34). These fragmented peptides

appear to regulate a diverse array of functions that are autonomous

of its parental peptide (32, 35). In relation to the focus of our review,

previous researchers have speculated that GnRH metabolite,

GnRH-(1–5), may be a biologically active fragment and warrants

further investigations (16, 34, 36–39).

One of the first observations of possible bioactivity were seen in the

hypothalamic rat explants where treatment with GnRH-(1–5) resulted

in the reversible suppression of the spontaneous pulsatile secretion

of GnRH. This suppression was similar in manner to the

NMDA competitive antagonist, AP-5 (36). This study suggests that

GnRH-(1–5) may act through NMDA receptors to mediate an

inhibitory autofeedback of GnRH secretion in various types of cells.

Our previous expression study in the immortalized mouse neuron

GT1-7 cell line demonstrated that treatment with GnRH-(1–5)

stimulated GnRH-I mRNA expression in contrast to GnRH-I

treatment, which demonstrated a negative autoregulatory

feedback effect on GnRH-I expression (37). Interestingly, the effect of

GnRH-(1–5) on LH release may be mediated by kisspeptin neurons

(39). In the periphery, our studies with the human Ishikawa cell line, a

commonly used model for GnRH-I effects on endometrial cancer

studies, demonstrated that GnRH-(1–5) had no effect on the gene

expression of the GnRH-I system unlike its parental peptide (38).

In addition to regulating gene expression, GnRH-(1–5) can also

regulate lordosis behavior in estradiol-primed ovariectomized

female rats (16). The intracerebroventricular (ICV) administration of

GnRH-(1–5) elicited lordosis, indicating that the metabolite was just as

effective in stimulating sexual behavior as its parental peptide, GnRH-I.

This observation was further validated through the use of

immunoneutralization studies with antibodies to EP24.15, in which

GnRH-I facilitated lordosis was inhibited whereas the GnRH-(1–5)-

facilitated lordosis remained unaffected (16). Collectively, these studies

indicate that GnRH-(1–5) has different effects from its parental peptide,

and its mechanism of action may be mediated through receptors

independent of GnRHR (Table 1).
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Identification of GPR101 as a putative
GnRH-(1–5) receptor

Putative GnRH-(1–5) receptors were discovered by utilizing a

high-throughput b-arrestin recruitment assay (43). One of the

receptors identified for positive binding was orphan G protein-

coupled receptor 101 (GPR101). A previous study noted that the

promoter region of the GPR101 gene was hypermethylated in

colorectal cancer, therefore, future studies were focused on

GPR101 as a possible receptor for GnRH-(1–5) (44). The

relationship between GnRH-(1–5) to GPR101 was validated

through siRNA mediated downregulation of GPR101 expression

studies and the reversal of GnRH-(1–5) effects on EGFR

phosphorylation and migration (45). These findings implicate

GPR101 as the receptor GnRH-(1–5) acts on to transactivate

EGFR phosphorylation in the Ishikawa cell line.

The GPR101 gene is located on chromosome X (Xq26.3) which

encodes for a 508-aa, Class A (rhodopsin-like) GPCR protein. It is

highly expressed in the fetal pituitary during the somatotrope

maturation process as well as the hypothalamus, nucleus

accumbens, and other tissues (45–49). While it shares ~30%

sequence homology in the transmembrane regions with GPCRs

RE2, a-1A-adrenergic receptor, and the serotonin 5HT1A receptor,

early studies utilizing the knowledge-restricted hidden Markov

model-based algorithm and determination of cAMP levels in

overexpressing human GPR101 in human embryonic kidney

(HEK293) or rat pituitary GH3 cells indicates that GPR101 may

be constitutively coupled to Gas signaling pathway (46, 50, 51).

Other studies utilizing the chinese hamster ovary (CHO-K1) or the

Ishikawa cell line report that GPR101 does not constitutively

activate or stimulate the cAMP pathway but suggests possible

coupling to other G protein mediated pathways such as the Gai

or Gaq/11 pathway (52, 53). These observations suggest that GPR101

and its G-protein selectivity may be tissue dependent and warrants

further investigations in future studies. Although studies thus far

have focused primarily on GPR101 and its role in endocrine related

disorders such as X-linked acrogigantism (X-LAG) (54, 55), new

emerging studies indicate other possible functions in mediating the
Frontiers in Endocrinology 03
hypothalamic control of energy homeostasis, pro-resolving actions

in leukocytes to control inflammation, and stimulating cell

proliferation and metastatic behavior in endometrial cancer cells

(45, 48, 49, 56, 57).
GnRH-(1–5) effects on cell
proliferation in endometrial
cancer cells

As stated previously, GnRH-I and its analogs offer treatment

to a wide array of conditions including sex hormone-dependent

diseases seen in prostate and gynecological cancers (12, 19, 58–

63). The activity of GnRH is regulated through GnRHR via

distinctive signal transduction pathways in a tissue-dependent

manner. Most studies associate the antitumorigenic activity of

GnRHR through coupling with the Gai pathway. This pathway is

correlated to the activation of apoptotic signaling cascades,

augmentation of phosphotyrosine-phosphatases, promotion of

cell cycle arrest, and impeding the MAPK signaling pathway

(40–42, 64–66). However, some studies from cells in other

tissues have observed GnRH-I coupled to the Gaq subunit

(67, 68).

While GnRH analogs are known to have antitumorigenic

effects, in our studies, GnRH-(1–5) exerts an opposing effect by

promoting cell proliferation and invasion in endometrial cell lines.

Our initial study investigated whether a wide range of dosage

treatments with GnRH vs GnRH-(1–5) can affect cell

proliferation and alter markers for MAPK signaling pathway in

the Ishikawa cell line (69). After 24h of treatment, this study

demonstrated that GnRH and GnRH-(1–5) had diverging

effects on cell proliferation; GnRH decreased cell proliferation

whereas GnRH-(1–5) increased cell proliferation. Furthermore,

GnRH-(1–5) suppressed caspase-3/7 activity and downregulated

ERK-1/2 expression, suggesting for the first time that cell growth

and proliferation may be linked to an apoptotic process in

endometrial cancer cells.
TABLE 1 Articles investigating GnRH-(1–5) biological activity in the brain and periphery.

Tissue/Behavior Functional Effects Reference

Hypothalamic rat explants Reversible suppression of spontaneous pulsatile GnRH secretion (36)

GT1-7 immortalized mouse neuron cell line Stimulated increase in GnRH-I mRNA expression (37)

Kisspeptin neurons in ovariectomized and estrogen-treated
Wistar-Imamichi female rats

Increase in plasma LH concentration (39)

Endometrial cancer cell line: Ishikawa Stimulated increase in GnRH-II and GnRHR-II mRNA expression (38)

Estradiol primed ovariectomized female rats Elicited the lordosis response (28)

Endometrial cancer cell line: Ishikawa Increased cell proliferation, suppressed caspase-3/7 activity, and downregulated ERK1/2
expression

(40)

Endometrial cancer cell line: Ishikawa Stimulated EGF release, increased phosphorylation of EGFR, promoted cell migration,
and identified GPR101 as putative receptor

(41)

Endometrial cancer cell line: Ishikawa and ECC-1 Increased MMP-9 activity to stimulate EGF release, enhanced cell migration and invasion (42)
f
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GnRH-(1-5) signaling pathway

The EGFR signaling pathway is heavily implicated in its role in

cancer progression (70, 71). Dysregulation of this signaling pathway

in endometrial cancer can lead to transforming tumors into a more

aggressive metastatic phenotype; therefore, we performed a study to

determine whether GnRH-(1–5) can alter the EGFR signaling

pathway in the endometrial cancer Ishikawa cell line (72–75).

Our studies suggest that GnRH-(1–5) stimulates epidermal

growth factor (EGF) release, increases phosphorylation of EGFR

at three tyrosine sites (992, 1045, 1068), and promotes cell

migration (Figure 1) (45); however, GnRH and GnRH analogs,

(D-Ser6)-GnRH or (D-Trp6)-GnRH had no effect on EGFR

phosphorylation and impeded cellular migration compared to

untreated cells. Pre-incubation with GnRHR antagonist, Antide,

had no effect on GnRH-(1–5) ability to stimulate EGF release and
Frontiers in Endocrinology 04
EGFR phosphorylation demonstrating a novel mechanism that’s

independent of GnRHR in mediating these effects. Furthermore,

studies with G-protein antagonist peptide (GPAnt-2) suggested

effects observed with GnRH-(1–5) were G-protein dependent.

Our most recent study with GnRH-(1–5) has determined that its

effects are dependent on increasedmatrixmetallopeptidase-9 (MMP-9)

enzymatic activity in two different endometrial cancer cell models,

the Ishikawa and ECC-1 cell lines (57). Upon binding to GPR101,

GnRH-(1–5) increases MMP-9 activity to augment EGF release. This

in turn increases EGFR phosphorylation to stimulate cellular migration

and invasion. These results indicate the important physiological

relevance of GnRH-(1–5) effects on mediating MMP-9 activity in

increasing the metastatic potential of endometrial cancer cells.
Summary

The novelty of GnRH-(1–5) and its role in the pathophysiology

of endometrial cancer adds another layer of complexity to our

current understanding of the GnRH paradigm in endometrial

cancer. Future studies with GnRH-(1–5) should investigate its

effects on other growth factors and related signaling pathways

highly implicated in endometrial cancer, such as transforming

growth factor beta (TGFb), vascular endothelial growth factor

(VEGF), and platelet-derived growth factor (PDGF) (76–80). The

TGFb pathway is a well-known contributor to the malignant

transformation of the precursor lesion endometrial intraepithelial

neoplasm (EIN) into invasive carcinoma and rising levels of VEGF

are linked to the development of endometrial cancer (76). The

presence of PDGF in the microenvironment of carcinomatous

endometrium is a hallmark in cancer-associated fibroblasts.

PDGF is shown to promote immune cell recruitment through the

modulation of the PI3K/Akt and MAPK/ERK pathway to stimulate

endometrial cancer cell proliferation, which we have already

identified to be a downstream effect of the GnRH-(1–5) signaling

pathway (45, 57, 76).

In addition to investigating GnRH-(1–5) effects on other growth

factors, exploration of GnRH-(1–5) signaling through another

putative receptor, GPR173, should be considered since our studies

in the brain have determined that GnRH-(1–5) can act on GPR173 to

inhibit neuronal migration (81). Upon stimulation by GnRH-(1–5),

GPR173 recruits b-arrestin and phosphatase and tensin homolog

(PTEN) as adaptor proteins to inhibit the phosphorylation of signal

transducer and activator of transcription 3 (STAT3) leading to

decreased migration (43, 81). In women with endometriosis,

reduced PNX levels and GPR173 expression may be responsible for

HPG axis dysregulation (82).

These new insights may contribute to a better understanding of

the pathophysiology of endometrial cancer and provide the basis for a

new strategy for diagnosis. Furthermore, in our comparative

transcriptome analysis between patient and endometrial cancer cell

lines, we identified that one of the top five signaling pathways

involved in cancer progression is the neuroprotective role for

THOP1 in Alzheimer’s disease; shift from being up- to

downregulated as approaching advanced cancer stage III (83). The

THOP1 gene encodes for the protein EP24.15, which we have
FIGURE 1

The GnRH-(1–5) paradigm in endometrial cancer cells. The
metabolite GnRH-(1–5) is generated in a two-step process from
decapeptide, GnRH-I (1). The first step is the removal of Gly10 at the
C-terminus by enzyme, prolyl endopeptidase (PE), to generate
intermediary fragment, GnRH-(1–9) (2). The second step involves
the hydrolyses of GnRH-(1–9) by enzyme, EP24.15, at the covalent
bond between Tyr5–Gly6 to produce bioactive pentapeptide
fragment, GnRH-(1–5) and tripeptide GnRH-(6–9) (3). GnRH-(1–5) in
turn binds to GPR101 to stimulate MMP-9 activity to increase EGF
release into the extracellular space in a G-protein dependent
manner (4). The release of EGF subsequently increases EGFR
phosphorylation at three tyrosine sites (992, 1045, 1068) and
initiates signaling cascades (5). Downstream phosphorylation of ERK
results in increased cell proliferation, migration, and invasion; all
important factors for inciting metastatic potential (6). GnRH-(1–5)
can also regulate GnRH-II and GnRHR-II gene expression; however
this mechanism still remains elusive.
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described previously, as the primary enzyme that metabolizes GnRH

to GnRH-(1–5). Future studies should address the relationship

between increased EP24.15 expression and enzymatic activity to

generate GnRH-(1–5) to all its related markers identified to

ascertain its role in driving cancer progression since a prior study

has implicated augmented EP24.15 activity in prostate cancer (29).

Importantly, continuing to understand the effects of GnRH-(1–5)

on endometrial cancer progression will provide future targets for

pharmaceutical intervention. Currently, the mainstay treatment for

early-stage disease is surgery however depending on the stage of disease

and other risk factors, adjuvant radiotherapy and/or chemotherapy is

used. Given that primary management for endometrial cancer is

surgical intervention, the discovery of pharmaceutical targets will

provide the most benefit for patients with comorbidities who are

unsuitable for surgery and pre-menopausal or hormone insensitive

patients who want to preserve their fertility.
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