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Implication of DNA
methylation during lifestyle
mediated weight loss

Samantha Aurich1,2, Luise Müller1, Peter Kovacs1,3
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Center, Leipzig, Germany, 2Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-
MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig,
Leipzig, Germany, 3Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
Over the past 50 years, the number of overweight/obese people increased

significantly, making obesity a global public health challenge. Apart from rare

monogenic forms, obesity is a multifactorial disease, most likely resulting from a

concerted interaction of genetic, epigenetic and environmental factors.

Although recent studies opened new avenues in elucidating the complex

genetics behind obesity, the biological mechanisms contributing to individual’s

risk to become obese are not yet fully understood. Non-genetic factors such as

eating behaviour or physical activity are strong contributing factors for the onset

of obesity. These factors may interact with genetic predispositions most likely via

epigenetic mechanisms. Epigenome-wide association studies or methylome-

wide association studies are measuring DNA methylation at single CpGs across

thousands of genes and capture associations to obesity phenotypes such as BMI.

However, they only represent a snapshot in the complex biological network and

cannot distinguish between causes and consequences. Intervention studies are

therefore a suitable method to control for confounding factors and to avoid

possible sources of bias. In particular, intervention studies documenting changes

in obesity-associated epigenetic markers during lifestyle driven weight loss,

make an important contribution to a better understanding of epigenetic

reprogramming in obesity. To investigate the impact of lifestyle in obesity state

specific DNA methylation, especially concerning the development of new

strategies for prevention and individual therapy, we reviewed 19 most recent

human intervention studies. In summary, this review highlights the huge potential

of targeted interventions to alter disease-associated epigenetic patterns.

However, there is an urgent need for further robust and larger studies to

identify the specific DNA methylation biomarkers which influence obesity.

KEYWORDS

overweight, obesity, weight loss, lifestyle, intervention, DNA-methylation, epigenetics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1181002/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1181002/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1181002/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1181002&domain=pdf&date_stamp=2023-08-08
mailto:maria.keller@helmholtz-munich.de
https://doi.org/10.3389/fendo.2023.1181002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1181002
https://www.frontiersin.org/journals/endocrinology


Aurich et al. 10.3389/fendo.2023.1181002
Introduction

Obesity has reached pandemic proportions in the last 50 years

and represents a worldwide health challenge (1). People who are

overweight or obese have a higher risk for numerous cardiometabolic

diseases such as type 2 diabetes (T2D), dyslipidemia, stroke and

hypertension (1). Beside some rare monogenic forms (2), obesity is a

multifactorial disease driven by an interaction of polygenic

predispositions and the exposure to obesogenic environmental

factors. Various diets with different levels of macronutrients have

been tested and compared to define successful weight loss strategies

(3), however, responses to dietary changes are extremely individual.

That is why personalized nutritional recommendations are

becoming more and more important to meet individual needs.

Lifestyle interventions such as increasing energy expenditure

through intensive physical activity and lowering energy intake

through various diets are important set points to control the

disease. However, long-term success is often very individual and

weight regain quite common (4). In order, to better understand

this highly complex interplay, research into genetic and lifestyle-

related factors that influence human metabolism, most likely

mediated by epigenetic regulations, is inevitable. Future findings

might contribute to better understanding of the high variability

in individual's response to specific nutritional and physical

activity interventions and may improve long-term therapy by

personalisation (5).

Although epigenetics and its involvement in metabolic diseases

still represents a young research field, it has significantly advanced

during the last two decades. Epigenetic modifications include DNA

methylation, histone modifications, and non-coding RNAs which

are regulating cell-specific gene expression, cell differentiation,

parental imprinting, X chromosome inactivation, and genomic

stability and structure (6). DNA methylation is the most

commonly studied modification and describes the methylation of

the carbon 5 position within cytosine bases, resulting in 5-

methylcytosine. This occurs predominantly at cytosines within

CG dinucleotides ("CpG" sites) in mammalian genomes and is

associated with gene silencing when occurring at gene promoters

and enhancers (7). Epigenetic modifications are mediating between

environmental and genetic factors - environmental changes can

lead to epigenetic regulations, which in turn can affect gene activity

(8). There are two different starting points to analyse epigenetic

modifications in regard to obesity. On the one hand, epigenetic

alterations might be causal for the development of obesity by

inducing inappropriate expression or silencing of obesity-

associated genes and regulatory sequences, leading to metabolic

imbalances (9). On the other hand, epigenetic changes can also arise

as a consequence of obesity and predispose obesity-associated co-

morbidities such as T2D (10) or cancer (11, 12).

Epigenome-wide association studies (EWAS) represent a

powerful tool for investigating associations between epigenetic

markers and the obesity state defined by BMI or parameters of fat

distribution, aiming to understand the molecular mechanisms

underlying the disease risk (13). EWAS or methylome-wide

association studies (MWAS) measure DNA methylations at single
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CpGs or regions containing CpGs across thousands of genes using

genome-wide approaches based on techniques such as Illumina

arrays or whole genome bisulfite sequencing and analyse potential

associations with disease phenotypes. However, they only represent

a snapshot in complex biological networks and cannot distinguish

between causes and consequences. Intervention studies are

therefore a suitable method to control confounding factors and

avoid possible sources of bias. In particular, intervention studies

which document changes in obesity-associated epigenetic markers

during weight loss can make an important contribution to this

research field. Peripheral blood is the most commonly used

biospecimen for these intervention studies (14). This is due to its

accessibility through a minimally invasive procedure and due to the

fact that blood is often the only available source for a biomaterial.

Additionally, some studies suggest that specific DNA methylation

changes in blood may reflect pathological conditions in target

organs that are not accessible by biopsy (15). However, while

DNA methylation profiles in blood can summarize information

about systemic exposures or diseases, they cannot specifically assess

cells from a single organ or tissue (16). Studies use different

techniques to control for the effect of cell heterogeneity and thus

possible confusion (17, 18). These include various deconvolution

techniques (19), which provide a framework for estimating the

relative proportions of blood cell types. Of note, there are studies,

which identified an epigenetic signature potentially mirroring the

epigenetic regulation of obesity-related adipose tissue dysfunction.

These studies provide a DNA methylation map in circulating

leukocytes reflecting subcutaneous adipose tissue methylation

pattern by comparing both tissues in patients with obesity vs

normal-weight individuals (20–22).

Although corresponding research is advancing very fast, aiming

to identify new markers allowing the development of new therapy

options in obesity, the last systematic review was performed by

Aronica et al. in 2017. The authors summarised candidate-based

and genome-wide approaches analysing DNA methylation at

baseline and at the endpoint of a weight loss intervention in

overweight/obese subjects who were free of comorbidities such as

hereditary diseases or cancer (8). They identified 25 longitudinal

intervention studies over eight years (from 2008 to 2016), which

examined either pre- vs. post-interventional (diet and/or exercise/

metabolic surgery interventions) DNA methylation changes or

DNA methylation differences between patients with high and low

response to the intervention. Back in 2017 the majority of studies

were candidate gene approaches (N=16), while only nine used

genome-wide data sets analysing either differentially methylated

single CpG positions (DMPs) or differentially methylated

regions (DMRs).

However, since 2017 numerous new studies in this field came

up with improved interventional and analytical approaches, further

highlighting lifestyle habits as therapeutic options and strongly

contributing to our understanding of the mechanistic role of

DNA methylation in obesity. In the present review, we focus on

human interventional studies, which aim to reduce body weight in

individuals with overweight or obesity and which are based on the

main lifestyle parameters: diet and physical activity.
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This review discusses the contribution of candidate-based and

genome-wide DNA methylation studies in regard to lifestyle

treatments, including a special focus on methylation age and in-

utero studies. We discuss recent achievements in this young field

of research and point out strengths and possible weaknesses.

We finally wish to draw attention to the potential of this field

for the development of new strategies for prevention and

individualised therapies.
Methods

Screening and inclusion/exclusion criteria

We performed a PubMed search (dated 05.07.2023) as described

in Figure 1, for studies published during the last five years (2018-

2023) using the following mash terms: “lifestyle intervention

and methylation” and “weight loss intervention and methylation”.

We focused on longitudinal studies measuring either specific

candidate loci, global or genome-wide DNA methylation at

baseline and after finishing an individual lifestyle intervention

designed to lose weight and/or improve general health conditions

in subjects with overweight or obesity. Cross-sectional studies,

case-control studies, longitudinal studies without intervention,

interventional studies conducted in vitro only and in animals or

subjects without overweight or obesity were excluded. We further

excluded subjects undergoing pharmacotherapies, weight loss

surgeries and those suffering from severe disease stages such as

cancer. On the other hand, we included studies comparing responder

vs. non- responder to respective lifestyle interventions. Furthermore,

we focused exclusively on DNA methylation, excluding other

epigenetic mechanisms such as histone modifications and

noncoding RNAs.
Results

Current state of research

Our structured PubMed search revealed an eminent increase of

studies during the last 5 years, dealing with DNAmethylation under

weight loss conditions. In the years before 2009, the number of

publications was still in the single digits and rose sharply to 80

publications in 2021 (Figure 1). We identified nine new candidate

gene and ten new genome-wide studies, which were performed

between 2018 and 2023. All candidate gene approaches analysed

changes in DNA methylation before and after an individual lifestyle

intervention, while the identified ten genome-wide studies (Table 1)

assessed either DNAmethylation before and after weight loss (N=7)

or compared responder vs. non-responder (N=3) after different

lifestyle interventions. The majority of them used array-based

platforms, most commonly Infinium 850k or 450k arrays

(Illumina), to interrogate methylation changes on single site

resolution. The 850k array examines the methylation status of

853,307 CpG sites, adding 413,745 CpG sites to the 450k (33). Six
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of the genome-wide studies also performed gene expression analysis

(25, 26, 28, 29, 31, 32, 34).
DNA methylation associated
with weight loss

Three of the reviewed genome-wide intervention studies aimed

to identify DNA methylation biomarkers for response to weight

loss. This was accomplished by comparing baseline and endpoint

methylation differences between high and low responders to an

individual intervention. The individual response to the weight loss

intervention was defined differently within the three studies. In the

study published by Keller et al., the responder group lost at least 10

% of their initial body weight, whereas in the study by Samblas et al.,

subjects were defined as high responders already with a weight

reduction of > 8 % (23, 25). In the third study, the change in BMI

was used to classify responders (lost 4.55 ± 0.91 BMI units (kg/m2))

and non-responders (lost 1.95 ± 0.73 kg/m2) rather than mean

weight loss (24). Two studies intervened with different low-calorie

diets (24, 25), while the other study used a Mediterranean diet

combined with physical activity (23). Study intervention times

ranged from four months to 18 months and the number of

participants varied from 47 to 201 (Table 1). Among them two

studies identified DMRs (23, 24) whereas the third only reported

DMPs (25). The identified DMRs and DMPs from the three studies

retained their significance even after correction for multiple testing.

Among the ident ified DMRs five were s i gn ificant ly

hypermethylated (CRISP2, SLC6A12, SLFN12, AURKC, PON3)

and four significantly hypomethylated (LRRC27, RNF39,

LINC00539, NTSR1) in responders compared to non-responders

(23, 24). DNA methylation analysis by Salas-Pérez et al., not only

identified one DMR at PON3, but also 63 CpG sites that were

differentially methylated between these two groups (24). The third

study revealed four genes, CD44, ITPR1, MTSS1 and FBXW5 by

overlapping identified DMPs with differentially regulated

transcripts (25). We were able to find other overlaps in genes

between the three studies, but these did not withstand multiple

testing. Although no overlap in differentially methylated genes

could be observed between the three newly published studies in

regard to weight loss response, such studies indicate that

methylation differences at multiple genomic sites could serve as

prognostic biomarkers to predict successful weight loss therapy.

However, validation is still essential in order to delineate the real

potential of DNA methylation pattern in predicting individual’s

response to a specific lifestyle therapy.

The remaining seven studies measured DNA methylation

changes in response to weight loss. Most of the studies intervened

with a low-calorie diet, and some studies also combined this change

in diet with physical activity (31, 32). One study even compared

three different dietary interventions as addition to physical activity

and thereby investigated the beneficial effect of dietary polyphenols

(26). Personalised weight loss programs have also been used,

including T2D-specific social support programs, aiming to reduce

risk factors associated with diabetes complications (28). Study
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intervention times ranged from six weeks to two years and the

number of participants varied from eight to 672 (Table 1). Most of

these studies used Benjamini Hochberg to correct their results for

multiple testing with a false discovery rate (FDR) < 0.05 to detect

changes in DMRs and DMPs. All studies examined DNA

methylation in blood samples except for the study by Bollepalli

et al., which examined subcutaneous adipose tissue (SAT) (31).

Numerous DMRs with different functions have been identified.

Those DMRs were annotated to genes mainly involved in e.g.

immune, metabolic, and cardiometabolic signalling pathways,
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protein metabolism, and the development of muscles, organs, and

skeletal systems. In addition, the study by Crujeiras et al. provided

evidence of obesity-related methylome remodeling after dietary

interventions, finding similar levels of methylation in treated

obese patients as in normal-weight individuals. In fact, in the

same study the most representative genes ZNF533 and FGFRL1,

which were differentially methylated after dietary weight loss

treatment, were previously identified as an epigenetic signature of

adipose tissue associated with obesity, which is reflected in blood

leukocytes (22). The study by Hoffmann et al. demonstrated many
FIGURE 1

Literature search workflow. Schematic presentation of our literature search on PubMed including mash terms, exclusion criteria and publication
numbers. In addition, the top figure shows the distribution of the numbers of publications during the recent years, with a sharp increase of
publications matching our mash terms since 2010 but also the most significant increase in the last 3 years. (Created with Biorender.com).
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TABLE 1 Genome-wide methylation studies under lifestyle intervention.

Lifestyle Participants Methods Results References

Comparing methylation differences between high and low responders

Mediterranean low-
carbohydrate/ fat
diet with/without
physical activity /
18-month
Aim: tested whether
specific DNA
methylation changes
reflect individual
responsiveness to
lifestyle intervention

120 subjects (90% men,
BMI = 30.2 ± 3.3 kg/m2,
age = 49 ± 9 years); 10
responder (− 16% absolute
weight loss) vs. 10 non-
responder (+ 2.4% weight
gain)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

variation in DNA methylation of genes (DMRs) including LRRC27,
CRISP2, and SLFN12 between responder and non-responder;15 CpGs
being negatively correlated with weight change after intervention such
as NUDT3 and NCOR2;
baseline DNA methylation score better predicted successful weight loss
than predictors such as age and BMI

(Keller et al.
2020)
(23)

hypocaloric diet / 4
months
Aim: identify DMRs
in subjects with
obesity that predict
the response to a
weight loss dietary
intervention

201 subjects with
overweight (BMI: 25.0–
29.9) & obesity (BMI: 30–
40 kg/m2); 64 responder
(lost 4.55 ± 0.91 kg/m2) &
63 non-responder
(lost 1.95 ± 0.73 kg/m2)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

DNA methylation analysis between responder and non-responder
exhibited a DMR located at PON3 consisting of 13 CpG sites, eleven of
them significantly hypermethylated in responder.;
63 CpG sites were identified between responder and non-responder, (45
CpG sites were hypermethylated and 18 CpG sites were
hypomethylated)

(Salas-Pérez
et al. 2022)
(24)

low-calorie diets / 6-
month
Aim: identify novel
genes that
distinguish
individual responses
to a weight loss
dietary treatment

47 subjects (WC> 94 cm
males and > 80 cm
females); 31 low responder
(weight loss < 8%, Age =
46.5 ± 9.6, 18 male/13
female) vs. 16 high
responder (weight loss
> 8%, Age = 52.1 ± 9.5, 7
male/9 female)

Illumina
HumanMethylation
450K Bead Chips
Tissue: blood

analysis of both array data identified four genes: CD44, ITPR1, MTSS1
and FBXW5 that were differentially methylated and expressed between
groups;
CD44 showed higher expression and lower DNA methylation levels in
low responder than in high responder; differences in CD44 protein
levels between low responder and high responder were not statistically
significant, but a positive association was observed between CD44
mRNA expression and protein levels

(Samblas
et al. 2019)
(25)

DNA methylation changes in response to weight loss

Mediterranean
(MED) diet enriched
in polyphenols and
reduced in red/
processed meat
(green-MED) / 18-
month
Aim: analyse the
effects of the green-
MED diet on
methylome and
transcriptome levels

260 participants (BMI =
31.2 kg/m2,mean age = 51
years, 28 female / 232
male)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

1573 DMRs were found in the green-MED compared to the MED (177)
and HDG (377) diet; 1753 DEGs in the green-MED intervention
compared to MED (7) and HDG (738); the highest number (6 %) of
epigenetic modulating genes was transcriptionally changed in subjects
participating in the green-MED intervention; KIR3DS1 locus, is
negatively associated with the polyphenol changes, but positively
associated with the MRI-assessed superficial subcutaneous adipose area-,
weight- and waist circumference- 18-month change

Hoffmann
et al. 2023
(26)

weight loss dietary
intervention / 2-
years
Aim: investigated
the relationship of
DNAm levels at
birthweight-blood
pressure genes with
long-term changes
in blood pressure

672 adults with overweight
or obesity (BMI = 32.7 kg/
m2, Age = 50.9 years, 411
female / 261 male)

Illumina
NovaSeq6000 by a
high-resolution
methyl-capture
sequencing (MCC-
Seq)
Tissue: blood

DNA methylation at LINC00319, showed significantly different
associations with 2-year changes in systolic blood pressure and diastolic
blood pressure among participants assigned to low- or high-fat diets;
higher regional DNA methylation at LINC00319 was associated with
greater reductions in systolic blood pressure and diastolic blood
pressure

Kou et al.
2023 (27)

diabetes-specific
social support
program / 3-month
Aim: explore the
association of
monocyte
inflammation using
epigenetic,
immunologic, and
clinical measures

8 individuals with diabetes
mellitus (BMI = 36.2 ± 5.2
kg/m2; 62.5% male, mean
Age = 48,7)

Illumina
HumanMethylation
450K Bead Chips
microarray
Tissue: blood

1,061 differentially methylated loci (DML) were identified in monocytes
at baseline and 3 months;
DML were enriched within genes involved in immune, metabolic, and
cardiometabolic pathways;
immune function showed improvement post-DM-SSP compared with
baseline, characterized by attenuated interleukin 1b and IL-6 secretion
from monocytes

Dye et al.
2022
(28)

(Continued)
F
rontiers in Endocrinol
ogy
 05
 frontiersin.org

https://doi.org/10.3389/fendo.2023.1181002
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aurich et al. 10.3389/fendo.2023.1181002
DMRs induced by the three different dietary interventions and

further showed that a Mediterranean diet enriched in plant-based

polyphenols has the highest capacity to regulate individual’s blood

epigenome (26). This was the so far largest long-term RCT,

analyzing lifestyle effects on human DNA methylation pattern.

Thus, we performed an intersection analysis comparing all

identified unique genes from the other six genome-wide

approaches that showed statistically significant (FDR < 0.05)

weight loss-related changes in DNA methylation with the results

of Hoffmann et al. (26). The majority of the 2097 genes identified in

the seven studies focusing on genome-wide methylation changes

were unique (N=2051), however 47 genes were reported by at least

two intervention studies and one gene, theMitotic Arrest Deficient 1

Like 1 (MAD1L1) was even identified by three independent studies
Frontiers in Endocrinology 06
(26, 28, 29). This gene is part of the mitotic spindle-assembly

checkpoint and thus plays a major role for cell cycle control with

potential involvement in cancer development (35). Furthermore,

other known candidate genes for obesity and T2D such as TCF7L2

locus, which was previously reported by Aronica et al. (8), were now

validated again by two other lifestyle studies (26, 28).

While further intersecting those unique genes with the studies

associating DNA methylation with weight loss response, we found

518 genes reported by both study types. Among them five genes

(BCAS4, MYH15, SH3PXD2A, VIPR2 and WDPCP) were even

reported by two weight loss response studies. Among them the

WD repeat containing planar cell polarity effector (WDPCP) gene

(24, 31) was identified by Salas-Perez et al. reporting one DMP in

WDPCP, which was hypomethylated (~5%) in responders
TABLE 1 Continued

Lifestyle Participants Methods Results References

VLCKD / 6 months
Aim: identify the
changes in the
obesity-related
methylome that are
mediated by the
induced weight loss
or are dependent on
ketosis

21 patients with obesity (12
women, BMI= 33.0 ± 0.2
kg/m2, Age 47.9 ± 1.02
years)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

after weight reduction, differences were found at 988 CpG sites;
most of the encoded genes were involved in metabolic processes,
protein metabolism, and muscle, organ, and skeletal system
development;
genes including ZNF331, FGFRL1 (VLCKD-induced weight loss) and
CBFA2T3, C3orf38, JSRP1, and LRFN4 (VLCKD-induced ketosis)

Crujeiras
et al. 2021
(29)

hypocaloric dietary
intervention/ 6
weeks
Aim: investigate the
effects of short-term
hypocaloric diet-
induced weight loss
on DNA
methylation profile
in leukocytes from
women with severe
obesity

11 women with morbid
obesity (Age = 36.9 ± 10.3
years; BMI: 58.5 ± 10.5 kg/
m2)

Illumina
HumanMethylation
450K Bead Chips
microarray
Tissue: blood

intervention changed the methylation levels at 16,064 CpG sites;
These CpGs sites were related to cancer, cell cycle-related, MAPK,
Rap1, and Ras signaling pathways;
regardless of hypocaloric intervention, a group of 878 CpGs (related to
649 genes) remained significantly altered in obese women when
compared with normal-weight women;
Pathway enrichment analysis identified genes related to the cadherin
and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose
deprivation

Nicoletti et al.
2020
(30)

weight loss
intervention / 1 year
Aim: examine
whether weight loss
and acquired obesity
produce reciprocal
profiles

19 healthy obese
participants (mean BMI =
34.6 kg/m-2, 7 males/12
females, Age = 35.2±1.8)

Illumina
HumanMethylation
450K Bead Chips
Tissue: SAT

7 genes (UCHL1, BAG3, TNMD, LEP, BHMT2, EPDR1 and OSTM1)
downregulated during both short- and long-term weight loss

Bollepalli
et al. 2018
(31)

MBC2 healthy diet/
9-month
Aim: examine the
impact of the MBC2
and activity
intervention on
patterns of
epigenome-wide
DNA methylation.

340 adults with non-
optimal levels of health
behaviors (Age = 18-65,
primarily women, BMI=
34.5-37.3 kg/m2)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

no differentially methylated regions at baseline between the control
versus intervention groups;
3 versus 9 months: 154 and 298 differentially methylated regions
between controls compared to sequential and simultaneous groups;
overlap between 3 and 9 months, including the GDP-L-fucose
biosynthesis I, methylmalonyl metabolism, and estrogen-mediated cell
cycle regulation pathways

Hibler et al.
2019
(32)
This table summarize our genome-wide methylation studies under lifestyle intervention and includes comparing of methylation differences between high and low responders and DNA
methylation changes in response to weight loss. BMI, body mass index; DMR, differentially methylated regions; LRRC27, leucine rich repeat containing 27; CRISP2, Cysteine rich secretory
protein 2; SLFN12, Schlafen family member 12; NUDT3, nudix hydrolase 3; NCOR2, nuclear receptor corepressor 2; PON3, Paraoxonase 3; ITPR1, inositol 1,4,5-trisphosphate receptor type 1;
MTSS1, Metastasis Suppressor 1; FBXW5, F-Box and WD repeat domain containing 5; DML, differentially methylated loci; DM-SSP, diabetes mellitus -specific social support program; VLCKD,
very-low calorie ketogenic diet; ZNF331, zinc finger protein 331; FGFRL1, fibroblast growth factor receptor like 1; CBFA2T3, CBFA2/RUNX1 partner transcriptional co-repressor 3; C3orf38,
chromosome 3 open reading frame 38; JSRP1, junctional sarcoplasmic reticulum protein 1; LRFN4, leucine rich repeat and fibronectin type III domain containing 4; MAPK, mitogen-activated
protein-kinase; Ras, Rat sarcoma; Rap1, Ras-related protein 1; Wnt, wingless-type; UCHL1, ubiquitin C-terminal hydrolase L1; BAG3, BAG cochaperone 3; TNMD, tenomodulin; LEP, leptin;
BHMT2, betaine–homocysteine S-methyltransferase 2; EPDR1, ependymin related 1; OSTM1, osteoclastogenesis associated transmembrane protein 1; MBC2, Make Better Choices 2; GDP,
guanosin diphosphate.
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compared to non-responders of the weight loss intervention (24).

This goes in line with the results of Bollepalli et al., who found an

upregulation of the WDPCP gene expression in the heavier co-

twins (31).
Epigenetic regulation of
physiological candidates

Our search revealed only nine new candidate gene studies in the

last five years. All studies compared DNA methylation at baseline

and after finishing an individual lifestyle intervention for one or

several candidate genes. The studies employed different methods

including pyrosequencing, although array-based platforms have

been dominating in the last years. Therefore, it is not surprising

that candidate gene analyses were frequently based on previously

generated and available genome-wide datasets. The candidate gene

analyses were performed in interventional studies based on diet or a

combination of diet and physical activity. Only the study by

Willmer et al. intervened solely with physical activity (36). The

candidate gene studies also varied greatly in the number of

participants from 18 to 811 subjects, and the duration of the

intervention from three weeks to two years (Table 2).

These studies analysed the methylation status of several genes

related to immune response (NFATC2IP & FKBP5) (36, 38),

mitochondrial function (CPT1A) (37) diabetes and ageing

(TXNIP & CAV1) (39, 40), circadian rhythm (CLOCK, CRY2 &

PER2) (41) as well as obesity related genes (e.g. FTO) (42). These

genes were chosen based on previous studies because they were,

among other things, associated with metabolic control, glucose

homeostasis or obesity.

Because most studies examined different genes, reproducibility

between the different studies is lacking, although genes such as FTO,

PER2 and CLOCK were already reviewed by Aronica et al. (43, 44).

The Fat Mass and Obesity-associated (FTO) gene was the first gene

to be associated with body fat, obesity and BMI (45, 46). A study

from 2017 reported that hypomethylation of the FTO non-

promoter region is an early marker of T2D (47) and another

study showed that hypomethylation induces overeating, fat

accumulation, and obesity (48). The study we found suggests that

resistance training increased DNA methylation in the FTO 5’UTR

region due to weight loss and thereby may repress FTO mRNA

expression (42). Thus, the epigenetic regulation of FTO might also

play a role in obesity development, but further replication studies

with larger sample sizes as well as functional analyses are warranted.

Chronobiological misalignment and disrupted physiological

rhythms has been repeatedly linked to obesity (49, 50) and genes

previously shown to be associated with the regulation of circadian

rhythm such as CLOCK are likely to play a crucial role (51). A study

by Milagro et al. from 2012 showed that the baseline methylation

levels of CLOCK and PER2 are correlated with the magnitude of

weight loss (43). A recent study by Rigamonti et al. showed that a

short-term body weight reduction program induced a significant

CLOCK hypermethylation together with a significant PER2

hypomethylation, suggesting that the body weight reduction
Frontiers in Endocrinology 07
program might result in beneficial cardiometabolic effects as well

as in epigenetic remodelling of specific CLOCK genes. However, due

to the experimental design, this study could not disclose whether

epigenetic changes in CLOCK genes are cause or consequence of

global cardiometabolic improvements (41).
Weight loss driven improvement of
methylation age

With increasing age, the risk of mental and physical impairment

and the development of diseases such as cancer, neurodegeneration,

T2D and cardiovascular disease (52, 53) is also rising. Epigenetic

changes can be induced by multiple factors such as genetics (54),

environment (55) and lifestyle (56). In addition to molecular and

cellular characteristics, epigenetic changes are affected by ageing but

can also influence the ageing process itself (57). Out of more than 20

million methylation sites in the human genome, there are several

thousand where the methylation levels correlate closely with age

(58). Methylation age acceleration, defined as the difference

between biological age (age of cells and tissue based on

physiological evidence) and chronological age (actual age in

years), is used to study the links between epigenetic ageing and

disease development (59) and it has been implicated not only in

obesity (60), but also in physical fitness (61) and stress (62). Cross-

sectional studies have already provided evidence of a beneficial

effect of a healthy lifestyle on several biological indicators of ageing

such as epigenetic clock, telomere length and transcriptomic age

(63, 64). However, little is known about the interaction between

epigenetic ageing and lifestyle factors, including diet, alcohol abuse

and physical activity. Therefore, longitudinal and interventional

studies are needed to address and accurately quantify the benefit of

lifestyle improvements on ageing. Thus, intervention studies can

help to identify factors that have a positive influence on epigenetic

age and thus contribute to improving general health.

So far, two intervention studies that examined changes in

epigenetic age through weight loss and a healthier lifestyle in

overweight and obese patients have been reported since 2018

(Table 3). One study linked physical functioning to biological age

in older adults (65) whereas the other showed that lifestyle-based

weight loss interventions can indeed reduce DNA methylation age

(mAge) (66). Furthermore, Yaskolka Meir et al. demonstrated

associations between mAge acceleration and parameters of body

fat distribution and glycaemic control (66). Thus, DNA

methylation-based biological measures of ageing might allow to

stratify the individual health status and to predict risk of premature

cardiometabolic diseases (66). It is thereby possible to investigate

positive effects of lifestyle improvements on age-related epigenetic

mechanisms (67). Yet, the results could be influenced by other

important factors, and so, it is still elusive whether weight loss was

the main reason for the positive biological effect (66). However,

both studies were able to show that the epigenetic age is strongly

correlated with health and could therefore be considered as an

important biomarker for outcome predictions in human

intervention studies.
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TABLE 2 Candidate-gene methylation studies under lifestyle intervention.

Lifestyle intervention Participants Methods Gene(s) Results Reference

weight loss diet
interventions varying in
macronutrient components/
2-years
Aim: investigate the
association of DNA
methylation at the CPT1A
gene with reductions in
triglycerides and
triglyceride-rich
lipoproteins (TRLs) in
response to weight loss diet
interventions

528 participants (BMI
= 32,5 kg/m2, Age =
52 years, 305 female/
223 male)

IlluminaNovaSeq6000
platform by a high-
resolution methyl-
capture sequencing
(MCC-Seq)

CPT1A Dietary fat intake significantly modified the
association between baseline DNA methylation at
CPT1A and 2-year changes in total plasma
triglycerides, independent of concurrent weight loss;
with low-fat diet, a higher regional DNAm level at
CPT1A was associated with a greater reduction in
total plasma triglycerides at 2 years compared to a
high-fat diet

Li et al. 2023
(37)

energy-reduced diets/2-year
Aim: examine the impact of
the NFATC2IP rs11150675
genotype on adiposity
changes

692 overweight and
obese people
(BMI = 25-40 kg/m2,
mean Age = 51.4
years, 61.1% females)

OpenArray SNP
Genotyping System &
Illumina
HumanMethylation
450K Bead Chips
Tissue: blood

NFATC2IP dietary fat intake significantly modified the effect of
the genetic, epigenetic and transcriptional variations
at the NFATC2IP locus of weight change;
NFATC2IP methylation mediated 52.8% of its
genotypic effect in response to a high-fat diet rather
than a low-fat diet

Sun et al.
2018
(38)

weight loss diet
intervention/2-years
Aim: investigate whether
baseline blood DNA
methylation levels in
TXNIP can be associated
with glycemic
characteristics and their
changes in response to
weight loss interventions

639 adult participants
with overweight or
obesity (BMI= 25-40
kg/m2,mean age=
50.1-52,2)

IlluminaNovaSeq6000
platform by a high-
resolution methyl-
capture sequencing
(MCC-Seq)
immunoassay with
chemiluminescent
detection on an
Illumina analyzer
Tissue: blood

TXNIP higher regional DNA methylation at TXNIP was
significantly correlated with lower fasting glucose,
HbA1c, and HOMA-IR at baseline;
dietary protein intakes significantly modified the
relation between regional DNA-methylation level at
TXNIP and changes in insulin and HOMA-IR at 6
months

Li et al. 2022
(39)

supervised aerobic &
resistance training/12-weeks
Aim: investigate ASAT and
GSAT DNA methylation of
FKBP5 in response to an
exercise intervention

19 African women
with obesity (BMI =
34.9 kg/m2, mean age
= 22) 12 controls
continued their usual
behaviour (BMI =
33.0 kg/m2, mean age
= 24)

Pyrosequencing,
SNP & gene
expression analyses
with real-time PCR
Tissue: GSAT &
ASAT

FKBP5 Exercise training induced FKBP5 hypermethylation
at two CpG dinucleotides within intron 7;
CC allele carriers displayed improved
cardiorespiratory fitness, insulin sensitivity, gynoid
fat mass, and waist circumference

Willmer
et al. 2022
(36)

lifestyle intervention (Care
Call programme)/6 months
Aim: investigated whether a
lifestyle intervention could
influence expression and
DNA methylation of
diabetes-related genes

20 participants with
impaired glucose
regulation (10
females/10 males, Age
= 18–80)

Pyrosequencing
Tissue: blood &
adipose tissue

CAV1 intervention resulted in opposite direction changes
in fat tissue and blood for CAV1 expression and
DNA methylation and these changes were correlated
between tissues

Fachim et al.
2020
(40)

BWRP/3-week
Aim: evaluate the DNA
methylation status of seven
clock genes

45 obese adolescents
(BMI = 37.5 kg/m2,
28 female/17male,
Age = 15.8 ± 1.4)

Pyrosequencing
Tissue: blood

CLOCK,
PER1-3 &
CRY1-2

BWRP changes in the methylation levels of CLOCK,
CRY2 and PER2 genes;
hypermethylation of CLOCK and PER3 genes in
males and in subjects with metabolic syndrome

Rigamonti
et al. 2022
(41)

weight loss program
intervention/6-month
Aim: quantify FTO whole
blood DNA methylation &
investigate the relationship
between body composition,
exercise capacity & blood
parameters

18 female participants
(BMI: 33.5 ± 6.2 kg/
m2, mean age, 50.6
±12.1 years)

Pyrosequencing
Tissue: blood

FTO Methylation rate was significantly decreased in the
normal treatment group in CpG1;
treatment group containing resistance training
CpG3 was increased

Nishida
et al. 2020
(42)

Mediterranean low-
carbohydrate/fat diet with/
without PA/18-month
Aim: examine the effect of
lifestyle interventions on
DNA-methylation of

120 participants from
the CENTRAL RCT,
(92% men; BMI =
30.2 kg/m2, age = 49
± 9 years)

Illumina
HumanMethylation
850K Bead Chips;
Single-nucleotide
polymorphisms
genotyped by TaqMan

AC074286.1,
CRACR2A,
A2MP1,
FARP1

Baseline-IHF% was inversely correlated with DNA-
methylation within AC074286.1, CRACR2A, A2MP1,
FARP1;
differential DNA-methylation patterns were
observed between diets at A2MP1 and between PA

Yaskolka
Meir et al.
2021
(23)

(Continued)
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Weight loss driven methylation
remodelling during pregnancy

Maternal overweight and obesity is associated with the risk of

overweight and obesity in children (68). Underlying mechanisms

which contribute to the increased susceptibility for overweight and

obesity and associated health consequences in children are not yet

fully understood (69–72). Furthermore, overweight and obesity of

the mother, weight gain during pregnancy, prenatal nutrition and

physical activity have a direct impact on the health of the foetus

(68). Those intrauterine disturbances can lead to epigenetic

remodelling (6, 73) and further influence health outcomes in the

offspring (74). In line, previous studies have shown the involvement

of dietary micronutrients, after birth and during early life, in

altering gene expression and thereby influencing health and

disease later in life (75, 76). Moreover, low birth weight is a risk

factor for developing non-insulin dependent diabetes mellitus

(NIDDM) and cardiovascular disease (CVD) later in life (77, 78)

and the delivery (caesarean section or vaginal delivery) plays an
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important role in the formation of the microbiome (79–82). The

development of the child’s microbiome is determined by proper

nutrition and the transition from breastfeeding to solid food (79).

The microbiome normally returns to a state of equilibrium

following stress such as a change in diet, short-term antibiotic

treatment, or acute invasion by a pathogenic bacterium (83).

However, short-term modulations of the gut microbiome can

disrupt normal metabolite production (84) and this can lead to

changes in host gene expression, which in turn could trigger longer-

lasting effects in the host. For example, germ-free mice, a method

used to determine whether the microbiome plays a causal role in

regulating gene expression, showed lower genome-wide DNA

methylation in colonic tissue compared to control animals (85).

However, global DNA methylation increased dramatically in the

germ-free mice after a fecal transplant.

Our systematic review highlighted five studies in the last five

years which examined lifestyle interventions in pregnant women

with obesity or overweight. They demonstrated clear associations

between DNA methylation changes and health benefits of the
TABLE 2 Continued

Lifestyle intervention Participants Methods Gene(s) Results Reference

nonalcoholic fatty-liver
disease related genes

assays
Tissue: blood

groups within AC074286.1, CRACR2A, and FARP1
CpGs

VLCKD, HCD or BS/4–6
months
Aim: evaluate the
methylation levels of ACE2
gene, the main entry
receptor of SARS-CoV-2, in
different depots of AT
(subcutaneous and visceral)
and PBMCs

45 obese patients (23
female/22 male)
compared with non-
obese patients (9
female/9 men)

Illumina
HumanMethylation
450K Bead Chips
Tissue: SAT, VAT,
PBMCs

ACE2 VAT from patients with obesity showed higher
ACE2 methylation levels, mirrored in PBMCs but
not in SAT;
observed obesity-associated methylation of ACE2
was reversed after VLCKD and HCD but not after
BS;
observed DNA methylation pattern was inversely
correlated with ACE2 expression

Izquierdo
et al. 2022
(34)
f

This table summarize our candidate-gene methylation studies under lifestyle intervention. SNP, Single nucleotide polymorphism; NFATC2IP, Nuclear factor of activated T cells 2 interacting
protein; ASAT, abdominal subcutaneous; GSAT, gluteal subcutaneous adipose tissue; PCR, polymerase chain reaction; FKBP5, FKBP Prolyl Isomerase 5; CAV1, Caveolin 1; BWRP,
multidisciplinary body weight reduction program; CLOCK, Circadian locomoter output cycles protein kaput; CRY2, Cryptochrome circadian regulator 2; PER2/3, Period circadian regulator 2/3;
FTO, Fat mass and obesity-related; IHF, intrahepatic fat; PA, physical activity; CRACR2A, Calcium release activated channel regulator 2A; A2MP1, Alpha-2-macroglobulin pseudogene 1;
FARP1, FERM, ARH/RhoGEF and pleckstrin domain protein 1; HCD, a balanced hypocaloric diet; VAT, visceral adipose tissue; SAT, subcutaneous adipose tissue; BS, bariatric surgery; ACE2,
Angiotensin converting enzyme 2.
TABLE 3 Weight loss driven improvement of methylation age.

Study Participants Methods Results References

weight loss intervention/18-month
Aim: evaluated the role of multiple factors on
the deviation of mAge from chronological age

120 CENTRAL participants with
abdominal obesity or dyslipidemia (BMI =
30.2 ± 3.3, 10 female/110 male, Age = 48.6
±9.3)
Tissue: blood

Illumina
HumanMethylation
850K BeadChips

with abdominal obesity or
dyslipidemia, mAge was
higher than the chronological
age;
weight loss lifestyle
intervention attenuated the
mAging of the men by 7.1
months

Yaskolka Meir
et al. 2021
(66)

Weight loss intervention/12 weeks
Aim: examined the association between
changes in physical function and DNA-
methylation-based biological age at baseline
and 12 weeks.

16 older adults with obesity (BMI= 36.2 ±
7.0, Age = 73.50 ± 5.72, 14 female/2 male)
Tissue: blood

Illumina
HumanMethylation
850K BeadChips

Participants mean weight loss
was 4.6 kg and DNA
methylation age decreased by
0.8;
decreased methylation age
was associated with
significantly increased gait
speed

Peterson et al.
2021
(65)
This table summarizes the studies, which deal with the improvement of the methylation age through weight loss. mAge, methylation age.
rontiersin.org

https://doi.org/10.3389/fendo.2023.1181002
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aurich et al. 10.3389/fendo.2023.1181002
mother and the child, such as a protective effect against the

development of gestational diabetes (86), a beneficial effect on

improving glycaemic control (87) and a reduced risk of the new

born for obesity and obesity-related disorders later in life (88).

These five studies reported genome-wide analyses following

interventions with diet or a combination of diet and physical

activity during pregnancy. Numerous genes were identified

showing significantly altered DNA methylation after diet or

physical activity interventions, such as DISC1, GBX2, HERC2,

HUWE1 (89), LGR6 (90), RNF214, PCSK7, SYN3, JARID2,

POLR2C (91). Nevertheless, one study showed no effect of the

intervention neither on DNAmethylation nor on the maternal BMI

in early pregnancy (92). Of note, two of the identified genes, JARID2

and LGR2 have been reported in the above mentioned studies

comparing responders and non-responders (23–25). It needs to be

noted that all studies measured DNA methylation in cord blood

samples which might not be a reliable indicator of the DNA

methylation in the infant. In addition, umbilical cord blood

contains different cell types, which may be present in different

proportions in different samples, possibly distorting the effects of

interest (93). Therefore, all analyses are adjusted for estimated cell

type proportions and the true cell type proportions in the samples

remain unknown. Nevertheless, since drawing cord blood is non-

invasive and blood can be obtained in large quantities, it is often

used for DNA methylation studies in pregnant women (94). Newly

reviewed studies, as well as previous work, suggest that a healthy

lifestyle during pregnancy is immensely important to reduce the

risk of childhood obesity and the serious diseases associated with it,

though the results are not consistent and challenging to compare as

each study identified various differently methylated sites. Often

these are single CpG sites located in different regions of the genome

and with an unknown association to overweight, obesity or growth

(95, 96). Furthermore, explicit attempts to replicate the findings

from other studies have so far not been successful (96–98). Given

the scarceness and the heterogeneous character of the available

studies, there is an urgent need to perform large-scale analyses

elucidating epigenetic foetal markers that are influenced by parental

lifestyle (99).
Discussion

We conducted a systematic literature review on DNA

methylation analysis in individuals with overweight or obesity who

underwent a weight loss intervention program driven by lifestyle

modifications. In addition, we also looked for studies analysing DNA

methylation pattern as a marker for weight loss response. We focused

on DNA methylation only since it is by far the most extensively

studied epigenetic modification and can be used to quantify allele

specific epigenetic changes on a single nucleotide resolution (8). In

contrast, there are no human intervention studies examining histone

modifications and only a few studies in mice which characterised

histone modifications by lifestyle interventions (100, 101). However,

when it comes to DNA methylation, it must be noted that many of

the genome-wide approaches are still array based and thus only

analyse around 1.5 - 2.8 % of all CpG sites in the human genome.
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Although sequencing-based methods with higher coverage have

recently became more accessible and cost-effective, a large part of

the human epigenome remains unexplored especially in regard to

lifestyle interventions and obesity. Numerous new DNA methylation

profiling methods such as reduced representation bisulfite

sequencing, methylation capture bisulfite sequencing and advanced

microarrays have been established over the past decades, expanding

our understanding of DNA methylation in diseases such as obesity.

Consequently, advances in DNA methylation have shifted the

challenge from big data generation to data analysis (102).

The majority of epigenetic studies related to obesity are cross-

sectional and lack measurements and potential adjustments for

relevant lifestyle factors. Therefore, we exclusively chose human

intervention studies in our review, as these overcome some biases,

such as inferring false associations or those not driven by lifestyle

factors. As mentioned above, we also excluded surgical intervention

studies, since they represent major metabolic remodelling,

including shortage of supply and are thus less comparable to

standard lifestyle therapies based on diet and physical training

(30, 103). Furthermore, patients eligible for a surgical intervention

are characterised with higher degree of obesity, which is linked to a

more frequent prescription of drugs targeting the associated

comorbidities. In addition, also other factors affecting DNA

methylation levels in post-surgical care, such as the prescription

of vitamin/mineral supplements to prevent nutritional deficiencies,

would compromise comparisons between surgical and dietary

interventions (30, 103). We found 19 human intervention studies

in our literature search which were published during the last five

years, of which nine were candidate gene based and ten were

genome-wide approaches. Among the genome-wide studies, three

studies compared responders and non-responders to an individual

lifestyle intervention and seven the effect of the intervention on

DNA methylation changes.
Genome-wide DNA methylation changes

Compared with candidate gene approaches, the number of

genome-wide analyses has increased greatly in the last five years

(Figure 1), necessitating this updated discussion and bringing

hypothesis-free studies more into focus (8).

Among them three studies showed baseline methylation levels

at multiple genomic sites to be associated with individuals’

propensity to lose weight on specific lifestyle treatments.

Although no overlap in response related methylation marks could

be found between the three interventions, partially driven by

differences in type of intervention, its duration, sample size and

analytical approaches, they clearly suggest using blood DNA

methylation marks as prognostic markers. Among the identified

genes CD44 represents an interesting candidate since its hepatic

mRNA expression was previously described to be enriched in

morbidly obese individuals (104) and is associated with the

development of adipose tissue inflammation and insulin

resistance (105). Thus, CD44 renders a biomarker for insulin

resistance and a possible therapeutic target for T2D treatment

(106). In line with a previous work, showing that CD44
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methylation can contribute to weight loss prediction (107) a recent

work from the same lab showed that CD44 had higher expression

and lower levels of DNA methylation in low responders compared

to high responders through a low-calorie diet intervention. CD44 is

involved in amplifying the inflammatory processes in obese

individuals, and increased expression of CD44 prior to a calorie-

restricted diet intervention may impair its effectiveness in terms of a

successful weight loss (25). In addition to CD44, genes such as

ATP10A, AQP9, and HIPK3 have previously been discussed by

Aronica et al. in regard to weight loss response and were also

identified in the latest studies comparing responders and non-

responders to an individual calorie restriction intervention (23,

107, 108). However, they did not withstand corrections for multiple

testing, as has also been shown for a number of genes in the three

responder/non-responder studies (including RNF39, VIPR2,

IGHMBP2, SH3PXD2A, WDPCP, VWDE, SYNJ2, VWDE, BCAS4,

MYH15, PCDHGA4, KCNG2, FRMD4A, STK32C and LGR6).

Although these genes may still be of considerable interest in the

respective research field, unless validated in further studies, they

should be seen with caution.

By intersecting the results of all studies analysing genome-wide

methylation changes based on lifestyle interventions we identified

47 genes which were affected in two independent studies and even

one gene which was reported by three studies –MAD1L1. Although

the role of this cell cycle and tumor suppression relevant gene for

obesity was not yet investigated, one recent study showed differently

blood methylation of MAD1L1 in infants of obese mothers (109).

Furthermore, DNA methylation of this genes in visceral adipose

tissue may contribute to the discrimination of patients with and

without colorectal cancer (110). In addition, two new studies

reported DNA methylation changes on TCF7L2 which was

previously reported by Aronica et al., and is a well-known

candidate gene for T2D as identified by GWAS (111). The genetic

risk variant was reported to alter mRNA expression levels and

decrease insulin secretion in the pancreatic ß-cells (112). In line, the

methylation status of TCF7L2 is altered in T2D islets (110) and was

previously shown to be modified in adipose tissue under physical

activity training (113).

Finally, we aligned those 47 candidates with those genes being

potentially involved in weight loss response. Thereby, we could

identify 518 genes. Among the five genes which were reported

several times among all the studies wasWDPCP, which is shown to

be involved in ciliogenesis and collective cell movement during

embryogenesis (114). To date, there are two human intervention

studies, which described altered DNA methylation or gene

expression in WDPCP (24, 31). The study by Salas-Perez et al.

identified one DMP in the WDPCP body, which was

hypomethylated (~5%) in responders compared to non-

responders of the intervention. In line with this, Bollipalli et al.

found a downregulation of the WDPCP mRNA expression in SAT

of patients who successfully lost weight one year after intervention,

but no corresponding change in DNA methylation forWDPCP was

found in this study (31). However, Keller et al. also found a change

in DNA methylation of WDPCP, but this did not survive multiple

testing (23). Both studies included healthy participants with

overweight and intervened with a hypocaloric diet. However, the
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study by Bollepalli et al. additionally included physical activity and

the duration of the intervention varied from four months to one

year. In contrast, the gene was not previously reported by

Aronica et al.
Candidate gene methylation changes

In comparison to the genome-wide studies, no overlaps could

be found between the candidate-gene studies. However, there are

some overlaps with previous studies reported by Aronica et al. This

includes the genes CLOCK, PER2 and FTO. Furthermore, overlaps

between the genes TXNIP (39), CAV1 (40), FTO (42) and CRY (41)

were recently identified in regard to weight loss response (23), as

CpG sites among those genes were included in a weight loss

prediction model.

Nevertheless, the lack of reproducible results even within

comparable diet regimes can be explained by differences in

studies regarding factors like gender distributions, ethnicity, BMI,

sample size or duration of intervention. For example, the number of

participants varied from 8 to 672 in the genome-wide studies and

between 18 and 811 in candidate gene approaches. Furthermore,

presence of comorbidities has been differently handled and

reported, and specific medications were poorly addressed within

downstream analyses.

However, weight loss is a dynamic process, and the underlying

physiological and potential epigenetic modifications are under

permanent change. Thus, the duration of the intervention plays a

major role for the results. Within the here reviewed publications

intervention length ranged from two weeks to two years. Due to the

large differences, DNA methylation was assessed at different stages

of metabolic remodelling. This was further supported by the wide

range of weight loss reported in the different studies. Furthermore,

weight loss success was defined either by actual weight loss in kg, by

reduction in BMI or by specific health improvements. This makes

comparing weight loss success between the studies highly

challenging (if not impossible) and not allowing to conduct a

comprehensive meta-analysis.
Analysed tissue

Whole blood is the most commonly used biological material in

genetic and epigenetic studies as it is easy to draw and often the only

available source. Studies included in this review also predominantly

used blood samples. However, blood is a mixture of different cell

types with different methylation patterns. Deconvolution techniques,

such as constrained projection/quadratic programming (CP/QP) (19)

have been further developed in recent years with the goal to improve

the accuracy of the cell composition estimates and to overcome

potential technical differences between the platforms (115, 116). This

has been exemplarily shown in the study by Salas et al, where the

available reference library for the deconvolution of blood cell

fractions using the EPIC array was expanded (14). Although

statistically correction for cell type composition appears essential

for this kind of data (117, 118), this was only done in four of 14
frontiersin.org

https://doi.org/10.3389/fendo.2023.1181002
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Aurich et al. 10.3389/fendo.2023.1181002
studies. Nevertheless, blood DNA methylation could serve as a

biomarker for weight-change despite it may mirror target tissue

methylation changes only partly, which clearly warrants similar

analyses in metabolic relevant target tissues such as adipose tissue.

Although Aronica et al. reviewed two interventional studies in AT,

since 2017 only a few studies used AT to examine changes in DNA

methylation associated with weight loss. Some of these studies were

able to show that DNA methylation in adipose tissue changed

significantly after diet and exercise intervention (8, 31, 34, 113,

119). However, adipose tissue also consists of several cell types and

only 20-40 % of these are adipocytes. The rest are fibroblasts,

preadipocytes, stem cells and immune cells and during weight loss,

this cell composition changes, which may also affect DNA

methylation (120). In summary, further studies aiming to measure

the capacity of lifestyle changes on epigenetic remodelling in AT

are required.
DNA methylation age

DNA methylation age, a newly established epigenetic measure,

and thus not previously discussed, has received increasing attention

in the last five years. Although DNA methylation is considered

rather a stable epigenetic mark, the genome gains and loses

methylation stochastically, whereas ageing seems to be associated

with this epigenetic remodelling. Recent studies showed that higher

diet quality is inversely associated with methylation-based measures

of biological age and that a healthier lifestyle may play a major role

in reducing biological age (121, 122). In line with this, weight loss

interventions seem to reduce methylation age and the mAge
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acceleration which correspond to an improved metabolic and

physical phenotype (Figure 2) (65, 66).
Smoking as important lifestyle contributor

Although known to be strongly associated with blood

methylome profiles (123–132), smoking is another important

cofactor that is mostly underreported in epigenetic studies related

to obesity (133, 134). The well-established association of DNA

methylation levels in AHRR (aryl hydrocarbon repressor repressor)

and F2RL3 (coagulation factor II receptor‐like 3) genes with

smoking (126, 130–132) appears particularly interesting in this

context, since these two candidates were also identified in a study

comparing blood methylome of subjects living a very healthy vs. a

very unhealthy lifestyle based on a combined score derived from

diet, physical activity, smoking and alcohol consumption (122).

This further supports smoking to be a prominent lifestyle factor,

potentially masking smaller effects derived from other components

such as diet or physical activity (Figure 2). Unfortunately, most of

the intervention studies have ignored the impact of smoking on

DNA methylation so far, which is a clear limitation and could

partially explain the lack of reproducibility in reported studies.
In-utero reprogramming

It is well-acknowledged that epigenetic changes could be passed

onto the following generation (6, 89–91, 135) (Figure 2). To date,

there is only limited research proving that transgenerational
FIGURE 2

Genome-wide DNA methylation and lifestyle mediated weight loss. Scheme summarizes our results based on genome-wide DNA methylation
during the previous five years. The figure indicates a reduced mAge which is associated with an improved lifestyle and weight loss. The upper arrow
within the figure represents newly identified genes being associated with a weight loss success whereas the lower arrow shows all at least twice
reported genes with changes on the methylome based on lifestyle modifications and weight loss. (Created with Biorender.com).
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epigenetic inheritance exists in humans (6) and, moreover, explicit

attempts to replicate the results of other studies have so far failed

(96–98). The fact that epigenetic changes are more dynamic and

reversible poses another challenge. However, further studies are

needed to develop strategies for preventing obese phenotypes in the

offspring, trying to control epigenetic (re)programming during

early pregnancy and breastfeeding (136, 137). Early pregnancy

appears to be the most vulnerable and important phase and,

interestingly, cord blood CpG site methylation of the offspring

seems to be more frequently altered in underweight (N=1621) than

in obese mothers (N=28) (95). According to the study by Sharp

et al., paternal BMI appeared to be of less important, then weight

gain during pregnancy (95). However, we identified five genome-

wide analyses that intervened with diet or a combination of diet and

physical activity during pregnancy. Various genes demonstrated

significantly altered DNA methylation after diet or physical activity

interventions, such as DISC1, GBX2, HERC2, HUWE1 (89), LGR6

(90), SYN3, JARID2, POLR2C (91). Since JARID2 and LGR2 were

also found in intervention studies aiming to identify DNA
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methylation biomarkers for response to weight loss, those for

example might represent interesting candidates for further

functional analyses. However, numerous further studies are

needed to elucidate specific epigenetic fetal markers that are

influenced by parental lifestyle (Table 4).
Future therapy options

Exploring causal epigenetic mechanisms in obesity could lead to

novel treatments (138). There are already several pharmacological

agents that affect DNA methylation and histone modifications,

including DNMT inhibitors (e.g. Aza) and histone deacetylase

inhibitors (HDACi, e.g. VPA and TSA). In addition, epigenetic

drugs have already been tested for other diseases. This includes

leukaemia, where Aza, BET and IDH1/2 inhibitors have been used

in clinical trials (6, 113, 139, 140). Furthermore, some drugs such as

metformin and statins, which are used to treat T2DM or lipid

dysregulation in obesity, may affect epigenetic mechanisms (141–
TABLE 4 In-utero methylation studies under lifestyle intervention.

Study Participants Methods Results References

antenatal diet/lifestyle intervention
Aim: investigate the effect of an antenatal diet
and maternal pre-pregnancy overweight or
obesity, on infant cord blood DNA methylation

645 women with early
pregnancy (BMI ≥25.0 kg/
m2, mean age = 29.45)

Illumina
HumanMethylation
450K Bead Chips
Tissue: blood

No CpG sites were significantly
differentially methylated in relation to
either the diet and lifestyle intervention, or
with maternal early pregnancy BMI

Louise et al.
2022
(92)

physical activity with or without dietary advice
Aim: investigate whether a lifestyle intervention
in pregnant women with obesity is associated
with epigenetic variation in cord blood and body
composition in the offspring

135 Obese Pregnant
women (BMI = 34.10 kg/
m2, Age = 30.90)

Illumina
HumanMethylation
450K Bead Chips
Tissue: blood

DNA methylation was altered at 379 sites,
annotated to 370 genes following a lifestyle
intervention versus control subjects;
Methylation at 17 sites, DISC1, GBX2,
HERC2, and HUWE1, partially mediates
the effect of the lifestyle intervention on
lean mass in the offspring

Jönsson et al.
2021
(89)

lifestyle intervention (low GI diet plus physical
activity)
Aim: investigate whether a dietary and physical
activity intervention in pregnant women with
obesity modified the methylation signatures
associated with maternal dysglycaemia

557 pregnant women with
obesity (BMI = 36.47±4.74
kg/m2, Age = 30.95 ± 5.42
years)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

The most significantly GDM-associated
CpG was cg03566881 located within LGR6;
maternal dysglycaemia was associated with
significant changes in the epigenome of the
infants

Antoun et al.
2020
(90)

antenatal care plus a “Healthy Lifestyle Package”
Aim: examine relationships between maternal
glycaemia, insulinemic status, and dietary
glycaemic indices during pregnancy

172 pregnant women who
were overweight or obese
(BMI = 29.78 ± 3.5 kg/m2,
Age = 32.72 ± 4.5)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

Insulin concentrations in late pregnancy
were positively associated with DNAm
changes at birth of the RNF214 and PCSK7
genes;
Maternal indicators of insulin resistance
and b-cell function in early pregnancy
were associated with lower methylation
near the SYN3 and JARID2 genes;
maternal insulin sensitivity was associated
with higher methylation on the POLR2C
gene;
no intervention effect on newborn DNAm,

Lecorguillé
et al. 2022
(91)

Diet intervention
Aim: investigated the impact of a low glycaemic
index dietary intervention during pregnancy on
offspring DNA methylation patterns

60 (30 Intervention group)
neonates and womens
(BMI = 27.72 kg/m2, Age =
32.78 years)

Illumina
HumanMethylation
850K Bead Chips
Tissue: blood

Widespread variation was identified in the
newborns exposed to the dietary
intervention;
No association was found with maternal
early-pregnancy body mass index (BMI),
infant sex, or birth weight

Geraghty
et al. 2018
(135)
This table summarizes our in-utero methylation studies under lifestyle intervention. BMI, body mass index; DISC1, Disrupted in schizophrenia 1 protein; GBX2, Gastrulation brain homeobox 2;
HERC2, HECT and RLD domain containing E3 ubiquitin protein ligase 2; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; GI, glycaemic index; GDM,
gestational diabetes mellitus; LGR6, Leucine rich repeat containing G protein-coupled receptor 6; DNAm, DNA-Methylation; RNF214, Ring finger protein 214; PCSK7, Proprotein convertase
subtilisin/kexin Type 7; SYN3, Synapsin III; JARID2, Jumonji and AT-rich interaction domain containing 2; POLR2C, RNA Polymerase II subunit C.
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144). However, lifestyle interventions, including physical activity

and a healthy diet, have been shown to be more effective than

metformin in reducing the incidence of T2D in people at high risk

(145), whereby lifestyle interventions continue to play an important

role in elucidating epigenetic mechanisms and thus contributing to

treatment options for obesity (Figure 2). On the other hand, DNA

methylation marks could improve the success of weight loss

therapies in the context of precision nutrition.
Limitations

Due to the numerous elaborated limitations and factors influencing

DNA methylation profiles, the results of the reviewed studies can only

be assigned to biological mechanisms with caution. First, knowledge of

large, sophisticated epigenome-based risk scores for nutritional

interventions, as has already been done for genotype-based

interventions (146–150), is essential. The lack of replication does not

allow a definitive conclusion on genotype-diet interactions in weight

loss, thus requiring further studies with larger sample sizes (151).

Because research on longitudinal epigenetic changes is still a quite

underrepresented area, most data come from observational studies only,

and data on histone modifications and chromatin remodelling tend to

be lacking (152). In addition, compared to a stable genotype which can

alter individual's physiology and behaviour without active intervention

(153), this review indicates that epigenetic modification are not only

cause but mostly consequence of a lifestyle intervention, complicating

the development of bioinformatics tools for personalized nutrition.

On the other hand, the gut microbiome has previously been

reported to interact with the host gene expression and play causal

roles in the development of several diseases, including obesity (154,

155) and diabetes (156). The composition of the microbiome

changes rapidly up to the age of three, increases until around the

age of 40 and then remains fairly stable (157–159). However, short-

term modulations of the gut microbiome can disrupt normal

metabolite production (84) and this can lead to changes in host

gene expression, which in turn could trigger longer-lasting effects in

the host. In addition, it has already been shown that the human

microbiome can also influence epigenetic modifications such as

DNA methylation and histone acetylation (85, 160). It is possible

that the response to specific diet and exercise interventions is

influenced by the microbiome, which could explain the high

variability in individual response. However, increasing number of

individual nutritional studies are now incorporating microbiome

data obtained from stool samples by 16S RNA sequencing, and thus

accelerating information about the interaction of the microbiome

and host gene expression (152). As mentioned, another limitation is

that the studies analyzed mostly blood samples and further studies

examining lifestyle effects on epigenetic remodelling in metabolic

target organs such as adipose tissue, liver and muscle are inevitable.

In regard to both, the limitation of target tissue access and the

ability of blood methylome mirroring target tissue changes,

circulating cell-free DNA reveals a high potential to full this gap

and serve as a direct proxy of e.g. AT specific methylation changes.

Circulating cfDNAs are short double stranded DNA fragments with
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low concentrations in blood, urine and other fluids (161) which are

able to maintain characteristics of the tissue of origin such as

methylation, nucleosome confirmations and mutations (162, 163),

making cfDNA to biomarker for disease detection (164, 165).

However, although recent findings clearly indicate that cfDNA

might also be involved in disease progression driven by obesity-

related tissue degeneration (166, 167) (including insulin resistance

(168)), it is not yet commonly used as a biomarker in metabolic

diseases. Altogether, a subsequent meta-analysis based on identical

bioinformatic data processing would be required to analyse and

summarise the results of the included studies. However, meta-

analyses are rarely represented in this research field, which might

be driven through the high diversity between the different

intervention studies and heterogeneity of the study cohorts. To

overcome this problem, all studies would have to meet a certain

standard in order to be comparable. These standards include high

sample sizes with equal gender distribution, long-term study

durations, and random assignment to intervention groups, i.e.

randomised controlled trials.

Conclusion

As demonstrated in the present review, the analysis of DNA

methylation in a longitudinal design is very recent and the number of

studies identified is excessively low to be able to draw relevant

conclusions. Nevertheless, although the reviewed genome-wide

studies are still lacking reproducibility, a number of candidate genes

have been successfully validated. Recent studies on DNA methylation

as weight loss predictor and mAge in relation to obesity state, further

indicate its role and potential as an important biomarker for the

improvement of obesity stratification and treatment.
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A2MP1 Alpha-2-macroglobulin pseudogene 1

ACE2 Angiotensin converting enzyme 2

ADRB2 Adrenoceptor beta 2

AT adipose tissue

AURKC Aurora kinase C

BAG3 BAG cochaperone 3

BCAS4 breast carcinoma amplified sequence 4

BHMT2 betaine&ndash;homocysteine S-methyltransferase 2

BMI body mass index

BWRP body weight reduction program

C3orf38 chromosome 3 open reading frame 38

CAV1 Caveolin 1

CBFA2T3 CBFA2/RUNX1 partner transcriptional co-repressor 3

CLOCK Circadian locomoter output cycles protein kaput

CRACR2A Calcium release activated channel regulator 2A

CRISP2 Cysteine rich secretory protein 2

CRY2 Cryptochrome circadian regulator 2

DISC1 Disrupted in schizophrenia 1 protein

DMR differentially methylated regions

DMP differentially methylated position

EPDR1 ependymin related 1

EWAS Epigenome-wide association studies

FARP1 FERM, ARH/RhoGEF and pleckstrin domain protein 1

FBXW5 F-Box and WD repeat domain containing 5

FDR false discovery rate

FGFRL1 fibroblast growth factor receptor like 1

FKBP5 FKBP prolyl isomerase 5

FRMD4A FERM domain containing 4A

FTO Fat mass and obesity-related

GBP gastric bypass

GBX2 Gastrulation brain homeobox 2

GDM gestational diabetes mellitus

GDP Guanosin diphosphate

GWAS Genome-wide association studies

HERC2 HECT and RLD domain containing E3 ubiquitin protein ligase 2

HUWE1 HECT, UBA and WWE domain containing E3 ubiquitin protein
ligase 1

IGHMBP2 immunoglobulin mu DNA binding protein 2

ITPR1 inositol 1, 4, 5-trisphosphate receptor type 1
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JARID2 Jumonji and AT-rich interaction domain containing 2

JSRP1 junctional sarcoplasmic reticulum protein 1

KCNG2 potassium voltage-gated channel modifier subfamily G member
2

LEP leptin

LGR6 Leucine rich repeat containing G protein-coupled receptor 6

LINC00539 Long intergenic non-protein coding RNA

LRFN4 leucine rich repeat and fibronectin type III domain containing 4

LRRC27 leucine rich repeat containing 27

mAge methylation age

MAPK mitogen-activated protein-kinase

MTSS1 Metastasis suppressor 1

MWAS methylome-wide association study

MYH15 myosin heavy chain 15

NCOR2 nuclear receptor corepressor 2

NFATC2IP Nuclear factor of activated T cells 2 interacting protein

NLRC3 NLR family CARD domain containing 3

NTSR1 Neurotensin receptor 1

NUDT3 nudix hydrolase 3

OSTM1 osteoclastogenesis associated transmembrane protein 1

PBMCs Peripheral blood mononuclear cell

PCDHGA4 protocadherin gamma subfamily A, 4

PCR polymerase chain reaction

PCSK7 Proprotein convertase subtilisin/kexin type 7

PER2 Period circadian regulator 2

POLR2C RNA polymerase II subunit C

PON3 Paraoxonase 3

PTEN Phosphatase and tensin homolog

Ras Rat sarcoma

Rap1 Ras-related protein 1

RNF214 Ring finger protein 214

RNF39 Ring finger protein 39

SAT subcutaneous adipose tissue

SH3PXD2A SH3 and PX domains 2A

SLC6A12 Solute carrier family 6 member 12

SLFN12 Schlafen family member 12

SNP Single nucleotide polymorphism

STK32C Serine/threonine-protein kinase 32C

SULF2 Sulfatase 2

SYN3 Synapsin III
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SYNJ2 synaptojanin 2

T2D type 2 diabetes

TNMD tenomodulin

TXNIP Thioredoxin interacting protein

UCHL1 ubiquitin C-terminal hydrolase L1

VAT visceral adipose tissue

VIPR2 vasoactive intestinal peptide receptor 2

VLCKD very-low-calorie ketogenic diet

VWDE von Willebrand factor D and EGF domains

WDPCP WD repeat containing planar cell polarity effector

Wnt wingless-type

ZNF331 zinc finger protein 331
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