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Identification of markers for
predicting prognosis and
endocrine metabolism in
nasopharyngeal carcinoma by
miRNA–mRNA network mining
and machine learning

Xixia Zhang1, Xiao Li2, Caixia Wang2, Shuang Wang2,
Yuan Zhuang2, Bing Liu1 and Xin Lian1*

1Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical
University, Shenyang, China, 2Department Obstetrics and Gynecology, Shengjing Hospital of China
Medical University, Shenyang, China
Background: Nasopharyngeal cancer (NPC) has a high incidence in Southern

China and Asia, and its survival is extremely poor in advanced patients. MiRNAs

play critical roles in regulating gene expression and serve as therapeutic targets in

cancer. This study sought to disclose key miRNAs and target genes responsible

for NPC prognosis and endocrine metabolism.

Materials and methods: Three datasets (GSE32960, GSE70970, and GSE102349)

of NPC samples came from Gene Expression Omnibus (GEO). Limma and

WGCNA were applied to identify key prognostic miRNAs. There were 12 types

of miRNA tools implemented to study potential target genes (mRNAs) of miRNAs.

Univariate Cox regression and stepAIC were introduced to construct risk models.

Pearson analysis was conducted to analyze the correlation between endocrine

metabolism and RiskScore. Single-sample gene set enrichment analysis

(ssGSEA), MCP-counter, and ESTIMATE were performed for immune analysis.

The response to immunotherapy was predicted by TIDE and SubMap analyses.

Results: Two key miRNAs (miR-142-3p and miR-93) were closely involved in

NPC prognosis. The expression of the two miRNAs was dysregulated in NPC cell

lines. A total of 125 potential target genes of the key miRNAs were screened, and

they were enriched in autophagy and mitophagy pathways. Five target genes

(E2F1, KCNJ8, SUCO, HECTD1, and KIF23) were identified to construct a

prognostic model, which was used to divide patients into high group and low

group. RiskScore was negatively correlated with most endocrine-related genes

and pathways. The low-risk group manifested higher immune infiltration,

anticancer response, more activated immune-related pathways, and higher

response to immunotherapy than the high-risk group.
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Conclusions: This study revealed two key miRNAs that were highly contributable

to NPC prognosis. We delineated the specific links between key miRNAs and

prognostic mRNAs with miRNA–mRNA networks. The effectiveness of the five-

gene model in predicting NPC prognosis as well as endocrine metabolism

provided a guidance for personalized immunotherapy in NPC patients.
KEYWORDS

nasopharyngeal cancer, micro RNAs, miRNA-mRNA network, immunotherapy,
immune checkpoint blockade, risk model, endocrine
Introduction

Nasopharyngeal cancer (NPC) is an epithelial malignancy, which

has discrepant occurrence in different regions and countries. The

etiology of NPC is multiple and remains incompletely understood,

but most cases are closely linked to Epstein–Barr virus (EBV)

infection (1). In Western countries, the incidence rate is relatively

low with a ratio of 1:100,000 each year. However, in the regions of

Southern China and Asia, the annual incidence elevates to 25–50

cases per 100,000 (2), which accounts for approximately 70% new

cases worldwide (3). The incidence also strikingly increases in the

recent decades in China. The age-standardized incidence rate (ASIR)

was 3.3/100,000 in 1990, whereas it reached 5.7/100,000 in 2019. The

rising incidence rate was especially startling in men, with ASIR of 4.3/

100,000 to 8.6/100,000 from 1990 to 2019 (4). The distant metastasis

contributes to an extremely poor prognosis in NPC patients, and the

patients of stages III and IV have a 5-year survival rate less than 10%.

With intensive usage of modulated treatment including

chemotherapy and radiotherapy, the control of NPC metastasis

reaches a satisfactory outcome and the 5-year survival rate

drastically improves (5–7). Nevertheless, the prognosis and

treatment efficiency were awfully unfavorable in the NPC patients

of late stages. It is still a great challenge for clinicians to control and

lessen the metastasis and recurrence of advanced NPC patients. In the

recent years, immunotherapy reaches a milestone in clinical cancer

therapy, not excluding in NPC. Immune checkpoint blockade (ICB)

therapy is one of the promising strategies to increase antitumor

activity in NPC. Studies have shown that NPC patients expresses high

expression levels of programmed death protein 1 (PD-1) and

programmed death ligand 1 (PD-L1) that are associated with poor
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outcomes and recurrence (8, 9). The blockade of PD-1/PD-L1

expression can recover the ability of cytotoxic lymphocytes exerting

anticancer response. Lines of clinical trials of ICB therapy have

demonstrated the positive response to anti-PD-1/PD-L1 drugs such

as pembrolizumab in phase 1 and 2 studies (10, 11). In the phase 2

study, of 44 enrolled NPC patients, eight patients reached a partial

response and one patient reached a complete response, showing an

objective response rate (ORR) of 20.5% (11). As we know, in the

tumor microenvironment, the expression of PD-1 on the surface of

tumor cells and the combination of PD-L1 on the surface of tumor-

infiltrating lymphocytes can inhibit the activity of T cells, lead to the

loss of function of effector factors TNF-a, IFN-gamma, and IL-2, and

inhibit cytolysis function through granulozyme B and perforin, and

ultimately promote immune escape (12, 13). Obviously, still a high

proportion of NPC patients showed a negative response to ICB

therapy, which may result from their disadvantageous tumor

microenvironment. Therefore, in order to raise the treatment

accuracy, understanding the mechanism of immune evasion and

developing molecular biomarkers is critically needed.

Over the last few decades, it has become clear that endocrines are

also involved in regulating tumor cells and that cancer cells themselves

abnormally express and respond to many hormones (14). Both leptin

and its receptor have been reported in cancer biopsy specimens,

indicating autocrine and/or paracrine roles in tumorigenesis (15).

Several hypothalamic hormones have been implicated in a variety of

human cancers, including growth hormone-releasing hormone,

luteinizing hormone-releasing hormone, somatostatin, and

bombotin (16, 17). It is becoming increasingly clear that many

human cancer cells are sensitive to a variety of hormones and that

they themselves express many hormones that play an important role

in the development and progression of cancer.

Non-coding RNAs play essential roles in gene modulation and

pathway regulation. Some microRNAs (miRNAs) were unveiled to

participate in NPC invasion and metastasis, immune escape, and

resistance to chemotherapy and radiotherapy (18), endowing

miRNAs possible to serve as potential therapeutic targets (19). For

example, miR-26a was found to have an anticancer effect and

overexpressing miR-26a could inhibit the metastatic feature in

NPC cells (20). MiR-663 targeting WAF1/CIP1 promotes the

proliferation and tumorigenesis in NPC cells (21). The crosstalk

between extracellular microRNAs and the tumor microenvironment

has also been profoundly parsed by previous studies (22, 23).
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Consequently, our study tried to mine the key miRNAs that had a

prognostic value in NPC. We identified two potentially key miRNAs

(has-miR-142-3p and has-miR-93) closely involved in NPC

prognosis. By building competing endogenous RNA (ceRNA)

networks using multiple miRNA tools, we determined 125

potential target genes (mRNAs) and screened five key genes

contributable for the prognostic model. The five-gene prognostic

model manifested a satisfactory performance in prognosis prediction

and estimating the response to immunotherapy and chemotherapy.
Materials and methods

Data source and preprocessing

GSE32960, GSE70970, and GSE102349 datasets containing the

expression profiles of NPC samples were accessed from the Gene

Expression Omnibus (GEO) database (24), where GSE32960 and

GSE70970 include miRNA expression data and GSE102349

includes mRNA expression data. We screened the samples of

GEO datasets according to the following criteria: 1) remove

samples without survival time and survival status; 2) convert

probes into gene symbols; 3) remove a probe matching to

multiple genes; 4) select the averaged expression of a gene with

multiple probes; 5) for miRNA data, only human samples were

remained. After preprocessing, 312 NPC and 18 normal samples

were remained in the GSE32960 dataset; 253 NPC and 10 normal

samples were remained in the GSE70970 dataset; and 88 NPC

samples were remained in the GSE102349 dataset.
Identification of NPC-associated
differentially expressed miRNAs

In the GSE32960 dataset, differentially expressed miRNAs

(DEmiRNAs) were screened by Limma R package (25) from NPC

and normal samples under conditions of P < 0.05 and |log2(fold

change, FC)| > 1.2. Gene modules were identified by weighted

correlation network analysis (WGCNA) (26). Firstly, samples were

clustered and the co-expression network was constructed. A scale-free

network was ensured under scale-free R2 = 0.85, and soft threshold

(power) = 3 was determined. The co-expression network was then

converted to the adjacent matrix and was further converted to the

topological overlap matrix (TOM). Subsequently, we clustered genes

by the dynamic cutting method and average-linkage hierarchical

clustering based on TOM. Eigengenes were calculated for each gene,

and gene modules were clustered and merged under parameters of

deepSplit = 2, and minModuleSize = 60, height = 0.25. The module–

trait relationships were assessed by Pearson correlation analysis. By

overlapping the miRNAs in the NPC-associated gene modules and

DEmiRNAs, NPC-associated miRNAs were determined.
Construction of a miRNA-based risk model

Random grouping of samples from the GSE32960 dataset into

training group and test group at a ratio of 3:2 was performed. Two-
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group differences were assessed using Student’s t test. Univariate

Cox regression analysis screened NPC-associated miRNAs from the

training group. MiRNAs with P < 0.01 were selected as prognostic

miRNAs. Multivariate analysis (stepAIC) was introduced to

measure the coefficients of prognostic miRNAs. Then, the

miRNA-based risk model was defined as: risk score = S(coef
i*expression i), where coef indicates the coefficients of miRNAs

and i represents miRNAs.
Evaluation and optimization of the
risk model

Each sample obtained a risk score calculated by the risk model. The

median risk score was employed in dividing samples into low-risk and

high-risk groups. Receiver operating characteristic (ROC) curve

analysis was used to predict the efficiency of the risk model in

predicting overall survival through timeROC R package (27). The

prognosis difference of two risk groups was studied by Kaplan–Meier

survival analysis. Univariate and multivariate Cox regression models

were used to analyze the hazard ratio of risk type. A nomogram was

used to optimize the clinical use of the riskmodel with the rms package.
Construction of a mRNA-based
prognostic model

First of all, the potential target genes of miRNAs were predicted

by different online tools and software including microT (28),

miRanda (29), mircode (30), miRDB (31), miRmap (32),

miRtarbase (33), PicTar (34), PITA (35), TargetMiner (36),

TargetScan (37), RNA22 (38), and starbase (39). The target genes

predicted by at least six tools were remained as key potential target

genes. The WebGestaltR package (40) was utilized to annotate the

enriched Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways and Gene Ontology (GO) terms. Then, we used the key

target genes to establish the mRNA-based prognostic model.

Prognostic target genes in 70% samples of the GSE102349 dataset

were screened by univariate Cox regression analysis. Random

sampling with 70% samples in the GSE102349 dataset was

performed for 1,000 times corresponding with univariate analysis.

The top five frequent target genes from the results of 1,000 times of

univariate analysis were selected as the final target genes for

constructing the mRNA-based prognostic model (defined by the

same formula with the miRNA risk model).
Endocrine metabolism analysis

There were 31 SECRETORY_PATHWAYS screened from the

KEGG PATHWAY Database (https://www.genome.jp/kegg/

pathway.html). SECRETORY_PATHWAYS scores in the

GSE102349 dataset were calculated by ssGSEA (41). There were

26 SECRETORY-related genes obtained from KEGG (https://

www.genome.jp/dbget-bin/www_bfind_sub?mode=bfind&max

_hit=1000&locale=en&serv=kegg&dbkey=genes&keywords=
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Secretory&page=1). Pearson analysis was conducted to determine

the correlation between SECRETORY_PATHWAYS scores/

SECRETORY-related genes and RiskScore.
Analysis of immune characteristics

We used ssGSEA (41) to estimate the immune cell proportion

in two risk groups. The gene sets of 22 immune-related cells, innate

immune response, and adaptive immune response were obtained

from Charoentong et al. (42). The ESTIMATE algorithm (43) was

employed to measure immune cell infiltration and stromal cell

infiltration. The ESTIMATE score represents the combined score of

immune score and stromal score. MCP-counter (44) was used to

evaluate 10 immune-related cells including monocytic lineage, CD3

+ T cells, NK cells, CD8+ T cells, endothelial cells, cytotoxic

lymphocytes, B lymphocytes, neutrophils, fibroblasts, and myeloid

dendritic cells based on the expression matrix. The immune

checkpoint genes were downloaded from a previous study (42).
Assessment of biological pathways

Biological pathways were accessed from “h.all.v7.4.symbols.gmt”

downloaded from the Molecular Signatures Database (MSigDB) (45).

There were 13 tumor-related genes obtained from a previous research

(46), which are classic cancer pathways, involved in the development

and progression of cancer, including DNA damage repair (DDR),

epithelial–mesenchymal transition (EMT), cell cycle, mismatch

repair, CD8 T effector, FGFR3, nucleotide excision repair, base

excision repair, DNA replication, homologous recombination, and

WNT target. ssGSEA was performed to determine the enrichment

score of biological pathways. The relation of risk score with pathways

was inspected with Pearson correlation analysis.
Predicting the response to immunotherapy
and chemotherapy

We conducted SubMap analysis (47) to compare the expression

profiles between GSE102349 and IMvigor210. IMvigor210 contains

the expression profiles of patients with metastatic urothelial

carcinoma treated by PD-L1 inhibitors (48). The higher similarity

of samples in GSE102349 with complete response (CR) and partial

response (PR) groups in IMvigor210 suggested that the samples

were more sensitive to anti-PD-L1 treatment. The TIDE (http://

tide.dfci.harvard.edu/) algorithm (49) was employed to predict the

escape and response to immune checkpoint inhibitors, according to

the score of T-cell dysfunction and exclusion, the enrichment of

immunosuppressive cells. The sensitivity of two risk groups to

chemotherapeutic drugs was estimated using the pRRophetic R

package (50).

The performance of the prognostic model was further examined

in immunotherapy datasets including IMvigor210, GSE135222, and

GSE78220. GSE135222 contains non-small cell lung cancer patients

treated with immune checkpoint inhibitors (51). GSE78220
Frontiers in Endocrinology 04
includes patients suffering from metastatic melanoma treated by

anti-programmed cell death protein 1 (anti-PD-1) therapy.
Cell culture

After resuscitating NPC cells and normal cells, they were placed

in 1,640 and 5A cell medium containing 10% fetal bovine serum,

respectively, at 37°C, 5% CO2 concentration, and constant

temperature to around 80%–90%, then passed and spread on

a plate.
RT-qPCR

Total RNA was extracted from cells by RT-qPCR, and cDNA

was synthesized by reverse transcription. After reverse

transcription, samples were added according to the experimental

instructions. The reaction conditions of RT-qPCR were 95°C for 30

s. 95°C, 5 s; 60°C, 30 s, 40 cycles. The mRNA expressions of miR-

142-3p and miR-93 in the experimental group and control group

were analyzed.
Statistical analysis

The statistical methods used in this study were performed in R

software (v4.2.0). The Sangerbox platform (52) was used to provide

an assistant in data analysis. The log-rank test was applied in

survival analysis. Difference between two groups was examined by

the Wilcoxon test. The Kruskal–Walls test was used to test the

difference among over two groups. P < 0.05 was determined as

statistically significant.
Results

Identification of DEmiRNAs related to NPC
based on WGCNA

To begin with, we assessed the expression difference of miRNAs

between normal and tumor samples in the GSE32960 dataset. The

results showed that 332 miRNAs were differentially expressed

between normal and tumor groups, including 168 upregulated

and 164 downregulated miRNAs in tumor groups (Figure 1A;

Table S1). Then, we applied WGCNA to cluster samples and dig

out key gene modules based on DEmiRNAs. To ensure the co-

expression network to be a scale-free network, the Pearson

coefficient was selected as 0.85 and the power of the soft

threshold was determined as 3 to construct an adjacency matrix

(Figures 1B–D). Next, a topology overlap matrix (TOM) was

generated based on the adjacency matrix and the genes were

divided into different modules using the Dynamic Tree Cut

algorithm (Figure 1E). Four modules were finally determined

after merging the adjacent modules. Then, we analyzed the

correlation of four modules with different sample groups. As a
frontiersin.org
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result, brown and blue modules were found to be evidently

associated with sample groups and they manifested opposite

correlations with two groups (Figure 1F). Specifically, blue and

brown modules were negatively correlated with the tumor group (R

= -0.35 and -0.53, respectively). The Venn plot was constructed to

describe the intersection between DEmiRNAs and miRNAs of blue

and brown modules (Figure 1G). There were 99 DEmiRNAs

including 42 upregulated and 55 downregulated found in the blue

module. There were 169 DEmiRNAs including 79 upregulated and

90 downregulated found in the brown module. The above total 268

DEmiRNAs were determined as potential miRNAs associated

with NPC.
Establishment and verification of a miRNA-
related risk model

We randomly divided 312 NPC samples of the GSE32960

dataset at a ratio of 3:2 into the training and test groups (Table

S2). We used the training group to screen prognostic miRNAs from

268 DEmiRNAs according to the univariate Cox regression model.

The analysis identified two miRNAs (hsa-miR-142-3p and hsa-

miR-93) that were significantly associated with the overall survival

(P < 0.01). Based on the multivariate coefficients of two miRNAs by

stepAIC analysis, we established the risk model defined as follows

(Figure S1A).

Risk score = -0.835*(hsa-miR-142-3p) + 0.85*(hsa-miR-93)
Frontiers in Endocrinology 05
Moreover, the RT-qPCR analysis results showed that miR-142-

3p expression was downregulated and miR-93 was upregulated in

five NPC cell lines in comparison with normal NP69 cells (Figures

S1B, C).

To validate the performance of the risk model, we calculated the

risk score for each tumor sample in the training and test groups.

The AUC for 1-, 3-, and 5-year survival derived from the ROC curve

analysis was 0.56, 0.70, and 0.70 in the training group and 0.96, 0.71,

and 0.71 in the test group, respectively (Figures 2A, B).

Furthermore, based on the median risk score, tumor samples

were classified into low-risk and high-risk groups. The two risk

groups had distinct overall survival (OS) in the training and test

groups, as shown by Kaplan–Meier survival analysis (P = 0.00035

and P = 0.013, respectively, Figures 2A, B).

In the total GSE32960 dataset, the risk model still showed good

performance in predicting overall survival (Figure 2C). In addition,

we evaluated the effectiveness of the risk model in different survival

times including recurrence-free survival (RFS), disease-free survival

(DFS), and metastasis-free survival (MFS). High-risk and low-risk

groups exhibited differential prognosis of DFS and MFS (P <

0.0001) but showed no significant difference in RFS classification

(P = 0.063, Figure 2C). In another independent dataset (GSE70970),

the risk model also showed an effect classification for both OS and

DFS (P = 0.017 and P = 0.022, respectively) (Figure 2D). Moreover,

we verified the effectiveness of the risk model in the groups of

different clinical characteristics. In addition to the female group and

N0 group, the risk model was sufficient to distinguish samples into
B C D

E F G

A

FIGURE 1

Identification of NPC-related DEmiRNAs in the GSE32960 dataset. (A) Volcano plot of 332 DEmiRNAs. (B) Clustering dendrogram of 312 samples. (C,
D) Under different soft thresholds (power), we analyzed scale independence and mean connectivity. (E) Clustering dendrogram of DEmiRNAs based
on TOM and dynamic cut methodology. (F) The relationships of modules with normal and tumor groups. (G) Venn plot of DEmiRNAs and miRNAs of
brown and blue modules.
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different risk levels in the groups of age >45, age ≤45, male, T1–T2,

T3–T4, N1–N3, I–II, and III–IV (Figure 3).
Boosting the prediction efficiency of the
miRNA-related risk model by constructing
a nomogram

Using univariate and multivariate Cox regression analyses, we

evaluated the relation of clinical features and risk type with

prognosis. The result displayed that only gender and risk type

were independent risk factors in both univariate and multivariate
Frontiers in Endocrinology 06
analyses (Figures 4A, B). Gender had a hazard ratio (HR) of 2.2 in

both univariate and multivariate analyses (P = 0.019 and P = 0.02,

respectively). Risk type had HR of 3.7 (P = 1.1e-6) and 3.6 (P = 2.1e-

6) in univariate and multivariate analyses, respectively. Therefore,

we included gender and risk score to construct the nomogram

(Figure 4C). Compared with gender, risk score contributed the

more total points in the nomogram. Calibration curve analysis

suggested that the predicted 1-, 3-, and 5-year survival was highly

accordant with the observed survival (Figure 4D). In addition,

decision curve analysis was implemented to evaluate the benefit

that patients may obtain from gender, risk score, and nomogram.

As a result, nomogram performed a more favorable performance
B

C

D

A

FIGURE 2

ROC analysis and survival analysis for evaluating the performance of the miRNA risk model. (A) ROC curves and survival curves in the training group.
(B) ROC curves and survival curves in the test group. (C) ROC curves and survival curves of DFS, OS, MFS, and RFS in the GSE32960 dataset. (D)
ROC curves and survival curves of OS and DFS in the GSE70970 dataset.
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than gender and risk score (Figure 4E). Consequently, the

nomogram based on gender and risk score was more efficient to

predict the prognosis of NPC patients.
Construction of miRNA–mRNA competing
endogenous RNA networks

In the above sections, we identified two key miRNAs (hsa-miR-

142-3p and hsa-miR-93) that had a close relation with NPC

prognosis. To understand the potential molecular mechanism of

the miRNAs, we applied 12 tools (starbase, PITA, TargetMiner,

miRanda, microT, miRmap, miRtarbase, mircode, TargetScan,

RNA22, miRDB, PicTar) to predict the potential targets of two

miRNAs. The results output 39 target genes of hsa-miR-142-3p and

86 target genes of hsa-miR-93, which were visualized in ceRNA

networks (Figure 5A). KEGG analysis demonstrated the

involvement of these target genes in mitophagy and autophagy

(Figure 5B). The top 10 enriched terms of cellular component and

molecular function, as well as biological process, were visualized

using GO function analysis (Figures 5C–E). For example, biological
Frontiers in Endocrinology 07
process terms of positive regulation of amyloid−beta metabolic

process, amyloid−beta formation, and negative regulation of

phosphatase activity were enriched (Figure 5C). Cellular

component terms of clathrin-coated pit and trans-Golgi network

membrane were enriched (Figure 5D). Molecular function terms of

clathrin adaptor activity and clathrin heavy chain binding were

enriched (Figure 5E).
Establishing a mRNA prognostic model
based on key target genes of hsa-miR-
142-3p and hsa-miR-93

We predicted a total of 125 potential target genes of hsa-miR-142-

3p and hsa-miR-93. Then, we used the univariate Cox regression

model to analyze the relation between target genes and overall survival.

Random sampling for 1,000 times from the samples of the GSE102349

dataset was performed. The target genes closely related to overall

survival were remained (P < 0.05) and were ranked by the occurring

frequency from 1,000-times analysis. The top five frequent target genes

were selected as key target genes for establishing the mRNA
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FIGURE 3

Kaplan–Meier survival analysis of two risk groups in the samples with different clinical characteristics (A–J).
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prognosticmodel (Figure 6A). The coefficients of five target genes were

calculated by multivariate analysis. Finally, the prognostic model was

defined as the following: mRNA risk score = 1.333* E2F1 -

1.766*KCNJ8 + 1.075*SUCO - 1.030* HECTD1 - 0.340*KIF23.

The risk score for each sample in the GSE102349 dataset was

determined with the mRNA prognostic model. ROC curve analysis

showed that the model was efficient in predicting 1-, 3-, and 5-year

survival, with AUCs of 0.87, 0.81, and 0.79, respectively (Figure 6B).

The median risk score value was used in classifying NPC samples

into two groups, high-risk and low-risk groups. Kaplan–Meier

survival curves of two risk groups showed that they had an

apparently different prognosis (P = 0.0018, Figure 6B). Hence, the

five target genes could be validated by the above results to be closely

involved in the prognosis.
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Immune characteristics of high- and low-
risk groups

The tumor microenvironment plays a central role in antitumor

response and immunotherapeutic response. We used several tools

to assess the immune cell component, as well as immune and

stromal infiltration, and analyzed immune checkpoint genes for

their expression levels. Two risk groups showed a significantly

different immune microenvironment. We estimated an ssGSEA

enrichment score of 28 immune-related cells and found that 25 of

them had a differential enrichment score, such as myeloid-derived

suppressor cells (MDSCs), activated CD8 T cells, regulatory T cells,

natural killer cells, activated B cells, and macrophages (Figure 7A).

Most immune cells showed a higher abundance in the group with a
B
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FIGURE 4

Constructing a nomogram based on clinical features and risk score. (A, B) Univariate (A) and multivariate Cox regression analyses of clinical features
and risk type. (C) The nomogram based on gender and risk score for predicting 1-, 3-, and 5-year survival. (D) Calibration curve of 1-, 3-, and 5-year
survival. (E) DCA of nomogram, gender, and risk score. *P < 0.05, ***P < 0.001.
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low risk. In addition, ssGSEA also revealed higher enrichment of

both adaptive and innate immune response scores in the low-risk

group (P < 0.0001, Figure 7B). The ESTIMATE algorithm was used

to evaluate stromal and immune infiltration of two groups, and not

surprisingly, the low-risk group showed both higher immune score

and stromal score than the high-risk group (Figure 7C, P < 0.0001).

Moreover, MCP-counter was employed to dig out similar results
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with ssGSEA. A total of 10 types of immune-related cells all showed

a higher enrichment score in the low-risk group (Figure 7D).

Immune checkpoint expression levels also had an extreme

difference in two risk groups that most of immune checkpoints,

such as CTLA4, TIGIT, LAG3, and PCDC1, were more highly

expressed in the low-risk group than in the high-risk group

(Figure 7E). Immune checkpoints’ differential expression may
B C
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A

FIGURE 5

Analysis of the target genes of has-miR-142-3p and has-miR-93. (A) The mRNA–miRNA ceRNA networks. Green rhombus indicates target mRNAs,
and ellipse indicates miRNAs. (B) KEGG and (C–E) GO functional analyses of potential target mRNAs. The color of dots indicate the significance of P
values, and the dot size indicates the gene counts.
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contribute to different antitumor immune responses. The distinct

immune microenvironment suggested that the five prognostic genes

may play critical roles in immune modulation.
Analysis of biological pathways,
immunotherapeutic response, and drug
sensitivity in two risk groups

To further understand the molecular mechanisms contributing

different prognoses of two risk groups, the enrichment score of

pathways from the “h.all.v7.4.symbols.gmt” file was calculated using

ssGSEA. There were 30 pathways differentially activated in the two risk

groups (Figure 8A). Immune-related pathways, for instance, interferon

alpha response, interferon gamma response, inflammation response,

IL2-STAT5 signaling, IL6-JAK-STAT3 signaling, and complement,

were significantly more activated in the low-risk group, which was

consistent with the result of immune analysis. Cell cycle-related

pathways such as E2F targets, MYC target V2, MYC target V1, and

G2M checkpoint were less enriched in the low-risk group. In addition,
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some oncogenic pathways were more activated in the high-risk group,

such as Wnt signaling and Hedgehog signaling. Notably, apoptosis was

more enriched in the low-risk group, which was associated with good

prognosis. Risk score also manifested significant correlations with the

above pathways (Figure S2).

Gene sets of 13 tumor-related pathways were obtained from a

previous study, and their enrichment scores were calculated using

ssGSEA. Pearson correlation analysis uncovered a negative

association of risk score with DNA repair-related pathways

including DDR (R = -0.41), base excision repair (R = -0.25),

nucleotide excision repair (R = -0.33), homologous recombination

(R = -0.33), and mismatch repair (R = -0.33) (Figure 8B).

Next, we evaluated the response of two risk groups to

chemotherapy and immunotherapy. The similarity of expression

profiles between GSE102349 and IMvigor210 (treated by PD-L1

inhibitors) datasets was shown by SubMap analysis. Higher

similarity between two datasets indicates higher sensitivity to PD-

L1 inhibitors. The results presented that the low-risk group had a

higher similarity with CR and PR groups (P < 0.05, Figure 8C),

implying that the low-risk group could obtain more benefit from
B

A

FIGURE 6

Construction of the prognostic model based on the target genes in the GSE102349 dataset. (A) The top 15 target genes associated with prognosis
from 1,000-times random sampling. (B) ROC analysis and survival analysis of the five-gene prognostic model.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1174911
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1174911
immunotherapy. Furthermore, the TIDE algorithm was

implemented to predict immune escape to immune checkpoint

inhibitors. Two risk groups showed no significant difference of

TIDE score (Figure 8D). However, the low-risk group exhibited

more severe T-cell dysfunction than the high-risk group in which

enrichment of MDSCs and M2 tumor-associated macrophages

(TAM) was higher, contributing to its higher T-cell exclusion. In

the response to chemotherapeutic drugs, we screened a total of 103

drugs including 46 drugs such as YM155 and vinorelbine sensitive
Frontiers in Endocrinology 11
to high-risk groups and 57 drugs such as sunitinib and temsirolimus

sensitive to the low-risk group (Figure 8E).
The analysis of endocrine metabolism

Abnormal endocrine metabolism is one of the complications of

tumor treatment. As shown in Figure 9A, endocrine-related genes,

such as MON1B, SCAMP2, and FAM20A, were negatively
B C D
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A

FIGURE 7

Immune characteristics of high-risk and low-risk groups in the GSE102349 dataset. (A) The ssGSEA score of 22 immune-related cells in two risk
groups. (B) The ssGSEA score of adaptive and innate immune response in two risk groups. (C) ESTIMATE analysis of immune infiltration and stromal
infiltration. (D) MCP-counter analysis for estimating the enrichment of 10 immune-related cells. (E) Expressions of immune checkpoint genes in two
risk groups. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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associated with RiskScore; SCAMP3 was positively correlated with

RiskScore. Pearson analysis between endocrine pathways and

RiskScore showed that most endocrine pathways were negatively

related to RiskScore (Figure 9B).
The performance of the mRNA prognostic
model in immunotherapy datasets

To further examine the exhibition of the five-gene prognostic

model, we introduced three independent datasets containing

patients administrated by immunotherapy (IMvigor210,

GSE135222, and GSE78220). Using the same calculation method,

we measured the risk score of each patient in three datasets. In the

IMvigor210 dataset, the high-risk group displayed apparently worse

prognosis than the low-risk group (P < 0.0001, Figure 10A). The

prediction efficiency was evaluated by ROC, with AUCs of 0.61,

0.66, and 0.64 at 0.5-, 1-, and 1.5-year survival, respectively

(Figure 10A). In addition, we analyzed the proportion of different

response groups in two risk groups. The low-risk group had a

higher proportion of CR and PR groups (11% and 20%,

respectively), compared with the high-risk group (6% and 9%,
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respectively). The CR and PR groups also showed a lower risk

score than PD and SD groups. In the GSE135222 and GSE78220

datasets, we observed correspondent results (Figures 10B, C). The

GSE135222 dataset showed AUCs of 0.82 and 0.85 at 0.5- and 1-

year survival, respectively. The low-risk group exhibited a markedly

higher percentage of CR/PR patients compared with the high-risk

group (50% versus 8% in low- versus high-risk groups). The

GSE78220 dataset showed AUCs of 0.74 and 0.71 at 1- and 2-

year survival, respectively. Expectedly, the CR and PR groups were

more accumulated in the low-risk group (21% and 43%) compared

with the high-risk group (8% and 31%). Moreover, the CR/PR

group showed a lower risk score than the PD/SD group in both

GSE135222 and GSE78220 datasets, but the difference was not

significant in the GSE78220 dataset. The above observation

suggested that patients with a low risk score were more sensitive

to immunotherapy and could attain longer survival.
Discussion

MiRNAs are considered as potential therapeutic targets for NPC

treatment, and till now abundant miRNAs have been unveiled to be
B

C
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FIGURE 8

Analysis of biological pathways, response to immunotherapy, and drug sensitivity of two risk groups in the GSE102349 dataset. (A) Screening
differentially enriched pathways between two risk groups based on ssGSEA. (B) Correlation analysis of risk score with 13 tumor-related pathways.
Orange and blue indicate positive and negative correlations, respectively. (C) SubMap analysis of expression data of GSE102349 and IMvigor210
(anti-PD-L1 treatment) datasets. (D) TIDE analysis of two risk groups for assessing immune escape and response to immunotherapy. (E) The
sensitivity to chemotherapeutic drugs predicted by the pRRophetic package. *P < 0.05, **P < 0.01, ***P < 0.001, ****P<0.0001.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1174911
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1174911
BA

FIGURE 9

Analysis of endocrine metabolism. (A) Pearson analysis between endocrine-related genes and RiskScore. (B) Pearson analysis between endocrine
pathways and RiskScore.
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FIGURE 10

The performance of the mRNA prognostic model in three independent immunotherapy datasets. (A–C) ROC analysis, survival analysis, the
distribution responder groups in two risk groups, and the risk score of responder groups in the IMvigor210 (A), GSE135222 (B), and GSE78220 (C)
datasets. ns P>0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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dysregulated in NPC patients (19). MiRNAs serve as importantly

regulatory roles in gene expression and pathway modulation. In this

study, we dug out the potential key miRNAs and mRNAs that were

probably responsible for NPC development and progression. We

interpreted the association between key miRNAs and mRNAs and

decoded the relationships of prognostic miRNA-related mRNAs with

tumor microenvironment, immunotherapy, and functional pathways.

To begin with, we deciphered the miRNA expression data and

screened 332 aberrantly expressed miRNAs in NPC samples

compared with normal samples. By using WGCNA, we further

identified two key miRNAs (hsa-miR-142-3p and hsa-miR-93)

strongly related to NPC prognosis and phenotype. We

constructed a miRNA risk model based on hsa-miR-142-3p and

hsa-miR-93. The risk model exhibited an intensive relation with

NPC prognosis in two independent datasets (GSE32960 and

GSE70970). Patients with a high risk showed significantly worse

OS and DFS than the low-risk group. In addition, the risk model

was also effective to predict OS in NPC samples with different

clinical characteristics including ages, T stage, N1–N3 stage, and

AJCC stage I–IV. These results demonstrated that hsa-miR-142-3p

and hsa-miR-93 were highly responsible for NPC development.

Moreover, RiskScore was negatively correlated with endocrine

genes, especially FAM20A, which had been important for endocrine-

related tumors (53). The FAM20 family of kinases is a newly discovered

class of secreted kinases that are capable of phosphorylating secreted

proteins and proteoglycans (54). FAM20A may play a more complex

role in gliomas, as correlations between FAM20A genes and low-grade

gliomas have been found (55). Combining the known literature and the

results of this study, it is suggested that endocrine gene FAM20A may

be closely related to NPC.

The two key miRNAs have been reported in the contribution of

other cancer types. For example, in esophageal squamous cell

carcinoma (ESCA), hsa-miR-142-3p was identified as a prognostic

biomarker (56). Non-small cell lung cancer (NSCLC) cells could be

promoted by overexpression of miR-142-3p via interfering TGFbR1
expression (57). However, Dong et al. revealed that miR-142-3p

suppressed the growth of human cervical cancer cells by attenuating

HMGB1 expression levels (58). Moreover, Sharma et al. excavated that

miR-142-3p functioned as a tumor-suppressive miRNA through

modulating the expression of HMGA1, A2, B1, and B3 in human

cervical cancer (59). miR-142-3p in different cancer types showed a

discord in expression that miR-142-3p was suggested to play

complicated roles (both promotive and suppressive) by interacting

with specific pathways and genes in different cancers. In our study, the

miR-142-3p level was significantly decreased in NPC samples,

implying that high-expressed miR-142-3p may facilitate the

progression of NPC.

The role of hsa-miR-93 has also been uncovered in different

cancer types. For instance, a miRNA microarray result showed that

miR-93 was downregulated in human colon cancer stem cells and

overexpressing miR-93 strikingly inhibited cell proliferation and

colony formation (60). In triple-negative breast cancer cells, cell

migratory capability and invasive potential could be weakened by

overexpression of mature miR-93-5p possibly by targeting WNK1

(61). In uterine cancer, the high miRNA-93 expression group had

an evidently higher survival rate than the low miRNA-93 expression
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group (62). The results of the above studies were accordant with our

study that miRNA-93 expression was elevated in the NPC group

compared with the normal group.

To clarify the potential mechanisms of the two miRNAs in

NPC, their potential target genes (mRNAs) were predicted by

utilizing 12 different tools to build ceRNA networks. As a result,

we confirmed 39 target genes of miR-142-3p and 86 target genes of

miR-93. KEGG analysis revealed that these target genes were

significantly involved in autophagy and mitophagy. Autophagy

occurs under stressful situations such as the presence of abnormal

proteins and nutrient deprivation, which degrades cellular proteins

and organelles to provide precursors for recycling (63). Some

clinical trials have presented that inhibiting autophagy has

feasible benefits in multiple cancer types such as glioblastoma,

melanoma, and pancreatic cancer (64). Autophagy and

mitophagy are demonstrated to contribute to the reprogramming

of cancer metabolism that is a major challenge for anticancer

therapy (65). Therefore, we supposed that maybe one of the

mechanisms of miR-142-3p and miR-93 in NPC development

was their participation in autophagy and mitophagy process

responsible for cancer metabolism.

In order to distinguish key target genes of the two miRNAs, we

applied random sampling and univariate Cox regression on 125

potential target genes. As a consequence, we confirmed five target

genes that had prognostic effects on NPC, namely, E2F1, KCNJ8,

SUCO, HECTD1, and KIF23, where SUCO and HECTD1 are the

targets of miR-142-3p and E2F1, KCNJ8, and KIF23 are the targets of

miR-93. E2F1 has been widely reported to regulate cell cycle and cell

death and has a significant role in multiple cancer types. E2F1 target

pathways are considered as important targets for cancer treatment (66).

Limited studies of cancer have been found related to the other four

genes. Based on these five target genes, we further established a

prognostic model. The five-gene prognostic model manifested

substantial performance in predicting 1-, 2-, and 3-year survival with

AUCs of 0.87, 0.81, and 0.79 respectively. According to the model,

high-risk and low-risk groups were defined with disparate prognosis.

We further investigated the differences of the tumor

microenvironment and functional pathways between two risk

groups for excavating the biological influence of the five target

genes in NPC. Two risk groups had distinct immune cell

infiltration. Anticancer immune cells, for instance, activated B

cells, NK cells, dendritic cells, and CD8 T cells, were evidently

higher in the low-risk group compared with the high-risk group,

which led to the stronger anticancer response and clearance of

cancer cells. The high-risk group showed both higher innate and

adaptive immune response than the low-risk group. Analysis of

biological pathways unveiled that the low-risk group displayed

higher activation of immune-related pathways, for instance, IL2-

STAT5 signaling, interferon alpha response, interferon gamma

response, IL6-JAK-STAT3 signaling, inflammation response, and

complement. Importantly, DNA repair pathways, cell cycle-related

pathways, and apoptosis were also more enriched in the low-risk

group, supporting that the two key miRNAs may have an

interaction with these target genes. However, the specific

association between the miRNAs and five target genes should be

further validated in future experiments.
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The different proportion of tumor-infiltrating immune cells has

a profound effect on both cancer prognosis and immunotherapy

(67). SubMap analysis predicted that the low-risk group was more

sensitive to ICB therapy than the high-risk group, which may result

from the higher expression of critical immune checkpoints such as

CTLA4, IDO1, LAG3, and PDCD1 (PD-1) in the low-risk group.

Anti-PD-1/PD-L1 therapy has shown some favorable outcomes in

clinical trials of NPC (68). Our five-gene model can help clinicians

to better select the patients sensitive to ICB therapy and raise the

efficiency of immunotherapy.
Conclusions

In conclusion, this study identified two key miRNAs (miR-142-

3p and miR-93) and predicted their potential key target genes. MiR-

142-3p and miR-93 contributed to NPC survival possibly through

regulating autophagy pathways. In addition, we confirmed five

prognostic target genes (E2F1, KCNJ8, SUCO, HECTD1, and

KIF23) and constructed a five-gene prognostic model. The model

was effective to predicting NPC prognosis and could provide a

guidance for personalized immunotherapy in NPC patients.
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