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with therapeutic implications
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Disruption of iron homeostasis plays a negative role in follicle development. The

dynamic changes in follicle growth are dependent on Hippo/YAP signaling and

mechanical forces. However, little is known about the liaison between iron

overload and the Hippo/YAP signalling pathway in term of folliculogenesis.

Here, based on the available evidence, we established a hypothesized model

linking excessive iron, extracellular matrix (ECM), transforming growth factor-b
(TGF-b) and Hippo/Yes-associated protein (YAP) signal regarding follicle

development. Hypothetically, the TGF-b signal and iron overload may play a

synergistic role in ECM production via YAP. We speculate that the dynamic

homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian

reserve loss and may enhance the sensitivity of follicles to accumulated iron.

Hence, therapeutic interventions targeting iron metabolism disorders, and

Hippo/YAP signal may alter the consequences of the impaired developmental

process based on our hypothesis, which provides potential targets and

inspiration for further drug discovery and development applied to

clinical treatment.

KEYWORDS

follicle development, iron overload, ferroptosis, extracellular matrix (ECM), Hippo/
YAP pathway
Introduction

The regulation of iron homeostasis is particularly indispensable for maintaining

dynamic reciprocity of cellular biological redox (1). Disrupted iron metabolism triggers

iron overload, which acts as a catalyst for redox reactions, leading to the accumulation of

lipid peroxides that induce cytotoxicity (2, 3). Follicle development expresses rapid cell

proliferation and increased steroid generation, which is essential for iron demands (4).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1174817/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1174817/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1174817/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1174817/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1174817/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1174817&domain=pdf&date_stamp=2023-05-08
mailto:lsy6592@163.com
mailto:dujing42@126.com
https://doi.org/10.3389/fendo.2023.1174817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1174817
https://www.frontiersin.org/journals/endocrinology


Xia et al. 10.3389/fendo.2023.1174817
Conversely, iron overload results in a loss of antioxidant defenses,

which affects follicle development (5).

Primordial follicle pools are limited and mostly in a dormant

state (6, 7). The development process cannot be reversed once

primordial follicles are properly activated; this plays a decisive role

in maintaining female reproductive life span (8–11). Follicle

development goes through different stages, which involves a series

of complex processes. Extracellular matrix (ECM), an essential

component of the ovarian microenvironment (12) governed by

the TGF-b pathway (13) and iron metabolism (14), can dynamically

regulate follicle assembly, activation, and dormancy (15, 16). Iron

overload in the follicular fluid of patients with endometriosis leads

to impaired oocyte maturation, possibly because granulosa cells

with ferroptosis releasing exosomes that inhibit oocyte development

(17). Mice with ovarian endometriosis showed significant fibrosis in

the ovary, accompanied by increased iron accumulation, resulting

in follicular oxidative stress and a dramatically decrease in litter size

(18). As an upstream effector, ECM controls the dynamics of the

Hippo pathway (19), this is derived from the appreciation of

mechanical operations that interfere with ovarian Hippo signal

transduction and promote follicle growth (20). In reproductive

diseases affecting follicle development such as premature ovarian

insufficiency (POI), Yes-associated protein (YAP, also known as

YAP1), a key effector of the Hippo pathway, has been reported as a

susceptibility gene of it (21, 22). The interactive mode between the

Hippo pathway and the TGF-b signal is crucial for follicle

development events (20, 23, 24). Therefore, it is highly likely that

crosstalk connecting iron metabolism and the two pathways

regulates follicle fate. However, a body of evidence merely

concentrates on how iron overload induces intracellular oxidative

stress. This review explores novel potential therapeutic targets with

clinical significance and application value in improving female

fertility by deducing a hypothetical mechanism linking excessive

iron with the ECM-mediated Hippo pathway in terms of follicle

maturation and development.
Method

We used multiple strategies to identify major research publications

written in English before July 2022 regarding iron metabolism,

extracellular matrix, Hippo/YAP pathway, and follicle development.

Under the premise of ensuring the preciseness of this study, we have

conducted extensive screening on PubMed and/or Google Scholar

using the following keywords alone or in combination: iron, iron

overload, ferroptosis, follicles, extracellular matrix (ECM), actin,

collagen, fibronectin, mechanical transduction, mechanical stress,

Hippo pathway, Transforming growth factor-b (TGF-b), SMAD,

BMP, Hepcidin, Fibrosis, premature ovarian insufficiency (POI),

drug therapy, coenzyme Q10, resveratrol, melatonin, etc. We also

searched the bibliography for other related articles. Overall, we

reviewed most of the relevant articles and included them

appropriately. Figures were generated via www.biorender.com
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Mechanism of iron overload
and ferroptosis

Ferroptosis is mediated by intracellular iron overload (25). As a new

type of iron-dependent cell death, it is characterized by mitochondrial

collapse, the compression of membrane contents, and the accumulation

of lipid peroxidation (26, 27). Exposure to excess iron, or polyunsaturated

fatty acids (PUFAs) such as arachidonic acid and adrenal acid that

activate membrane remodeling enzymes such as acyl-CoA synthase long

chain family 4 (ACSL4), which is involved in catalyzing the acetylation of

long-chain PUFAs to produce lipid peroxides esterified by interaction

withmembrane phospholipids (27–29). Ferroptosis, therefore, is strongly

driven by ACSL4 (30). Transferrin receptor (TFRC) is a type II

transmembrane receptor responsible for the uptake of cellular iron

through receptor-mediated endocytosis (31). Dysfunction of iron

uptake, transport, and storage, a major contributor to ferroptosis

sensitivity, results from over-active TFRC mediating the internalization

of iron load (32–34). TFRC knockdown by the lentivirus system inhibits

erastin-induced ferroptosis (26). Similarly, suppressed TFRC reduces the

risk of ferroptosis induced by amino acid/cysteine (35). In addition,

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

(NOXs), including NOX1, NOX2, NOX3, and NOX4, produces

oxidative radicals and is the main source of the intracellular lipid

reactive oxygen species (ROS) (36). Increased ROS levels lead to the

accumulation of lipid peroxidation and ferroptosis (37). The antioxidant

glutathione (GSH) is a powerful scavenger of lipid peroxidation products

and acts as a cofactor of glutathione peroxidase 4 (GPX4) to restrain the

progress of ferroptosis (37). One of the main mechanisms of ferroptosis

may be triggered by impaired GSH metabolism (38). High

concentrations of homocysteine were reported to induce GPX4

methylation leading to oxidative stress and ferroptosis by promoting

methylase expression (39).
Negative role of iron overload
in follicle development

Numerous research focus on the correlation between iron overload

and follicle development confirmed in a variety of experimental

models. Iron accumulation and ferroptosis may occur in the early

stage of follicle growth (40). Direct evidence comes from Hu et al. Via

establishing an iron overload model induced by ferric ammonium

citrate (FAC), the impaired quality of porcine oocytes was observed (5).

Li et al. (41) found that transferrin was significantly reduced with

increased iron concentration (P <0.05) in follicle fluid samples of

advanced endometriosis. Direct negative effects on mouse oocytes with

in vitro maturation were determined (41). Decreased oocyte quality,

impaired ovarian reserve, and reduced ability of embryonic

development can be induced by excessive intracellular ROS

accumulation (42–46). In women with thalassemia, iron overload has

a toxic effect on the anterior pituitary, leading to hypogonadotropic

hypogonadism, low gonadotropin secretion, reduced antral follicle

count, and fertility ability (47, 48).
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Mechanism of iron overload
occurrence in follicle development-
related diseases

Abnormal follicle development is the main phenotype of the

onset of POI and PCOS. Women with POI lose ovarian activity and

develop endocrine disturbances before the age of 40 (49). Iatrogenic

factors such as chemotherapy have toxic effects on the reproductive

system of young women (50). The main pathogenic mechanism

may be through inducing oocyte apoptosis or destroying granulosa

cell function, leading to primordial follicle loss, increase in atretic

follicle and ovarian tissue fibrosis (51, 52). Accumulation of iron

and lipid peroxide are involved in the pathological progress of

fibrosis diseases (53, 54). Du et al. reported the association between

ferroptosis and POI; this is mediated by cisplatin (55). The process

involves lipid peroxidation promoting ferroptosis in granulosa cells,

thus causing follicle development disorders and ovarian tissue

fibrosis, ultimately perturbing ovarian function and fertility (55).

Wang et al. (22)reported that BNC1 gene deficiency triggers oocyte

ferroptosis via the NF2-YAP pathway and the pharmacologic

inhibition of YAP signaling or ferroptosis significantly rescues

POI. BNC1 is essential for maintaining mitochondrial function

and oocyte lipid metabolism, while deficiency of BNC1 triggers

iron-dependent POI. Perturbed expression of NF2 in BNC1 mutant

mice results in dysregulation of oocyte redox homeostasis.

Transcriptome data of Wang et al. showed that ferroptosis was

involved in BNC1-induced POI. This uncover a pathologic

mechanism of POI based on ferroptosis via YAP pathway.

Moreover, the clinical symptoms of polycystic ovary syndrome

(PCOS) include oligomenorrhea, amenorrhea, hirsutism, increased

risk of type 2 diabetes mellitus and insulin resistance (56, 57).

Increased ROS production and decreased antioxidant capacity were

observed in ovarian granulosa cells of PCOS patients; this is the

cause of miscarriage and infertility in PCOS women (58, 59). PCOS-

induced rats result in the activation of ferroptosis cascade and

mitochondrial dysfunction in both uterus and placenta, which is

associated with the triggering of GPX4/glutathione regulated lipid

peroxidation and mitochondria-mediated ferroptosis (60). Both

cross-sectional case-control studies (61), and meta-analysis (62)

revealed high serum levels of ferritin, iron concentration, and

hepcidin (an important regulator of iron homeostasis) in PCOS

patients. As PCOS is associated with insulin resistance (63),

disrupted iron metabolism may involve endocrine and metabolic

disturbances rather than defects in hepcidin production. Therefore,

it is not surprising that iron overload is associated with follicle

dysplasia in PCOS patients. In sum, iron overload is tightly related

to follicle development disorder characterized by ferroptosis, lipid

peroxidation and oxidative stress.
Hippo/YAP pathway regulates
follicle development

Hippo pathway controls cell fate and organ growth through

kinase complexes with evolutionarily conserved profiles (19).
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Kinase cascades are formed by mammalian sterile-20 like serine/

threonine kinase 1/2 (MST 1/2), Salvador (SAV), and large tumor

suppressor 1/2 (LATS 1/2). Downstream core effector YAP and

transcriptional co-activator PDZ-binding motif (TAZ) are

suppressed by the phosphorylation of these kinase complexes.

Phosphorylated YAP/TAZ complex resulting in its cytoplasmic

ubiquitin and degradation leads to nuclear transcription failure

(64). In contrast, disrupted Hippo signaling urge unphosphorylated

YAP/TAZ locates in the nucleus and induces expression of CCN

family growth factors and baculoviral inhibitors of apoptosis repeat-

containing (BIRC) apoptosis inhibitors by primarily binding to

transcriptional enhanced associate domain (TEAD) transcription

factors, to achieve the purpose of follicle development (20).

Evidence supports the key value of Hippo signaling pathway in

follicle activation and growth. MST1/2, LATS1/2, and YAP/TAZ are

expressed at different stages of follicle development in mouse and

human ovaries (65–68). In vitro research reported that LATS1,

during follicle development, can directly phosphorylate forkhead L2

(FOXL2), a vital regulator expressed in granulosa cells participating

in follicle maturation, thereby controlling its transcriptional activity

(69). Reduced primordial and activated follicles were observed in

Lats1 mutant (deletion) mouse ovaries, indicating its significance in

maintaining ovarian reserve (70). YAP/TAZ signaling pathway is

active in vivo (71), and supports proper follicle growth (72). Impaired

follicle development and oocyte maturation were observed in Foxl2-

driven Yap-deficient mice (73). Nagashima et al. observed abnormal

follicle development (reduced preantral follicle number) in

connective tissue growth factor (CTGF, a member of the CCN

family) ovarian and uterine conditional knockout (cKO) mice (74).

Additionally, the YAP gene is highly expressed in ovaries of PCOS

women (75). This may be due to the increased YAP mRNA and

protein levels caused by hypomethylation of the YAP promoter in

PCOS patients (76). This is consistent with the hypothesis proposed

by Dupont et al., that cell fate is induced by the rigid ECM where

YAP/TAZ is active, and therefore YAP/TAZ function is required

(77). In sum, the tangled Hippo web is an indispensable factor in

follicle development obstruction.
The upstream signal ECM
governs follicle development
via Hippo/YAP pathway

ECM is an extracellular network composed of macromolecules,

which is related to the biomechanical support—the exchange of

extracellular signals governing folliculogenesis and appropriate

oocyte maturation (78). Disturbance of ECM homeostasis may

lead to interference of biochemical pathways responsible for

connecting cumulus-oocyte complex (COC), leading to impaired

follicle development (79). Dynamic interactions exist between the

ovarian biomechanics and microenvironment. Deposition and

remodeling of matrix components are associated with early

follicle activation (80). Primordial follicles are compressed and are

in a state of intensive mechanical stress resulting from surrounding

rigid ECM secreted by granulosa cells (15). The stiff physical
frontiersin.org
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environment—collagen-rich ovarian cortex is believed to be

essential for maintaining follicle dormancy (64). Conversely,

primordial follicles are activated on a soft matrix caused by ECM-

degrading enzymes (15), which is consistent with the principle of

ovarian fragmentation to improve rigid ovarian environments (20).

A randomized controlled trial (RCT) assigned 34 women with poor

ovarian response to receiving ovarian fragmentation or with no

intervention. Although no significant difference was found in IVF

outcomes, follicle activation was observed in patients undergoing

ovarian fragmentation surgery (81). The Hippo pathway is

extracellularly regulated by mechanical forces generated by ECM

upstream signal (19), which is transduced by cytoplasmic actin (82).

As a multifunctional protein, actin forms microfilaments to regulate

follicle activation and development (65, 83–85). Once the globular

actin (G-actin) polymerizes in stress fibers to form the filamentous

actin (F-actin), the Hippo signaling pathway was disrupted (86).

Cheng et al. successfully stimulated follicle growth in mice using

jasplakinolide (JASP) or sphingosine-1-phosphate (S1P), which

promoted actin polymerization and increased the F-actin/G-actin

ratio, as well as subsequently activated YAP nuclear accumulation

following the increase of CCN2 transcriptional level (83). Similarly,

S1P addition to the culture medium reduced follicle atresia and

improved the quality of primordial follicle (87–89). Hence, as an

extracellular mechanical signal, ECM stiffness effectively regulates

YAP/TAZ nuclear shuttling via dynamically intracellular actin

dynamics, which controls the expression of CCN growth factors

and BIRC apoptosis inhibitors in the nucleus, thus determining

follicle fate. These findings pave the way for ECM protein levels to

be a possible therapeutic target for follicle dysplasia.
Iron-mediated ECM remodeling
and follicle development

In the presence of excessive ECM, reduced matrix elasticity and

rigid stiffness-induced mechanical stress are generated, thus interfering

with the normal cellular biological behavior (90, 91). Positive evidence

exhibits that within acceptable thresholds, iron regulates ECM

production, including the synthesis of collagen (14, 92) and elastin

(93). Higher intracellular iron levels may perturb the expression of

genes encoding ECM components (94), suggesting that iron levels

mediate matrix remodeling and degradation. Bunda et al. (93)

demonstrated that elastin production was positively promoted in the

range of 2-20mM iron concentration, yet reduced elastin output was

observed when concentration goes out of scope. This is confirmed in

the pathological mechanism of fibrosis. Several studies have reported

the effect of iron metabolism on fibrosis progress. As a pathological

phenomenon of chronic liver disease, liver fibrosis is characterized by

excessive deposition of ECMwith a typical observation of iron overload

(95). Liver iron concentration over 60µmol/g can lead to abnormal

function of hepatic stellate cell (HSC), and the threshold for

transformation from fibrosis to cirrhosis is over 250µmol/g (96). Zhu

et al. established a mouse model of liver fibrosis using carbon
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tetrachloride, suggesting a link between ferroptosis and liver fibrosis

in HSC (97). Yuan et al. showed that triggering HSC ferroptosis

alleviates liver damage and fibrosis since HSC is a major contributor

to generating fibrosis (98). As a key signal mediating fibrosis, studies

showed that iron increases the expression of TGF-b and collagen genes
in HSC, thereby inducing fibrosis development (99, 100). Furthermore,

during folliculogenesis, integrin mechanoreceptors on the plasma

membrane of granulosa cells sense collagen concentration in cortical

ECM and regulate the mechanoconduction cascade of Hippo signaling

pathway according to the degree of rigidity (20, 85). Concentrations of

other ECM components in follicular fluid, such as laminin and

fibronectin, were positively correlated with oocyte competence in

preovulation events (101). Oocytes synthesize bone morphogenetic

protein 15 (BMP-15) and growth differentiation factor 9 (GDF9)

belonging to the transforming growth factor b (TGFb) superfamily,

which seek for their respective receptors on granulosa cells to produce a

soft visco-elastic ECM via SMAD2/3 or SMAD1/5/8 signalling, thus

biomechanically paving the way for COC expansion (102, 103).

Fibronectin levels in human follicle fluid are closely related to follicle

size and oocyte maturation, indicating its significance in the process of

folliculogenesis (104). Alahari et al. reported that under the condition

of preeclampsia, iron regulates fibronectin assembly in primary

mesenchymal stem cells, and abnormal ECM deposition blocks the

migration of HTR-8/SVneo cells (105). In the course of mouse

ovulation, the induction of granulosa cell luteinization and cumulus

expansion depends on the fibronectin-integrin pathway (106). As a

core component mediating the interaction between cells and ECM, the

integrin family is crucial in delivering extracellular signal—ECM into

cells (107). Cell detaching from ECM regards as a trigger of ferroptosis

(108–110).a6b4 integrin has been reported to protect cancer cells from
ferroptosis induced by erastin (a ferroptosis inducer) and ECM

detachment, possibly due to inhibition of ACSL4 expression by a6b4
(108). Hence, iron overload produces abnormal ECM structures that

lead to decreased cell proliferation, adhesion, and motility. The

consequence of ECM overproduction is most likely a synergistic

action launched by iron overload and TGF-b signal activation.

However, whether iron overload is an independent factor

contributing to increased ECM output, especially during follicle

development, remains to be further investigated.
The association of Hippo/YAP with
TGF-b signaling mediates ECM
remodeling and has potential
implications for follicle development
referring iron metabolism

Although lacking studies on follicle development models,

correlations between iron metabolism and YAP have been reported

in other tissues. YAP is a major downstream effector that mediates

oxidative stress or ROS initiation, and phosphorylation of YAP

induced by 10mM emodin suppressed ferroptosis and oxidative
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liver injury (111). YAP is a transcriptional stimulator of ferroptosis-

activating genes ACSL4 and TFRC (112); it can directly bind to the

TFRC promoter region and target TFRC expression to regulate iron

levels (113). TFRC has been reported to be expressed in oocytes (114,

115) and is regulated by estrogen (116). Elevated TFRC mRNA

expression was found in patients with endometriosis with reduced

oocyte retrieval (117), suggesting adverse outcomes in follicles

exposed to a potentially toxic iron-related environment. Therefore,

we speculated that the activation of TFRC induced by active YAP

might be one of the causes of follicles with iron overload.

Further, the regulatory effect of TAZ on NOXs has been

demonstrated, yet the consequences are still controversial. In renal

cell carcinoma, activated TAZ up-regulates NOX4 levels and

subsequently increases intracellular lipid ROS levels inducing

ferroptosis (118). Similarly, TAZ directly regulates the target gene

angiopoietin-like 4 (ANGPTL4) and causes ferroptosis in ovarian

cancer by activating NOX2 (119). However, a study on oxidative

damage of uterine decidua illustrates that TAZ acts as an antioxidant

role in restoring mitochondrial function by inhibiting NOX-stimulated

ROS production to improve oxidative damage in stromal cells (120).

NOXs appear to exert an effect on oocyte developmental stimulation.

In a study on oocyte senescence, the fact that reduced NOX4

expression was observed in women more than 40 years old (121).

Another study reported that FSH-induced oocyte maturation in vitro is

dependent on NOX-mediated ROS activation (122). Therefore, we

speculate that appropriate ROS level-mediated oocyte maturation is of

great significance, yet excessive ROS undoubtedly accelerates adverse

events induced by iron overload. However, evidence is still needed on

how TAZ regulates NOXs in follicle development.

Moreover, TGF-b superfamily is involved in a series of

biological events during folliculogenesis (123). Activated TGF-b
receptors directly phosphorylate SMAD proteins launching nuclear

gene transcription (124). SMAD2/3 is normally activated by TGF-b
receptors (125). SMAD1/5/8, on the other hand, is induced by

BMPs ligand, which mainly mediates hepcidin expression (126).

SMAD4 forms a complex with phosphorylated SMAD2/3 or

SMAD1/5/8, which translocates to the nucleus and binds to

promoters triggering the transcription of numerous genes (124,

126). TGF-b is an effective component that enhances the

production of ECM proteins and plays a key role in matrix

remodeling (127). TGF-b/SMAD2/3 activation is a typical fibrosis

pathway that mediates ECM deposition (13, 127). Further, crosstalk

between TGF-b and Hippo signaling plays a synergistic role in

transcriptional regulation (24). YAP and TAZ bind to SMAD

proteins and are involved in the regulation of BMP or TGF-b
signaling through different mechanisms (24). The two WW

domains of YAP effectively bind to the PPxY motif in SMAD1

(128). In response to TGF-b signaling, TAZ and YAP are regulated

by heteromeric SMAD2/3/4 complexes and determine their

intracellular sublocalization (125). TGF-b and Hippo signals

converge on transcriptional regulation of common target genes,

for instance, CTGF, a component of surrounding ECM production

that facilitates follicle assembly and maturation (129, 130).

TGF-b and Hippo pathway, therefore, are jointly aligned in the

light of determining follicle fate through ECM remodelling, and

may regard as key factors contributing to iron homeostasis.
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The hypothetical model

We emphasize that dynamic changes in terms of iron

metabolism, ECM production, Hippo, and TGF-b/SMAD signaling

pathways are involved in follicle development. The indisputable fact is

that negative effort is made by excessive iron on follicle development.

The activation of the TGF-b signal was shown to be caused by excess

iron (100), and activated TGF-b up-regulates TFRC through the

Hippo signaling pathway, enhancing intracellular accumulation of

unstable iron and promoting fibrosis transition (131). Therefore, we

proposed that overloaded iron and TGF-b signal have a synergistic

effect through positive feedback to jointly stimulate the production of

follicle-surrounding ECM, which is secreted by granulosa cells (23,

132). Increase in YAP/TAZ expression and its nuclear localization has

been demonstrated and is regulated by TGF-b in patients with fibrosis
(131, 133, 134). Through the binding of YAP/TAZ and SMADs,

crosstalk occurs, promoting YAP/TAZ nuclear translocation under

the activation of SMADs (125). ECM production is likely to be

induced to increase, suggesting a possible scenario where matrix

remodeling and mechanical stress occurr. The rigid ovarian cortex is

wide open to compresse follicles; this is involved in the formation of

actin stress fiber and integrin-mediated ECM-cell interactions. These

changes increase mechanical forces and matrix stiffness on the

periphery of follicles. Mechanical transduction also participates in

nuclear dynamics in the regulation of YAP (135). The stress fibers

generated on the stiff matrix deliver mechanical forces to the nucleus,

followed by the flattened nuclear shape (15). Reduced mechanical

limitations in nuclear pores appears to increase the YAP nuclear

accumulation. By comparison, mechanical forces hardly transduced

to the nucleus on the soft matrix, where nuclear YAP shuttling from

cytoplasmic import via nucleus pore is equalized. The temporarily

activated YAP/TAZ ultimately may not combat the rigid ovarian

environment on account of positive cooperativity of TGF-b signal and
iron overload, resulting in decreased follicle developmental

potential (Figure 1).

The Hippo/YAP pathway, TGF-b signal and iron metabolism are

illustrated to regulate follicle growth (4, 5, 20, 23, 65), and TFRC is

proved to be expressed in follicles and plays a vital role in follicle

developmental trajectory (114, 116, 136). Therefore, from the

perspective of intracellular environment, we hypothesize that a

regulatory mechanism of iron metabolism is expected in follicles.

YAP regulates iron metabolism by targeting TFRC (113), we

proposed that TFRC mediate extracellular iron transport into the

follicle. Increased cytoplasmic free iron concentration causes NOXs-

induced Fenton chemistry, which stimulated the overproduction of

intracellular ROS (137, 138). YAP/TAZ complex traveling into the

nucleus, combine with TEADs transcription factor to promote the

expression of ferroptosis-related genes such as TFRC and ACSL4

(131), thus being supposed to accelerate follicle lipid peroxidation and

the progression of iron overload. In contrast, the BMP6-mediated

SMAD1/5/8-SMAD4 signal enables excessive free iron to be stored

through hepcidin (139, 140), thereby being expected to weaken the

development of the Fenton reaction in follicles. Restriction of YAP/

TAZ nuclear accumulation suppresses follicle development, we

assume that follicles may build up resistant to iron overload-

induced cytotoxicity. On the other side, Hippo signaling pathway
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perturbations and YAP/TAZ nuclear translocation/activation triggers

follicle development; however, the susceptibility to iron excessive is

supposed to be increased. Therefore, we theorize that by virtue of

permissive YAP, follicle over-activation and the cytotoxicity of follicle

affected by susceptibility to excess iron synergistically lead to the loss

of ovarian reserve (Figure 2).
Therapeutic implications
and strategies

The drugs or compounds highlighted here are required for

corresponding to the potential targets we have listed above if clinical
Frontiers in Endocrinology 06
progress needs to be achieved. In the iron metabolism, ferrostatin-1

acts as an effective component to resist ferroptosis (141, 142), and

can lower TFRC levels (143). It has been shown to protect neural

tissue (144–146), heart (147–149), liver (53), lung (150), colon (151)

and angiotensin II-induced inflammation (145). To study the

mechanism of ovarian granulosa cell injury in patients with

PCOS, Shi et al. (152) confirmed that ferrostatin-1 has a

protective effect on ovarian granulosa cells by regulating

methylation mode through the homocysteine-induced KGN cell

injury model. Similarly, liproxstatin-1, another ferroptosis inhibitor

(141), has been reported to delay the enucleation of rat embryonic

erythrocytes and hinder their maturation (143), possibly due to the

high iron requirement of erythrocytes to maintain hemoglobin
FIGURE 2

Hypothetical molecular signal model on regulatory iron metabolism of the intra- and extra-oocyte. Fe, iron; TGF-b, transforming growth factor-b;
ECM, extracellular matrix; YAP, Yes-associated protein. TAZ, transcriptional co-activator PDZ-binding motif; TEADs, transcriptionally enhanced
associate domains; BMP6, bone morphogenetic protein 6.
FIGURE 1

Hypothetical model of follicle developmental regulation. As the main effector, YAP responds to iron, ECM, Hippo, and TGF-b signals, thereby
determining the follicle fate. Fe, iron; TGF-b, transforming growth factor-b; ECM, extracellular matrix; YAP, Yes-associated protein.
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synthesis (153). In addition, iron chelating agents bind free iron to

increase iron storage and thus lower intracellular iron levels. Yun

et al. reported that the combined addition of GSH and iron-

chelating agent can reduce ROS levels and the death of Chinese

hamster ovary cells (154). The effect of hepcidin against ferroptosis

is similar to that of ferrostatin-1, it can inhibit ferroptosis induced

by acute respiratory distress syndrome (ARDS) via reducing iron

uptake (155). Elevated serum hepcidin levels were observed in

infertile women (156), as well as the trend of increased BNC1

deficiency in POI (22), suggesting a stress response to the regulation

of iron metabolism. Therefore, how to fine-regulate endogenous

hepcidin levels seem to be a vital target for the treatment of follicle

development disorders caused by disrupted iron metabolism in POI

patients. As the main ligand controlling the expression of hepcidin,

evidence showed that long-term exogenous administration of

BMP6 promoted the expression of endogenous hepcidin to

improve the serum hepcidin deficiency and biochemical iron

overload in Hfe-/- induced hemochromatosis mice (157).

TMPRSS6, a type 2 transmembrane serine protease produced by

the liver, negatively regulates the expression of hepcidin through

BMP/SMAD pathway and participates in the regulation of iron

homeostasis (158). Lipid nanoparticles containing TMPRSS6

siRNA increased the expression of hepcidin in the liver and

alleviate iron overload in mice with hereditary hemochromatosis

and b thalassemia (159).

Either controlling ECM overproduction or degrading the rigid

ovarian cortex is endowed with clinical significance to solve follicle

developmental obstruction. The current mainstream approach is to

stimulate follicles through mechanical manipulation combined with

in vitro activation therapy. POI ovarian cortex is surgically

fragmented followed by autologous transplant, or the follicle

development can be partially restored by in vitro culture in the

presence of protein kinase B (AKT) stimulator before artificial

transplant (65). These disrupted procedures, together with

activation in vitro, promote actin polymerization and Hippo

signal perturbation, followed by follicle growth (65, 81, 83). this is

applied for rendering the successful pregnancy to infertile patients

(160, 161). Given the presence of preoperative anxiety and fear of

anesthesia in patients (162, 163), seeking for new compounds or

drugs as an adjunct or even alternative to surgical therapies needs to

be addressed. As mentioned above, treatment of mouse ovarian or

human granulosa cells with agents that stimulate actin

polymerization, such as JASP and/or S1P, increases nuclear YAP

localization and downstream CCN growth factor expression, as well

as activates follicle growth. In addition, YAP as a susceptibility gene

may serve as a reliable target for screening PCOS (21). Since YAP/

TAZ nuclear translocation can promote tumor development,

dysregulation of YAP/TAZ signal transduction has been an

effective drug target for inducing tumor cell apoptosis (164, 165).

However, it remains to be seen whether direct YAP/TAZ regulators

can be used in the reproductive field. Widely expressed YAP/TAZ

requires specific drug-delivering carriers to gonads tissue following

exerting its influence. Although YAP/TAZ nuclear translocation

promotes follicle activation, excessive follicle activation due to high

consumption of this complex may result in irreversible ovarian
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reserve failure, including POI disease. Therefore, how to delicately

balance nucleocytoplasmic shuttling of YAP/TAZ is still an

intractable issue on governing follicle development and

dormancy. More evidence is needed on ameliorating the rigid

ovarian microenvironment to optimize infertile therapy.

The disorder of iron metabolism in follicles is inseparable from

the excessive production of oxidative stress products—cytoplasmic

ROS, which can be weakened or reversed via being supplemented

with antioxidants. Coenzyme Q10 (CoQ10) is an important lipid-

soluble antioxidant in the human body (166). Doll et al. (167),

reported that the inhibition of ferroptosis via ferroptosis suppressor

protein 1 (FSP1) is mediated by CoQ10, which make up for GPX4

deficiency. FSP1 made NAD(P)H catalyze the regeneration of

CoQ10. The FSP1-CoQ10-NAD(P)H pathway synergistically

works with GPX4 and glutathione to inhibit ferroptosis.

Administration of CoQ10 significantly increases the oocyte

maturation rate in women aged 38-46 years, with reduced the

oocyte aneuploidy rate and chromosome aneuploidy (168).

Similarly, a randomized controlled study involving 186 subjects

with reduced ovarian reserve demonstrated that CoQ10

supplementation during IVF cycles improved ovarian response,

follicles count, and embryo quality (169). Resveratrol (RSV),

another natural non-flavonoid polyphenol compound, can

improve oocyte chromosome arrangement and spindle

morphology, and have a positive effect on oocyte quality and

quantity, as well as increase ovarian reserve to prolong ovarian

lifespan (170). The recovery effect of RSV on ferroptosis has been

widely established (171–174). RSV significantly restored the

consumption of exogenous iron on follicle-stimulating hormone

(FSH) and luteinizing hormone (LH), and decreased

malondialdehyde (MDA, a product of membrane lipid

peroxidation positively associated with ferroptosis) content (175).

Additionally, it can effectively reduce oxidative stress and apoptosis

of granulosa cells and oocytes in rats (176). In the same study,

serum MDA was reduced in the resveratrol treatment group (176),

indicating its significance in inhibiting iron overload in oocytes.

Moreover, melatonin, as a free radical scavenger and broad-

spectrum antioxidant produced by the pineal gland, serves an

indispensable role in oocyte maturation, embryo development,

and luteinization of granulosa cells (177). Similarly, role of

melatonin in resisting iron overload has been extensively studied

(178–181). Melatonin treatment significantly improves oocyte

quality during IVF cycles, possibly by reducing ROS in oocytes

and increasing GSH levels, as well as upregulating the expression of

key genes being conducive to follicle developmental potentials, such

as BMP-15, GDF-9, and GPX4, with down-regulating the

expression of caspase-3 and other apoptotic genes (182).

In short, plenty of research on the mechanism of follicle

development disorder remains in animal experiments. Iron

overload and related molecular signals can be targeted

therapeutically through different mechanisms (22) in POI.

Although relevant evidence has yet to be investigated, multiple

targets may be regulated via rational drug combination; this

provides novel enlightenment for the subsequent drug

development process.
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Summary and outlook

The present review highlights the significance of iron

metabolism in follicle development and theorizes the underlying

molecular mechanism that lead to follicle development disorders.

Clues to the interaction between the Hippo pathway and iron

overload sensitivity are integrated into follicle development events

mediated by external environmental stimuli (ECM dynamics). Our

hypothesis highlights that the combination of targeting TGF-b and

iron overload may play a synergistic role in ECM overloading

through the YAP/TAZ. In addition, we theorize a dynamic

follicular iron homeostasis interacting with YAP, whose

overactivation positively increases the risk of ovarian reserve loss

and presumably enhances the follicle sensitivity to excess iron.

However, the inferences are based on the existing evidence, and

follow-up requires persuasive experimental confirmation and

discussion. The mechanism of iron metabolic regulation and

related signal transduction pathways applying to follicle

development needs to be clarified. The corollary that hepcidin

signals in response to follicle growth deserve further investigation.

Blocking iron excess by various ferroptosis inhibitors or

antioxidants may interfere with the progress of follicle dysplasia

and may serve as an effective target for reducing adverse outcomes.

We believed that YAP is a highly likely target for regulation of iron

metabolism addressing ECM overproduction, which may

therapeutically provide new insight into follicle developmental

disorder. The role of iron in ECM deposition needs to be further

determined; this may contribute to developing an iron-related
Frontiers in Endocrinology 08
diagnosis, prognosis, and treatment strategies in terms of aberrant

follicle development.
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71. Bernabé BP, Woodruff T, Broadbelt LJ, Shea LD. Ligands, receptors, and
transcription factors that mediate inter-cellular and intra-cellular communication
during ovarian follicle development. Reprod Sci (Thousand Oaks Calif) (2020) 27
(2):690–703. doi: 10.1007/s43032-019-00075-8

72. Clark KL, George JW, Przygrodzka E, Plewes MR, Hua G, Wang C, et al. Hippo
signaling in the ovary: emerging roles in development, fertility, and disease. Endoc Rev
(2022) 43(6):1074–96. doi: 10.1210/endrev/bnac013

73. Lv X, He C, Huang C, Wang H, Hua G, Wang Z, et al. Timely expression and
activation of YAP1 in granulosa cells is essential for ovarian follicle development.
FASEB J (2019) 33(9):10049–64. doi: 10.1096/fj.201900179RR

74. Nagashima T, Kim J, Li Q, Lydon JP, DeMayo FJ, Lyons KM, et al. Connective
tissue growth factor is required for normal follicle development and ovulation. Mol
Endocrinol (Baltimore Md) (2011) 25(10):1740–59. doi: 10.1210/me.2011-1045

75. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, et al. Genome-wide association study
identifies eight new risk loci for polycystic ovary syndrome. Nat Genet (2012) 44
(9):1020–5. doi: 10.1038/ng.2384

76. Jiang LL, Xie JK, Cui JQ, Wei D, Yin BL, Zhang YN, et al. Promoter methylation
of yes-associated protein (YAP1) gene in polycystic ovary syndrome. Medicine (2017)
96(2):e5768. doi: 10.1097/MD.0000000000005768

77. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of
YAP/TAZ in mechanotransduction. Nature (2011) 474(7350):179–83. doi: 10.1038/
nature10137

78. Berkholtz CB, Shea LD, Woodruff TK. Extracellular matrix functions in follicle
maturation. Semin Reprod Med (2006) 24(4):262–9. doi: 10.1055/s-2006-948555

79. Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, et al.
Biomechanical forces and signals operating in the ovary during folliculogenesis and
their dysregulation: implications for fertility. Hum Reprod Update (2023) 29(1):1–23.
doi: 10.1093/humupd/dmac031

80. Ouni E, Bouzin C, Dolmans MM, Marbaix E, Pyr Dit Ruys S, Vertommen D,
et al. Spatiotemporal changes in mechanical matrisome components of the human
ovary from prepuberty to menopause. Hum Reprod (Oxford England) (2020) 35
(6):1391–410. doi: 10.1093/humrep/deaa100
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