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The role of cellular crosstalk
in the progression of
diabetic nephropathy
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Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General
Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
Diabetic nephropathy (DN) is one of the most common complications of

diabetes, and its main manifestations are progressive proteinuria and abnormal

renal function, which eventually develops end stage renal disease (ESRD). The

pathogenesis of DN is complex and involves many signaling pathways and

molecules, including metabolic disorders, genetic factors, oxidative stress,

inflammation, and microcirculatory abnormalities strategies. With the

development of medical experimental techniques, such as single-cell

transcriptome sequencing and single-cell proteomics, the pathological

alterations caused by kidney cell interactions have attracted more and more

attention. Here, we reviewed the characteristics and related mechanisms of

crosstalk among kidney cells podocytes, endothelial cells, mesangial cells,

pericytes, and immune cells during the development and progression of DN

and highlighted its potential therapeutic effects

KEYWORDS
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1 Introduction

Diabetic nephropathy (DN) is one of the most frequent and serious microvascular

complications of diabetes (1, 2). According to the World Health Organization, the

worldwide prevalence of diabetes was estimated to rise from 2.8% in 2000 to 4.4% in

2030. The number of people with diabetes would rise from 171 million to 366 million

during the three decades (3). It has been estimated that more than 40% of patients with

diabetes would develop chronic kidney disease (CKD), and eventually develop end stage

renal disease (ESRD) (4).

Mitochondrial dysfunction leads to microvascular dysfunction (5). Subsequently, the

crosstalk with mesangial cells and podocytes further promotes the development of DN (6).

Greka et al. also found that there is a close relationship between the decrease in the number

of podocytes and the changes in podocyte shape (mainly manifested as podocyte foot

process effacement). Podocytes surrounding the glomerular vascular wall, provide an
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anatomical location for crosstalk between podocytes and

endothelial cells. Studies have also found that endothelial cells

and podocytes of the filtration barrier can directly interact with

Glomerular Basement Membrane (GBM) in a hyperglycemic

environment, or regulate with mesangial cells through crosstalk to

promote the progression of DN (6).

Renal tubulointerstitial lesions also play a very important role in

the development of DN, for their ability to predict the prognosis of

renal disease (7). Renal tubulointerstitial injury appears in the early

stage of DN and precedes glomerular lesions (8). Interstitial fibrosis

in DN is closely related to the injury of renal tubular epithelial cells.

Tubular epithelial cells (TECs), the most important cellular

component of the renal interstitium, have the function of

reabsorption and excretion. Targeted inhibition of renal tubule

SGLT2 protects renal function in patients with DN (9). The

hyperglycemic and hypoxic environment of DN promotes renal

interstitial vascular endothelial cells and pericytes to differentiate

into fibroblasts. The dysfunction of endothelial cells aggravates

renal tubular epithelial cell apoptosis and tubular atrophy.

Damaged renal tubular epithelial cells further drive inflammatory

cells into the tubulointerstitial. Moreover, renal tubular cells can

interact with pericytes and infiltrating inflammatory cells,

participating in the progression of DN (10–12).

Therefore, the crosstalk among kidney cells and interaction with

immune cells play an important role in the occurrence and

progression of DN. Many reports have confirmed the molecular

mode of crosstalk, but there is a lack of systematic understanding.

This paper summarizes the molecular mechanism of the interaction

among different cells, hoping to provide new ideas for further

research on the pathogenesis of DN and drug development.
2 Materials and methods

A systematized narrative review was performed to identify the

crosstalk of DKD. This review uses the literature study. The

PubMed was searched to relevant articles. The keywords are

crosstalk, diabetic nephropathy, intercellular communication,

cellular crosstalk. A filter was placed to include only articles’

IF≥5. In addition, the reference lists of eligible studies were

hand searched.

The inclusion criteria were:
Fron
1. Primary literature. The references must be authentic,

complete, easy to search and verify, and avoid wrong

citations.

2. The article focuses on the study of diabetic nephropathy

caused by type 2 diabetes mellitus, especially the molecular

mechanisms among renal cells.

3. The references mainly concentrate on basic research and

pathogenesis of diabetic nephropathy.
The exclusion criteria were:
1. Secondary literature.
tiers in Endocrinology 02
2. The references only focus on the drug research and

treatment of diabetic nephropathy without considering

the underlying mechanism.

3. Only the articles of single gene sequencing or simple

experimental design were completed.
3 Result

3.1 Endothelial cell and podocyte

Podocytes and endothelial cells maintain capillary homeostasis

by crosstalk in the normal physiological process. In the pathological

condition of hyperglycemia, hemodynamic abnormality promotes

the injury of podocytes and endothelial cells. The activation of

intracellular signaling molecules leads to the secretion dysregulation

of vascular growth factors such as vascular endothelial growth

factor (VEGF) and TGF-b, which are involved in the regulation

of abnormal angiogenesis, and eventually albuminuria (13).

3.1.1 Vascular endothelial growth
factor: VEGF-A, B, C

The VEGF family mainly consists of three members. They are

polypeptides that belong to the cystine-knot super-family of

signaling proteins. A variety of subtypes are formed due to

different exon shears, which constitute the vascular endothelial

growth factor subtype family. Among them, VEGF-A plays a

major role in vasculogenesis (14), and is therefore considered as

the angiogenic factor. VEGF-A overexpression can cause

glomerulomegaly, mesangial proliferation, podocyte effacement

and lead to albuminuria (15). VEGF-B is a crucial factor in

promoting abnormal lipid metabolism (16). VEGF-B is related to

the promotion of lipid accumulation and lipotoxicity in podocyte.

VEGF-C can disrupt the glomerular filtration barrier (17). Vascular

endothelial growth factor C is involved in angiogenesis and

lymphogenesis. Some research showed that amelioration of

intrarenal inflammation and fibrosis is associated with attenuated

lymphatic proliferation in the kidney (18).

The VEGF signaling pathway is one of the most important

pathways involved in podocyte-endothelial cell interaction. In the

early stage of DN, the VEGF signaling pathway is activated in the

glomerulus, which leads to cell dysfunction and abnormal

angiogenesis, eventually promoting glomerular cell hypertrophy

and albuminuria (19).

In the kidney, VEGF-A is mainly expressed on glomerular

podocytes. VEGF R2 on the surface of endothelial cells is

phosphorylated after binding with VEGF and increases

intracellular calcium ion level through PI3K/Akt signaling

pathway. After binding with calmodulin enhances eNOS activity

and increases NO production (20–22). On the pathological

conditions of hyperglycemia, excessive production of VEGF-A

produced by podocytes can induce abnormal angiogenesis of

endothelial cells, leading to immature capillaries in the

glomerulus (14). Overactivation of VEGFR2 also increases the
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production of ROS, especially superoxide (O2-), aggravating

endothelial injury, and leading to the occurrence and progression

of the renal microvascular disease (23, 24). Increased expression

levels of VEGF-A in the blood lead to changes in GBM and a

decrease in the glycocalyx of endothelial cells (25), which further

promotes the increase of vascular permeability and causes leakage.

Although the activation of the VEGF/VEGFR signaling pathway in

the early stage of DN leads to the formation of new blood vessels

and glomerular injury, excessive loss of podocytes in the late stage

leads to the weakening of VEGF signaling, which further leads to

vascular thinning and renal fibrosis, aggravating the development of

DN (26). Both loss and overexpression of VEGF lead to glomerular

abnormality; loss of VEGF-A prevents glomerular angiogenesis and

the development of a glomerular filtration barrier (27).

Overexpression of VEGF-A in podocytes is similar in different

renal diseases (28). For example, there is no difference between

glomerulopathy caused by overexpression of VEGF164 and

glomerulopathy caused by early diabetes nephropathy (15, 29).

Nowadays, increased use of glucose-lowering agents and

glycemic control have not resulted in a reduced prevalence of

DN. More and more pathogeneses are considered to drive the

development of DN (30). Thus, we looked for new mechanisms. In

muscle, VEGF-B has been shown to control lipid accumulation

through regulation of endothelial fatty acid (FA) transcytosis, and it

may thus be a potential target in treating type 2 diabetes (T2DM)

(31) VEGF-B was overexpressed in podocytes, while VEGFR1 was

mainly found to be expressed on endothelial cells. The article

showed reducing VEGF-B signaling could ameliorate glomerular

lipotoxicity and, as a consequence, the progression of DN.

Glomerular VEGF-B levels were upregulated in subjects with DN,

suggesting that anti-VEGF-B treatment may be useful as a

therapeutic strategy to treat DN in humans (32).

VEGF-C can protect endothelial cells from the influence of

VEGF-A reduction on cell permeability and plays a role in

protecting endothelial cells (33). Additionally, apart from blood

glucose, increased levels of advanced glycation end products

(AGEs) can also promote VEGF expression in podocytes, thereby

increasing the oxidative stress response of endothelial cells and

podocytes (34, 35).
3.1.2 Transforming growth factor
TGF-b is a multifunctional dipeptide. It is a family of factors

that promote cell growth and differentiation, consisting of more

than 30 proteins with similar structures (36). TGF-b1 is one of the

fibrogenic factors secreted by glomerular endothelial cells,

glomerular mesangial cells, and renal tubule epithelial cells.

Unlike the VEGF signaling pathway necessary to maintain the

glomerular filtration barrier, in a high glucose environment, the

over-activation of the TGF- b signaling pathway is harmful to

mesangial cells, podocytes, and endothelial cells. TGF- b 1 can

induce the occurrence of epithelial-mesenchymal transition (EMT)

(37) and the accumulation of extracellular matrix (ECM) in renal

tubular epithelial cells, which is closely related to the progression of

renal interstitial fibrosis in DN. Inhibiting the TGF- b 1 signaling

pathway can reduce EMT and fibrosis of DN (38).
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In addition, in the diabetes mouse model, TGF- b signaling

pathway can induce dedifferentiation or apoptosis of endothelial

cells and podocytes (39). TGF-b1 secreted by endothelial cells binds

to TGF-bR1 of podocytes, which can activate downstream Smad

signals, including Smad2, Smad3, and Smad7 (40). Activation of

Smad2/3 promotes the secretion of ECM, leading to glomerular

sclerosis and fibrosis, while Smad7 induces apoptosis of podocytes

by blocking the activity of NF-kB. Meanwhile, Smad7 can directly

activate caspase3. Cysteingl aspartate specific protease(Caspase)is

an important cytokine in the molecular mechanism of cell

apoptosis. Smad7 and p38MAPK induce podocyte apoptosis by

activating caspase3 (41). Similarly, in high glucose condition, the

endothelial cell secretes TGF- b to promote apoptosis and

ultimately aggravates renal microvascular disease (42).

3.1.3 Angiotensin/angiopoietin receptor 2
Angiotensin (Ang 1/Ang 2) plays an important role in

maintaining endothelial integrity and participates in the

pathophysiological process of DN. Ang-1 is mainly produced by

podocytes and can promote angiogenesis and microvascular growth

by binding to the Tie2 receptor expressed by glomerular endothelial

cells, reducing the permeability of endothelial cells and regulating

the VEGF signaling (43, 44).

Ang2 is mainly produced by GECs (Glomerular Endothelial

Cells) and inhibits Ang1 through competitive binding to the Tie-2

receptor (45). Studies have demonstrated that Ang-2 expression is

up-regulated in the glomerulus of diabetic nephropathy patients,

which antagonists Ang-1 induced Tie 2 activation, and thus inhibits

the anti-apoptotic effect of Ang-1 on endothelial cells (46). In

pathological conditions of DN, decreased glomerular VEGF-A

expression is accompanied by increased Ang-2/Ang-1 ratio,

resulting in increased apoptosis of endothelial cells (47).

3.1.4 Endothelin
Endothelin (ET-1) is a vasoconstrictive peptide mainly

produced by GECs.ET-1 binds to two subtypes of receptors, the

endothelin A receptor (ETAR) and the endothelin B receptor

(ETBR) (48). Studies about animal models of diabetes have

shown the expression of ET-1 in glomeruli was increased by 5

times compared with the receptor, suggesting that ET-1 plays an

important role in DN (49). In the pathological conditions of

diabetes, ET-1 is associated with vasoconstriction, kidney injury,

mesangial hyperplasia, glomerulosclerosis, fibrosis, and

inflammation (50). ETAR is mainly expressed in podocytes of the

g lomerulus . ET-1 combined with ETAR to promote

vasoconstriction, cell proliferation, fibrosis, podocyte injury, and

inflammatory response. ETBR is mainly distributed in glomerular

endothelial cells and renal tubular epithelial cells. ET-1 combined

with ETBR can promote vascular dilation, anti-proliferation, and

anti-fibrosis, and play a protective role.

ET-1 can also be secreted by podocytes. In DN progression,

TGF-b signaling is activated in podocytes, followed by increased

secretion of ET-1. Binding to ETAR in GECs mediates

mitochondrial oxidative stress and adjacent endothelial cell

dysfunction (35, 51, 52). Selective blocking of ETAR has been
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demonstrated to reduce the expression of chemokines and

cytokines, as well as decrease the secretion of various mediators

of renal fibrosis. It can prevent podocyte loss, albuminuria, and

glomerulosclerosis (53).

ET-1 seems to be a key mediator in podocytes-to-ECs and ECs-

to-podocytes communications promoting cell injury in several renal

pathologies including DN. Endothelin A (ETA) receptor antagonist

—Atrasentan entered the field of vision as a new drug, and has got

some achievements in DN. The SONAR (The Study of Diabetic

Nephropathy with Atrasentan) (54) is the first trial to evaluate the

long-term effectiveness of ETA receptor antagonists on albuminuria

DN. The results showed that Atrasentan reduced the risk of

progression to CKD (including DN) by 35% compared with

placebo and was safe and well tolerated.
3.2 Endothelial cell and mesangial cell

GECs directly contact and interact with mesangial cells in

structure. In the high glycemic environment, the crosstalks

between GEC and GMC (Glomerulus Mesangial Cells) induce the

inflammatory responses of the kidney and glomerulosclerosis (55,

56), which damage the integrity of the glomerular tissue and cause

renal dysfunction.

3.2.1 Platelet-derived growth factor
PDGFB is mainly expressed in GECs, while PDGFR-b is mainly

expressed in MCs. PDGFB/PDGFR is the main medium in the

crosstalk between GEC and MCs (57). During glomerular

development, the interaction of GEC and MCs promotes

mesangial cell maturation and maintains through the PDGF-B/

PDGFR signaling pathway (58). The PDGFB/PDGFR signaling

pathway is activated in the glomeruli of diabetic mice, which

promotes the progression of DN, and the mechanism may be

related to oxidative stress and mesangial expansion (59). It has

been demonstrated that GECs paracrine PDGFB to regulate

mesangial cell proliferation, and the inhibition of PDGFB and its

receptor can inhibit mesangial proliferation in diabetic rats (51).

The expression of PDGFB in the kidney of diabetic nephropathy

patients is significantly increased (60). The non-expression of

PDGFB and its receptor PDGFR-b can reduce the accumulation

of extracellular matrix and mesangial cells proliferation (61). In

addition to mesangial cells, renal vascular smooth muscle cells

(SMC) are also the target of PDGF-B signaling, which accelerates

the development or neovasculature of blood vessels by promoting

the proliferation of SMC (62).

3.2.2 Endothelin-1
ET-1 may be involved in the occurrence of diabetic vascular

diseases through mesangial cell proliferation, promoting fibrosis

and inflammation.ET-1, one of the most effective vasoconstrictors

and a growth factor for mesangial cells (48, 63), is positively

associated with increased albumin excretion in patients with

diabetic nephropathy. ET-1 is secreted by endothelial cells, binds

to ETAR and ETBR on mesangial cells, and exerts its effect. For
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example, mesangial proliferation and ECM accumulation are

accelerated by up-regulating the expression of ECM-related genes

(64). Some studies have shown that HG activates RhoA/ROCK

signaling pathway in mesangial cells and promotes the progression

of DN. ET-1 mediates ETAR activation in mesangial cells and

enhances the expression of ECM-related genes (65, 66). Studies

have shown that high glucose activates the RhoA/ROCK pathway in

mesangial cells and promotes the progression of DN, which also

depends on the secretion of ET-1. On the other hand, the

combination of ET-1 with ETBR can inhibit the NF-kB signaling

pathway and reduce the secretion of ET-1 by endothelial cells. This

negative feedback reduces the inflammatory responses of

endothelial cells (63).
3.3 Endothelial cell and renal tubular
epithelial cell

In the early stage of DN, renal tubules are damaged to varying

degrees, and tubular epithelial cell damage can lead to abnormal

endothelial cell function. The crosstalk between the two kinds of

cells induces inflammatory responses and promotes the occurrence

and progress of DN.

3.3.1 Inflammation
As the first barrier of the glomerular filtration membrane, GECs

come into directly contact with substances in the circulating blood

and are more vulnerable to damage by inflammatory factors (67).

Except for functioning in the interaction between podocytes and

endothelial cells, VEGF/VEGFR signaling pathway also plays an

important role in the interaction between epithelial cells and

endothelial cells in the renal tubulointerstitial. In the diabetic

environment, tubule epithelial cells (TECs) are susceptible to

hemodynamic changes in metabolic disorders, resulting in the

secretion of multiple inflammatory mediators, leading to

interstitial inflammation. Urinary albumin in DN patients

activates TECs to produce pro-inflammatory factors such as CRP,

IL, TNF-a, NF-kB, and ROS, which can lead to GEC injury,

apoptosis, and EndMT. Stimulated by inflammatory factors, the

glomerular vascular network suffered apoptosis and necrosis, and

the structure and function of GECs were destroyed. The injured

GEC reduced the blood supply to the renal tubules, resulting in

increased TEC injury (68). The interaction aggravates the progress

of DN.

3.3.2 Vascular endothelial growth factor
In addition to playing a role in the interaction between

podocytes and endothelial cells, VEGF/VEGFR signaling also

plays an important role in the interaction between epithelial cells

and endothelial cells in the renal tubulointerstitial. In the renal

tubulointerstitial, VEGF-A can also be synthesized and secreted by

renal tubule epithelial cells (TECs) and subsequently combines with

VEGFR of endothelial cells (GECs) to regulate the structure and

function of GECs (69). VEGF/VEGFR activation in early DN leads

to neovascularization. However, in the late stage of DN, the
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aggravation of TEC injury and deletion in late DN is accompanied

by decreased production of VEGF-A, decreased endothelial cell

angiogenesis and permeability of endothelial cells, and endothelial

function destruction (70). Subsequently, eNOS deficiency, NO

reduction, interstitial ischemia, and hypoxia occur, leading to

TEC damage, decreasing VEGF-A synthesis, and aggravating a

vicious cycle in disease progression (71).
3.4 Podocyte and glomerular
mesangial cell

The abnormalities of podocytes and mesangial cells play a key

role in the development of DN. Recent researches suggest that

crosstalks between the two types of cells may be mediated by

exosomes. Exosomes are spherical extracellular vesicles (ECVs)

with a phospholipid bilayer membrane structure that are 40-100

nm in diameter and contain a variety of molecules, such as proteins,

lipids, DNA, miRNA, and LncRNA. Normally, exosomes can be

secreted by kidney cells, such as podocytes and mesangial cells. In

recent years, a large number of data have proved that exosomes are

involved in the glomerular, renal tubule, and tubulointerstitial

lesions, which are related to the pathological changes and

prognosis of DN (72, 73). In the high glucose condition,

exosomes released by GMCs may affect podocyte function by

carrying TGF-b1, participating in the pathological process of DN,

and eventually leading to albuminuria (74, 75).

Podocyte and Endothelial cell:In the pathological condition of

high glucose, the abnormal renal expression of VEGF,

angiopoietins, TGF- b, and endothelin-1 in early Diabetic

nephropathy (DN) induces endothelial cell dysfunction and

contributes to the disappearance of podocyte foot processes.

Endothelial cell and Mesanginal cell:PDGFB secreted by GECs

binds to PDGFR-bR on mesangial cells, which contributes to the

development of mesangial cells. ET-1 is a growth factor of

mesangial cells. ET-1 may be involved in the pathogenesis of

diabetic vascular diseases through mesangial cell proliferation,

promoting fibrosis and promoting inflammation.

Podocyte and Macrophage:Macrophage is the main immune

cell that causes kidney injury in DN. Infiltration, recruitment, and

activation of macrophages can lead to the generation and release of

many inflammatory factors, pro-fibrotic factors, and anti-

angiogenic factors, such as TNF-a, ROS, IL-1, IL-6, TGF-b, and
VEGF, which can interact with podocytes.
3.5 Macrophage and renal tubular
epithelial cell: extracellular vesicles

The single-cell sequencing study by Fu et al. provided direct

evidence that macrophages were the main infiltrating immune cells

in the kidney tissue of diabetic mice, and M1 macrophages were

more significant in early DN (76). Experimental evidence also

confirmed that there were different degrees of immune cell

infiltration in renal tissues of DN patients, which was related to

DN staging (77). All these phenomena suggest that in the diabetic
Frontiers in Endocrinology 05
environment, macrophages interact with cytokines, causing renal

function damage and accelerating the progression of DN (78).

3.5.1 Toll-like receptor
Toll-like receptor (TLRs) protein is an important receptor that

can regulate immune response and inflammatory diseases. TLR4

expression was increased in macrophages of diabetic nephropathy

patients, while TLR2 expression was not changed (79). The

expression level of TLR4 was directly related to the infiltration of

tubulointerstitial macrophages and was inversely proportional to

the glomerular filtration rate. In the TLR4 knockout diabetes mice,

the infiltration of interstitial macrophages, proteinuria, and

progress of renal function was significantly improved.

Itsmechanism was confirmed by cell experiments: high glucose

induces TLR4 expression by activating PKC in human proximal

tubule epithelial cells, and the activation of IkB/NF-kB leads to up-

regulated expression of IL-6 and CCL-2 and leads to the

inflammatory response (79). Therefore, TLR4 mediates the action

of macrophages and renal tubular epithelial cells to increase the

tubulointerstitial inflammatory response and promote diabetic

kidney injury.
3.5.2 Exosome
TEC-derived exosome (EVe) activates the inflammatory

phenotype of macrophages, inducing the expression and release

of proinflammatory cytokines, and inducing the release of

macrophage-derived exosome (EVm). EVm can also induce the

apoptosis of lipotoxic TECs, thus forming a vicious cycle, and

promoting kidney inflammation and damage in DN (80).

Mechanism studies have shown that Eve contains high levels of

miR-19b-3p. It can activate the NF-kB signaling pathway

by targeting the inhibition of SOCS-1, leading to the phenotype

polarization of M1 macrophages, further increasing the expression

of MCP-1, IL-1b, and other renal inflammatory cytokines, and

promoting the occurrence of renal tubulointerstitial inflammation

in diabetic nephropathy (81). Vascular lesions caused by diabetes

lead to renal ischemia and hypoxia. Li et al. confirmed that renal

tubular epithelial cells in an anoxic environment could release

mirNA-23A-rich exosomes, which could be absorbed by

macrophages and transformed into pro-inflammatory phenotypes

through the HIF-1a pathway, promoting tubulointerstitial

inflammation (82). These studies confirmed that microRNAs in

exosomes mediate interactions between renal tubular epithelial cells

and macrophages in DN tubulointerstitial inflammation.
3.5.3 Macrophage and podocyte
Infiltration, recruitment and activation of macrophages can lead

to the generation and release of many inflammatory, pro-fibrotic

and anti-angiogenic factors. For example, TNF-a, ROS, IL-1, IL-6,
TGF-b and VEGF can interact with podocytes (83).In addition,

cytokines act on podocytes, the major components of the filtration

barrier, through multiple signaling pathways, such as p38 MAPK,

NF-kB, Toll-like receptors, or proteins, ultimately damage renal cell

and aggravate the progression of the disease.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1173933
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1173933
3.6 Pericyte and other cells

Pericytes are a class of undifferentiated cells. It is generally

believed that mesenchymal cells adjacent to microvascular

endothelial cells are pericytes (84). In the kidney, pericytes are

highly specialized cells that make up 30% of the total tissue and are

involved in the regulation of glomerular ultrafiltration. It plays an

important role in the pathophysiological activities of microvascular.

PDGFR-a and -b were expressed only in pericytes and

myofibroblasts. Inhibition of PDGF signaling by imatinib or

neutralizing PDGFR antibodies can reduce macrophage

infiltration and fibrosis (85). Hu et al. showed that C1q tumor

necrosis factor-associated protein-3 could reduce mesangial cell

proliferation and extracellular matrix accumulation induced by

high glucose, and inhibit pericytes to differentiate into mesangial

cells (86). This evidence suggests that the interaction between

pericytes and other cells also plays a significant role in the

progression of DN.

Endothelial cell and Renal tubular epithelial cell:The crosstalk

between endothelial cells and renal tubular epithelial cell plays an

important role in the occurrence and development of DN. There are

many signaling pathways between GECs and TECs, in which

crosstalk plays a vast role. The abnormal secretion of VEGF and

inflammatory factors(such as CRP、IL-6、TNF-aand so on)

promote injury to GECs during the progress of DN.

Tubular epithelial cells and macrophages:Macrophage

infiltration around renal tubular epithelial cells (TECs) is a

hallmark of DN. In the diabetic environment, macrophages

interact with tubule epithelial cells through cytokines, causing

renal function damage and accelerating the progression of DN.

Pericyte and other cells:There are many common signaling

pathways among podocytes, mesangial cell endothelial cells, and

pericytes, in which crosstalk plays a vast role, Such as C1q

(Complement 1q).
3.7 New therapeutic perspectives

Recently, new therapeutics including sodium-glucose transport

protein 2 (SGLT2) inhibitors, endothelin antagonists, glucagon like

peptide-1 (GLP-1) agonists, and mineralocorticoid receptor

antagonists (MRA), have provided additional treatment options

for patients with DN.

Recently, SGLT2 inhibitors have emerged as a new class of

drugs, to control blood sugar by increasing the excretion of sugar in

the urine. Ipragliflozin, was injected into streptozotocin induced

diabetic mice to reduce the blood glucose level of diabetic mice. The

experimental results showed that it alleviated the damage of diabetic

endothelial function, improved the phosphorylation of eNOS, and

reduced the expression of inflammatory molecules (87).

Furthermore, Glucagon-like peptide-1 (GLP-1) is an intestinal

hormone. It has the properties of increasing insulin secretion and

inhibiting glucagon secretion after eating. It plays an important role

in maintaining blood glucose homeostasis (88). The inhibition of

oxidative stress, inflammation, fibrosis, and induction of natriuresis
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have been mainly implicated as mechanisms underlying the

attenuation of DN by GLP-1 receptor agonists.GLP-1 receptor

agonists have a renal protective effect in addition to hypoglycemic

effects (89).

Dipeptidyl peptidase-4 (DPP-4) inhibitors reduce the levels of

blood glucose by increasing the half-life of short-lived endogenous

incretins, such as GLP-1 and glucose-dependent insulinotropic

polypeptide (90). DPP-4inhibitors (insulin-based therapy), a new

class of hypoglycemic agents for clinical practice, their role in

diabetic nephropathy, with a particular focus on renal protection

and alternative markers of cardiovascular disease (91). Trials such

as SAVOR-TIMI 53 (92) and CARMELINA (93) showed a possible

reduction in albuminuria and improvement in the histological

changes of kidney in patients receiving DPP-4 inhibitors.

In addition to GLP-1 and SGLT2 discussed earlier, there is a

new class of drugs called MRAs (Mineralocorticoid receptor

antagonists).MRAs are drugs that inhibit the effect of aldosterone

on mineral mineralocorticoid receptor (MR), such as fenelidone

(94). MRAs block MR-mediated sodium reabsorption and MR

Overactivation in renal tissues. In patients with diabetic

nephropathy, MRA reduces the upregulation of pro-inflammatory

mediators, including TGF-b, PDGF,CCL2 and so on (95). In

preclinical studies, the protective effect of MRAs in animal

models of diabetes nephropathy was reported in 2001 (96).

Mineralocorticoid receptor-mediated inflammation has been

proposed to be partially caused by injury, oxidative stress or cell

apoptosis (95).
4 Discussion

Glomerular endothelial cells, podocytes and renal tubular

epithelial cells play important roles in the pathophysiological

progression of DN. Many studies have proved that crosstalk

among them, as well as neighboring pericytes and immune cells,

which is related to the progression of diabetic nephropathy (As

shown in the Figures 1, 2). The cell damage caused by this crosstalk

is oxidative stress; macrophage infiltration, inflammatory response,

the increasing secretion of TGF-b; abnormal angiogenesis caused by

increased secretion of VEGF. There is a table (As shown in the

Table 1) with important cellular crosstalks that contribute to

understand the progression of diabetic nephropathy.

At present, many studies need to be further clarified on the role of

cell crosstalk in the occurrence and development of DN. For example,

the mechanism of VEGF and TGF-b. The VEGF-A and VEGF-C

crosstalks are controversial. VEGF-A is a critical mediator of

angiogenesis and vasculogenesis and is involved in the formation of

glomerular filtration barriers. Human kidney biopsies showed high

VEGF-A expression at early stages of DN, and lower VEGF-A

expression in patients with more advanced stage of DN because

loss of podocyte (14). Studies suggest that in the diabetic

nephropathy, the disruption of podocyte function after VEGF-A

depletion arises from endothelial cell dysfunction. Excessive VEGF-A

production results in neovascularization leading to pathologic

microangiopathy. In the later stages, the reduction of VEGF

signaling may occur due to the loss of podocytes, contributing to
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FIGURE 1

Cellular crosstalk in the glomerulus.
FIGURE 2

Cellular crosstalk in the renal tubules and interstitium.
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vascular rarefication and renal fibrosis. VEGF-C is mainly involved in

lymphangiogenesis and binds to VEGFR-2, VEGFR-3.Some studies

showed that renal inflammation and fibrosis were improved in

diabetic mice by down-regulating VEGF-C and VEGFR-3

expression (97). However, in DN, a chronic proinflammatory state,

the overgrown lymph eventually becomes incomplete and

dysfunctional due to chronic upregulation of VEGF-C (98). Its

detailed and systematic mechanisms still need further study.

In addition, in DN, early studies have shown that that crosstalk

between TGF-b and hormones has a complex mechanism in DN.

The data on diabetic nephropathy and TGF signaling pathway appear

to be controversial. The results suggest that sex, sex hormones and

diabetic conditions influence differences in expression of TGF-b1, its
receptor and bone morphogenetic protein 7 (BMP7). Complex

crosstalk between sex hormones, sex-dependent expression pattern

and profibrotic signals for the precise course of DN development

(92). So, we still have a lot to figure out about crosstalk between cells.

The interaction of glomerular endothelial cells, podocytes, renal

tubular epithelial cells, and other cells is closely related to the

progression of DN. The pathogenesis of DN is numerous and

complex, and it remains unknown. The interaction among cells is

the key factor that promotes DN progression. The new treatment

plan to improve the damage to kidney cells and maintain the

normal crosstalk among cells may become a new strategy for the

prevention and treatment of DN in the future. Targeted drug

research on crosstalk among cells to maintain cell function may

be a new perspective, which will provide a brand-new strategy for

the prevention and treatment of DN.
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TABLE 1 The full search words about crosstalk between renal cells and other cells in the DN.

Cell Cytokine/Receptor

Endothelial cell and podocyte Vascular endothelial growth factor-A、B、C/Receptor

Transforming growth factor -b/Receptor

Angiotensin I/II、Tie2 receptor

Endothelin-1、Endothelin A/B receptor

Endothelial cell and mesangial cell Platelet-derived growth factor-B/Receptor

Endothelin-1、Endothelin A/B receptor

Endothelial cell and renal tubular epithelial cell Inflammation factor

Vascular endothelial growth factor、Vascular endothelial growth factor receptor

Podocyte and glomerular mesangial cell Exosome

Macrophage and renal tubular epithelial cell: Toll-like receptor 2/4

Exosome

Macrophage and podocyte inflammatory factor, pro-fibrotic factor, anti-angiogenic factor

Pericyte and other cells Platelet-derived growth factor
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