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Turner syndrome (TS) is a chromosomal disorder that affects about 1 in 2500

female births and is characterized by the partial or complete absence of the

second X chromosome. Depending on karyotype, TS is associated with primary

ovarian insufficiency (POI). Approximately 50% of girls with a mosaic 45, X/46, XX

karyotype may enter puberty spontaneously, but only 5-10% of women with TS

achieve pregnancy without egg donation. In this review, we will evaluate the

clinical use of markers of ovarian function in TS patients. Based on longitudinal

studies of serum concentrations of reproductive hormones as well as ovarian

morphology in healthy females and patients with TS, we will evaluate how they

can be applied in a clinical setting. This is important when counseling patients

and their families about future ovarian function essential for pubertal

development and fertility. Furthermore, we will report on 20 years of

experience of transition from pediatric to gynecological and adult

endocrinological care in our center at Rigshospitalet, Copenhagen, Denmark.

KEYWORDS

ovarian function, fertility preservation, turner syndrome, anti mullerian hormone (AMH),
FSH (Follicle Stimulating Hormone), inhibin B
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Introduction

Various pathological conditions cause early loss of ovarian

follicles resulting in absence or cessation of pubertal development

and primary or secondary amenorrhea (premature ovarian

insufficiency, POI). The most prevalent inherited condition of

accelerated follicle loss is Turner syndrome (TS) affecting

approximately 1:2500 liveborn females (1).

Due to complete or partial loss of one X-chromosome in all cells

(e.g. 45,X) or part of the cells (mosaicisms, e.g. 45,X/46,XX), TS

patients suffer from a variable degree of prenatal loss of follicles (2–

5) (Figure 1).

When TS is diagnosed during childhood, patients and their

families are often concerned about future reproductive potential.

Will they develop similar to their teenage peers? Will they enter

puberty spontaneously without hormone replacement therapy?

Will they eventually achieve pregnancy? The increasing success

rates of ovarian cryopreservation for future fertility in girls with

cancer prior to gonadotoxic therapy have inspired similar protocols

in patients with TS. In experimental settings, cryopreservation of

ovarian tissue has been performed, and it is essential only to offer

cryopreservation to patients with ovarian follicles (8, 9).

However, it is a challenge to assess ovarian activity in girls and it

is even more difficult to predict future ovarian function. Apart from

a transient neonatal gonadotropin surge, the hypothalamic-

pituitary-gonadal (HPG) axis is quiescent until pubertal onset

allowing only gonadotropin-independent growth of follicles
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reaching small antral stages. Therefore, in TS patients with streak

ovaries, the usual lack of negative feedback and consequently

hypergonadotropic hypogonadism is not evident prior to time of

expected pubertal onset (8–15)(Figure 2).

Today, the best candidate as a marker of subtle ovarian activity

is Anti-Müllerian Hormone (AMH) produced by granulosa cells in

small growing follicles (11). Initially, the focus of attention on this

peptide was the testicular production of AMH. Alfred Jost was the

first to suggest that a substance produced from the developing

gonad in the male fetus was responsible for the regression of the

Müllerian ducts (ovarian ducts, uterus and the proximal one-third

of the vagina) (12). This hormone is AMH, previously referred to as

Müllerian Inhibiting Substance (MIS), produced by immature

Sertoli cells in the male fetus (13, 14). AMH is a member of the

TGF-beta family. It is encoded by the AMH gene (15) which is

located on chromosome 19p13.3 (16). AMH exerts its effect through

the single transmembrane receptor, AMH type 2 (AMHR2), leading

to phosphorylation of Smad 1/5/8 that enter the nucleus and

regulate transcriptional activity (17). In young patients with

Differences of Sex Development (DSD), high serum concentration

of AMH is a specific and sensitive marker of testicular tissue

(immature Sertoli cells) in the gonad (18–21).

In females, circulating AMH originates exclusively from the

ovaries (22). The function of AMH is not fully elucidated but

knock-out mice models and human in vitro data indicate that AMH

inhibits follicle growth as well as FSH induced aromatase activity

(11, 23–25). Effects on recruitment from primordial follicles may be
FIGURE 1

Accelerated loss of follicles depends on the TS karyotype. The mechanism is believed to be apoptosis caused by pairing failure of homologous
chromosomes in meiosis I. This is schematically shown in the top left corner with only one duplicated X chromosome (black). Histology samples A-
N modified from (5): In early fetal life, there are plenty of OCT4 positive oogonia present in 45, X ovaries (B), but many of the germ cells are
degenerated with contracted nuclei and a thin layer of cytoplasm (H arrow). Later in gestation, primordial and small growing follicles are present in
the healthy ovary (J+M), whereas somatic cells and fibroblasts are abundant in the 45, X ovary (K+N). Schematic illustration of the number of germ
cells in healthy females (46,XX, grey line) from early fetal life to time of menopause; data based on Baker et al. (6, 7).
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species dependent. AMH promotes primordial follicle recruitment

in cultured human ovaries (9) and in vitro and in vivo data from

non-human primates support stimulating action of AMH on

preantral follicle growth (26) (Figure 3). Thus, production and

effects of AMH are follicle stage dependent and AMH seems to play

an essential role as gate-keeper for FSH-induced follicle maturation,
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estradiol production, as well as regulator of the selection of the

dominant follicle in the late follicular phase of the menstrual cycle.

In humans, rare mutations of the gene encoding AMH result in

premature ovarian insufficiency (27). Extragonadal effects of AMH

have been proposed, and AMH may play a role in upregulation of

GnRH dependent LH pulsatility (28). Circulating AMH levels are
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FIGURE 3

Model of AMH production and action. AMH is produced by granulosa cells of small growing follicles. It inhibits FSH-induced follicle growth as well as
gonadotropin-induced aromatization of androgens to estrogens (9, 24–26).
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FIGURE 2

The hypothalamic-pituitary-gonadal (HPG) axis. Activity of the hypothalamus and pituitary is regulated by negative feedback of ovarian hormones
(right). The HPG axis is centrally inhibited during mid-childhood (left). Follicles are primarily restricted to stages growing independently from FSH
stimulation. Only occasionally FSH- induced follicle growth occurs.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1173600
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hagen et al. 10.3389/fendo.2023.1173600
usually elevated in PCOS patients as well as in patients with

granulosa cell tumors (29–31).

The unique source of AMH from follicles growing

independently of FSH-stimulation poses several clinical

advantages. Circulating AMH levels are more refractive to

fluctuations of gonadotropin levels compared to hormones

produced by larger follicles. Thus, circulating concentrations of

AMH are relatively stable through the menstrual cycle (although

cycle dependent fluctuations are more pronounced in women with

higher AMH concentrations) (32–34). AMH is decreased app. 30%

by oral contraceptive therapy (35) and 50% during pregnancy (36).

In healthy adult women, serum levels correlate with the number of

antral follicles (37). Due to a fine equilibrium between follicles in

different stages (38, 39), AMH levels reflect the number of

primordial follicles constituting the ovarian reserve (40)

(Figure 4). In healthy adult women, circulating AMH is therefore

predictive of the reproductive lifespan (41–45). Women with age

specific low AMH tend to enter menopause earlier than women

with higher AMH. However, considerable overlap exists, and the

predictive value for AMH in a given woman concerning age at

menopause is limited (46).

In this review, we will present data relevant when assessing

AMH in girls and adolescents with TS. To interpret a given AMH

measurement in a patient at risk of POI, it is essential to know

details about AMH in healthy girls. Age specific reference ranges are

mandatory. Additionally, cross sectional studies of AMH in relation

to ovarian morphology are necessary to assess if AMH in girls

reflects the number of small antral follicles – which may reflect the

ovarian reserve of primordial follicles. Longitudinal studies of

individual AMH levels are needed to evaluate the predictive value

of AMH concerning future ovarian activity in healthy girls as well as

in patients with TS. Further, we will briefly discuss the qualitative

aspect of AMH concerning fecundability.
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Karyotype as predictor of
ovarian activity

In TS patients, the karyotype is strongly associated with ovarian

status; i.e. the risk of POI is highest in monosomic patients

compared to karyotypes with mosaicism including a healthy cell

line (45,X/46,XX) or isochromosomes (6, 47–51). The mechanism

causing accelerated loss of germ cells is believed to be apoptosis

caused by pairing failure of homologous chromosomes in meiosis I.

In early fetal life when the first oocytes enter the diplotene stage of

meiotic prophase I, there are plenty of oogonia present in 45,X

ovaries (Figure 1, histology section B, OCT4), but many of the germ

cells are degenerated with contracted nuclei and a thin layer of

cytoplasm (Figure 1, arrow in section H). Later in gestation,

primordial and small growing follicles are present in the healthy

ovary (Figure 1, J+M), whereas somatic cells and fibroblasts are

abundant in the 45,X ovary (Figure 1, K+N). There are very

few follicles.

In theory, the loss of follicles depends on the specific TS

karyotype: Patients with 45,X are often born with streak gonads

(Figure 1, black line) whereas TS patients with mosaicisms including

a healthy cell line (45,X/46,XX) have approximately 50% chance of

entering puberty spontaneously (Figure 1, red line) (6). All other TS

genotypes caused by structural abnormalities of one X chromosome

are referred to as miscellaneous having intermediate chance of

preserved ovarian function (Figure 1, blue line).

The degree of mosaicism evaluated in 30 white blood cells may

not be fully representative of the gonadal mosaicism (52). That is

also the case when patients are diagnosed prenatally by non-

invasive prenatal testing, amniocentesis, chorionic villus sampling

or by fetal DNA in maternal blood sample. Furthermore, different

tissue from the same patient – and even different cells from the

same ovary may express variable degree of mosaicism (53, 54).

Thus, the proportion of affected cells in peripheral blood is not

always predictive of the remaining primordial follicles. This may

explain cases of apparently monosomic patients with preserved

ovarian function (55). There are even reports of 45,X patients with

multiple unassisted pregnancies (56). Patients with miscellaneous

karyotypes have an intermediate chance of maintaining ovarian

activity, but from the limited number of patients with specific

genotypes, it is not possible to clarify if certain loci are more

prone for POI than others. Patients with TS including Y

chromosome material are at risk of developing gonadoblastoma,

and gonadectomy is recommended, although the degree of risk of

gonadoblastoma still remains to be firmly established.

Thus, the karyotype based on DNA from white blood cells can

be misleading concerning the degree of ovarian dysgenesis. The

karyotype is a strong indicator of the degree of ovarian dysgenesis,

but additional markers are needed to evaluate the ovarian function

of girls and adolescents with TS.

Reproductive hormones

Detailed magnetic resonance imaging (MRI) and trans-

abdominal ultrasound studies (TAUS) of ovarian follicle numbers
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FIGURE 4

The number of follicles decline as they mature. Histological studies
suggest that the number of follicles in different stages is in
equilibrium; i.e. an individual with many primordial follicles have
more preantral and antral follicles (blue triangle) compared with an
individual with fewer primordial follicles (black triangle) (38, 39).
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in healthy girls revealed that small antral follicles were present in all

prepubertal girls (57). Large follicles were present after pubertal

onset, and the number of large follicles increased as puberty

progressed (Figure 5). This knowledge of ovarian morphology is

important for interpreting circulating levels of reproductive

hormones during childhood. Pubertal reactivation of the HPG

axis and increasing levels of gonadotropins is essential for

maturation of follicles into large antral stages responsible for

steroid hormone production. Thus, inhibin B and estradiol

(produced by granulosa cells) as well as testosterone and

androstenedione (produced by theca cells) correlated strongly

with the number of large follicles (57), independent of pubertal

stages (Figures 6B–D).
Frontiers in Endocrinology 05
These morphological findings and their association with

hormone levels explain the clinical challenges the pediatrician

faces when evaluating ovarian activity during the quiescence of the

HPG axis in mid-childhood. Reproductive hormone levels in mid-

childhood are therefore similar to healthy girls; i.e. low levels of

LH and FSH from the pituitary as well as low or undetectable

levels of inhibin B and estradiol produced by granulosa cells

surrounding larger antral follicles (8, 9, 58). Centrally inhibited

levels of FSH, albeit measurable, are rarely sufficient for follicle

maturation beyond small antral stages (Figure 2). Thus, in our

longitudinal study of reproductive hormone levels in TS patients

through childhood, gonadotropins were not elevated in the

majority of patients who did not enter puberty spontaneously
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(FSH data seen in Figure 7) (47). However, there are indications

that HPG activity during minipuberty does not end as abruptly in

girls as in boys. Thus, FSH seems to be elevated in young

prepubertal Turner syndrome patients up to 6 years of age (47,

58, 59). A single measurement of undetectable inhibin B was a

prevalent finding in healthy girls and therefore not a very specific

predictor of absent pubertal onset in TS patients. However,

repeated blood samples increased the chance of revealing

ovarian activity by detecting inhibin B produced by a randomly

matured large follicle (47).

Introduction of ultra-sensitive liquid chromatography–mass

spectrometry (LCMS/MS) indicates that estrone (E1) is

measurable in the majority of healthy prepubertal girls (10).

Further studies on circulating concentrations of estrone and

estradiol (LCMS/MS) in girls with TS are needed to evaluate the

predictive value of these biomarkers. Despite ultra-sensitive LCMS/

MS methods enabling measurement of low levels of circulating

androgens, these hormones are co-produced by the adrenals and

therefore not specific for ovarian activity (60).

Even after spontaneous pubertal onset and/or menarche, it

remains a clinical challenge to evaluate ovarian function. Irregular

anovulatory cycles are prevalent in healthy girls up to 2-3 years after

menarche (61). Furthermore, reproductive hormones may remain

within the normal range before POI is clinically evident, despite

significant depletion of the ovarian reserve (37, 62, 63).

Thus, during mid-childhood, the clinical use of gonadotropins

and products from larger ovarian follicles (inhibin B, estradiol,

testosterone and androstenedione) is hampered by central

inhibition of the HPG axis.
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However, in clinical follow up, repeated assessments prior to

pubertal onset may reveal ovarian activity (detectable inhibin B

levels) or hypergonadotropic hypogonadism (elevated FSH levels).
AMH in healthy girls

Interestingly, circulating AMH reflects the number of small and

medium antral follicles in healthy peripubertal girls (57)

(Figures 6A, 8). Thus, AMH is a unique marker of ovarian

activity during mid-childhood quiescence of the HPG axis.

We established the first reference range of AMH in females

measured with a sensitive assay. It was based on 926 healthy females

from birth to 69 years of age (Figure 9). We observed a surge of

AMH at time of the so-called “minipuberty” (the transient postnatal

activation of the HPG axis) (64). This was confirmed in a recent

detailed longitudinal study of healthy girls – even indicating a

biphasic pattern of AMH and other reproductive hormones during

the first year of life (65).

The transient stimulation of the ovaries during minipuberty

results in increasing numbers of antral follicles producing AMH

(66). AMH seems to increase from 4 to 8 years of age, but compared

to other reproductive hormones, circulating levels of AMH are

remarkably stable in childhood, puberty and adolescence (64, 67).

However, inter-individually between girls, AMH levels vary 15-fold.

These findings are in line with the dynamics of ovarian follicles, as

the number of AMH-producing follicles (antral follicles < 6mm)

varies between healthy peripubertal girls but the number of these

small growing follicles do not increase after pubertal onset (57).
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A recent long-term longitudinal study of healthy females

followed from infancy to adolescence reveal remarkable stable

levels of AMH through the entire childhood (68). If a girl had high

AMH, she remained with high levels through infancy, childhood,

puberty and adolescence, and vice versa if she had low levels, she

maintained low levels. Thus, the predictive value of low concentration

of circulating AMH in mid-childhood is both sensitive and specific of

low AMH in adolescence. Due to individual tracking of activity from

small growing follicles, AMH in mid-childhood - and even in infancy

- was associated with the number of small follicles in the same girl at

puberty and adolescence. Ameta-analysis including data from several

studies suggests that AMH increases in late adolescence (69). The

study is based on data from different cohorts using different

immunoassay which are difficult to convert to comparable levels

(70, 71). Circulating AMH is present in different molecular forms

(72) which may explain the discrepancy between AMH assays (73).

There is a need of an international standard to enable comparison of

AMH levels between study populations when measured at

different laboratories.

Thus, in healthy girls, AMH is a unique reproductive hormone

reflecting and predicting the number of small antral follicles.

Individual circulating levels are stable through infancy, childhood,

puberty, and adolescence.

Regulation of AMH

In healthy girls, circulating AMH levels are negatively

associated with FSH levels prior to pubertal onset (74).
Frontiers in Endocrinology 07
Furthermore, detailed longitudinal data revealed a limited but

significant increase of AMH prior to pubertal onset (+17%)

followed by decreasing levels (-30%) two years after pubertal

onset. These findings have been confirmed by two British cohorts

of healthy peripubertal girls (75, 76) (Figure 10). Initially, we

speculated that the post-pubertal decrease of AMH was caused by

the pubertal increase of FSH, leading to increased maturation of

follicles which would reduce the number of AMH producing

follicles. However, our detailed study of ovarian morphology

revealed that the number of AMH producing follicles (< 6mm)

actually increased during early puberty (57). In the same study,

independent of follicle numbers, estradiol levels were negatively

correlated with AMH. Increasing estradiol during early puberty

may therefore directly inhibit AMH production. Firm causal

conclusions of the negative association between AMH and FSH as

well as estradiol cannot be drawn from our human clinical data.

However, direct inhibition of AMH expression by estradiol has been

suggested by in vitro studies of granulosa cells from patients

undergoing in vitro fertilization (77). Conversely, AMH reduces

sensitivity and growth rate of follicles in response to FSH as well as

inhibits aromatase expression in smaller follicles (11, 26, 78). Thus,

AMH seems to inhibit estradiol production in small follicles,

whereas estradiol may inhibit AMH production in large follicles.

We have speculated that in prepubertal girls, AMH is essential to

prevent FSH-induced growth as well as premature estradiol

production from small growing follicles.

The data discussed above are from healthy girls with an intact

HPG axis. Cellular studies suggest that FSH does not affect AMH
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production in granulosa cells from healthy women (79), however,

these studies were performed on granulosa cells retrieved from

ovarian stimulation which may affect the response. Further insight

in regulation of AMH is gained from studies manipulating the HPG

axis. From small cross-sectional studies of women on hormonal
Frontiers in Endocrinology 08
contraceptive treatment (HCT), AMH levels were considered

independent of pituitary activity (36, 80). However, larger cross-

sectional studies as well as recent longitudinal studies suggest that

AMH levels are reduced app. 30% by HCT (35, 81, 82). Whether

this is caused by direct inhibition of AMH expression by estradiol or
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the effect is due to reduced number of medium antral follicles

caused by suppression of GnRH secretion by potent synthetic

estrogens remains to be elucidated. In our study of AMH levels in

girls with central precocious puberty before, during and after GnRH

agonist treatment, AMH was reduced 50% in response to

suppression of pituitary activity (83). Although ultrasound was

not performed on these girls, previous studies suggest reduced

number of medium sized antral follicles during GnRHa treatment

(84). This would be a plausible explanation for our findings.

In conclusion, the negative correlation between AMH and FSH

supports that a degree of negative feedback between pituitary

gonadotropin secretion and ovaries is exercised even in

prepubertal girls.
AMH as a predictor of fecundability in
adult women

Whereas the value of AMH as a quantitative marker of follicles

seems to be established, it remains contentious whether AMH is a

marker of oocyte quality. Data from IVF settings strongly suggest

circulating AMH as a marker of oocyte quality. AMH predicts the

ovarian response (85, 86), and positive associations with the chance

of conception (87) and livebirth (88, 89) have been reported.

However, data from healthy women are less convincing. The first
Frontiers in Endocrinology 09
report of AMH as a marker of fertility in healthy women indicated

that very low AMH predicted reduced fecundability in 100 women

in their late reproductive life (30 – 42 years) (90). In another study

of sub-fertile women who were unsuccessful in conceiving after 12

months of unprotected sexual intercourse (mean age 36 years),

AMH levels in the 14 women achieving pregnancy during the

following 6 months were not different from the 69 non-pregnant

women (91). In a large prospective study of 186 healthy women

(mean age 27 years) adjusted for male confounders, we found that

high but not low AMH predicted reduced fecundability (Figure 11)

(92). Our finding that high AMH was associated with reduced

fecundability is most likely explained by a PCOS-like biochemical

profile in the females with high AMH. The low AMH tertile

included women witih AMH < 13 pmol/L which is well above the

detection-limit of the assay (2 pmol/L) and the -2SD of the

reference range in young adults (5 pmol/L). Thus, the size of

the study population did not allow us to evaluate the effect of

very low AMH. In support of our findings, a study of 1202 healthy

women who had previously conceived did not find a reduced

fecundability in women with low AMH (93). There is the

possibility that sub-fertile PCOS patients may have been excluded

in the study which may explain why high AMH was not associated

with reduced fecundability in their cohort. In another study, AMH

levels measured in the first trimester of pregnancy was not

associated with fecundability (self-reported) in a retrospective
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and lowest tertile of AMH, respectively. (B) Variance component model (bottom) of the longitudinal data (black line: geometric mean, grey lines: +/-
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study of 87 healthy women conceiving naturally (mean age 31

years) (94). Other cohorts of different ethnicity support that low

AMH is not associated with reduced fecundability (95).

Patients with TS have increased risk of autoimmune conditions,

and untreated Hashimoto´s hypothyroidism may contribute to

reduced fecundability in adult patients with preserved

ovarian function.

In conclusion, AMH in adult women seems to be a quantitative

rather than a qualitative marker of ovarian follicles. Further studies

are necessary to elucidate if extremely low AMH affects time to

pregnancy and to confirm whether low AMH predicts reduced

fecundability in healthy women in late reproductive life.
AMH as marker of ovarian activity
in ts patients

AMH has been associated with ovarian status in adolescent and

adult patients with TS; i.e. low or undetectable AMH in patients

with POI vs. AMH in the reference range in the majority of patients

with ongoing ovarian function (64, 96–99). These cross-sectional

data have been confirmed in a longitudinal follow-up study (48)

(Figure 12). The longitudinal data from TS patients developing POI

were sparse and we can therefore not firmly conclude on specific

AMH values as predictors of absent pubertal onset or imminent

POI. However, AMH was < 5 pmol/L (equals -2 SD) in all patients

prior to clinical manifestation of POI. A cross sectional ROC

analysis including data from all adolescent and adult patients

revealed that AMH < 3 pmol/L seems to be a sensitive and

specific marker of POI (both 95%) (48). These findings suggest an

increased risk of imminent POI in TS patients with AMH < -2SD.

For the clinician, the apparent predictive value of low AMH is

useful when counselling adolescent TS patients with ongoing

ovarian function about their risk of POI.
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Taking into account that healthy girls maintain their relative

AMH levels from infancy to adolescence (68) (Figure 13), it seems

likely that undetectable AMH or AMH < -2SD is indicative of

reduced ovarian activity in prepubertal TS patients. This was

supported by our limited longitudinal data on young TS patients

where all prepubertal girls with AMH < 4 pmol/L suffered from

absent spontaneous pubertal onset (48). These findings are in line

with a large European study where girls with TS having measurable

AMH had a 19-fold increased chance of entering puberty

spontaneously compared with patients with undetectable AMH

(96). AMH is also undetectable or low in adult patients suffering

from idiopathic premature ovarian insufficiency (100). FSH, LH,

inhibin B, and estradiol may be unaffected until time of clinical

manifestations of POI where the number of remaining follicles is

severely reduced (37, 62, 63, 101). Our findings of multiple

undetectable inhibin B measurements as a predictor of absent

pubertal onset in young TS patients (47, 102) as well as

decreasing inhibin B prior to POI in adolescent and adult patients

(48). indicate that also inhibin B may be a valuable predictor of POI.

However, single measurements of low or undetectable inhibin B

should be interpreted with caution as this is a normal finding in

healthy girls and adolescents (103).

Interestingly, adult Turner´s patients with ovarian function

maintained their AMH levels during follow up, suggesting that

they did not exhibit an accelerated depletion of their ovarian reserve

compared to healthy controls (48). This is in line with UK biobank

study where women who were not diagnosed with 45,X/46,XX had a

similar number of children and did not enter menopause earlier

than women with 46,XX (104). Of course there is a risk that the

women in this study have a less severe phenotype compared with

patients diagnosed with 45,X/46,XX. However, it suggests that

patients with 45,X/46,XX have a chance for ongoing ovarian

function and unaffected fertility comparable with healthy women.

It also underlines the importance of continuous follow-up of

such patients.
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In conclusion, small studies of patients with TS suggest that

AMH < -2SD is predictive of absent puberty and imminent POI,

however larger studies are needed to qualify these findings further.
Ovarian cryopreservation in
patients with TS

Hopefully, added understanding of the reproductive phenotype

of patients with Turner’s syndrome will lead to an improved

evidence-based and individualized fertility counselling. Based on

successful experience with ovarian cryopreservation and later auto

transplantation in other patients at risk of POI (e.g. girls with cancer

prior to gonadotoxic therapy, girls with thalassemia prior to bone

marrow transplantation) (105–112), this procedure is now a

treatment modality in clinical studies to young patients with TS

in several centers. In Sweden, girls with TS have been offered
Frontiers in Endocrinology 11
cryopreservation since early 2000´s (50) and in the Netherlands,

inclusion of girls with TS in a cryopreservation study has recently

been finalized (113). In these studies, many patients had no follicles

in the retrieved ovary. Although the karyotype, FSH, AMH, and

inhibin B were all associated with the presence of follicles, the

sensitivity and specificity of these markers were limited (50).

In this context, it is essential to evaluate ovarian activity.

Surgery for ovarian cryopreservation should be avoided in

patients without any ovarian follicles. Furthermore, surgery is not

indicated in patients with ongoing ovarian function in adult life as

they are likely to have a normal prognosis for pregnancy.

Knowledge of markers and predictors of ovarian function in girls

with TS is essential when counseling patients and their families in

these matters. Importantly, studies have shown that life-birth rate

after auto transplantation of frozen-thawed ovarian tissue is

negatively correlated with increasing age and low AFC, which

could indicate that low AMH at the time of cryopreservation
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plays a prognostic role (114, 115). To date, there are no reports on

achieved pregnancies (or live births) in patients with TS after auto

transplantation of ovarian tissue.

In prepubertal girls, harvesting of ovarian tissue usually includes

laparoscopic retrieval of one of the ovaries inducing a small risk of

bleeding and infection. If pregnancy cannot be achieved after auto

transplantation, cryopreservation may induce false hope and later

psychosocial harm (116). Apart from these ethical issues, the removal

of one ovary may potentially cause even earlier loss of valuable

ovarian function. Importantly, hidden nests of viable 46,XX oocytes

with the potential of future fertilization may get lost.

Taking these considerations into account, we have designed a

national protocol offering selected girls and adolescents with TS

ovarian cryopreservation; The Danish Turner Cryopreservation

(DANTE) Study (start of inclusion planned in 2023). Ideally, only

patients with sufficient numbers of primordial follicles who in the
Frontiers in Endocrinology 12
future will experience POI before time of desired pregnancy will

benefit from this intervention. In The DANTE Study, all Turner

patients (2-18 years) are invited to participate, see Flow-diagram

(Figure 14). The patient is initially screened for ovarian activity

including Tanner staging by physical examination, assessment of

circulating concentrations of reproductive hormones (e.g. AMH,

FSH, LH, Inhibin B, estradiol), and transabdominal ultrasound of

the ovaries to assess the number of antral follicles. If ovarian activity is

very low (e.g. AMH < 2SD) or undetectable, the patient is not offered

cryopreservation. Prepubertal girls will be followed longitudinally

until POI can be confirmed at time of expected puberty.

In case of ovarian activity, the patient and her family receive

information at a visit where both the pediatrician and a gynecologist

participate. At this meeting we inform of expected fertility potential

with and without ovarian cryopreservation based on current

knowledge. Based on the initial screening, we will discuss the
A
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FIGURE 13

(A) Serum AMH concentrations shown as standard deviation scores according to age. Dots indicate individual values and longitudinal courses are
connected by lines. All girls were divided into AMH quintiles (5 groups), based on the individual mean SD scores. Blue: 1st quintile, red: 2nd,3rd,4th
quintile, green: 5th quintile. (B) Right side: Correlations (Spearman´s Rho, r value) between serum AMH concentrations (pmol/L) in infancy, mid-
childhood, puberty and adolescence, all p < 0.001. Left side: Correlations (Spearman´s Rho, r value) between serum AMH concentrations and the
number of small follicles (<4mm) assessed by transabdominal ultrasound. Figure based on data from (25).
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chances of remaining ovarian function in adult life without

intervention, if we expect to find enough follicles by

cryopreservation, details about the procedure of future auto

transplantation, the success rates in other groups of patients, and

we will describe alternative methods of establishing a family (oocyte

donation, adoption).

As an alternative strategy for fertility preservation in

adolescents and young adults with TS, oocyte vitrification after

ovarian stimulation could be considered (118–120). The first live

birth after vitrification of oocytes in a woman with TS was recently

reported (121).
Transition clinic

During the past 20 years, we have established joint clinics for

adolescent patients in our tertiary center between pediatric

endocrinologists and gynecologists as well as adult endocrinologists,

as also recommended in the international guideline (122). We have

seen nearly 600 patients in these joint transition clinics. Patients with

TS are primarily transferred to the gynecological department after

adolescence. If they suffer from hypothyroidism or other endocrine

conditions, they are also transferred to the department of

endocrinology. The pediatrician and the gynecologist/endocrinologist

see the patients and their families at a joint consultation in familiar

surroundings at the pediatric department one or more times before the

age of 18 years. The content of the joint visit is highly individual. Usual
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topics include e.g. treatment of menstrual irregularities, information on

hormone replacement therapy (HRT) including dose and treatment,

contraception, sexually transmitted diseases, HPV vaccine, and fertility

options. This is also an opportunity to evaluate transabdominal

ultrasound of the internal genitalia with special focus on uterine

growth by estradiol treatment. The patients are informed about what

to expect after the transfer from pediatric to adult follow up. Many

adolescents have reservations concerning gynecological examinations,

and the transition clinic is an opportunity to stress that this is not a

mandatory part of consultations at the gynecological department. We

experience that the patients are better prepared and more confident to

change to an adult setting, reducing the risk of drop out after referral.

However, also the pediatricians and colleagues at the adult departments

benefit mutually professionally and scientifically from these joint

consultations facilitating sharing of knowledge in rare endocrine

disorders, updates on guidelines from other disciplines, novel and

emerging treatment options, new evidence, organization of

departments, and inspiration to research projects bridging

adolescents and young adult patients.
Summary

Girls with TS are at increased risk of premature ovarian

insufficiency. Many of these patients are diagnosed in mid-

childhood, but due to central inhibition of the HPG axis, it is

difficult to evaluate ovarian activity in girls prior to pubertal onset.
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FIGURE 14

Study design of The Danish Turner Cryopreservation Study (DANTE). All Danish Turner Syndrome patients 2-18 years will be invited to participate.
From an initial evaluation of ovarian function (Karyotype, Tanner staging, menstrual cycle regularity, circulating levels of reproductive hormones,
transabdominal ultrasound and MRI of the ovaries) we will evaluate if ovarian function is normal or very low/absent. The patient will only be offered
ovarian cryopreservation if parameters of ovarian function are within age-matched reference ranges. Based on thorough information concerning
fertility potential including estimation of risk of POI before adulthood, the patient will decide for cryopreservation. The patient can opt out
cryopreservation and monitor ovarian function closely (I) to select cryopreservation at a later stage if ovarian function declines (II and III). If initial
evaluation of ovarian function reveals very low or no ovarian activity, the patients will not be offered cryopreservation (IV). POI (premature ovarian
insufficiency): Prepubertal girls: AMH < -2SD and FSH > 2SD, transabdominal ultrasound: streak gonads or antral follicle count (AFC) < 10th
percentile (57, 64). Post/ peripubertal: No spontaneous puberty, pubertal progression stopped or markedly delayed (117), or primary/secondary
amenorrhea. Furthermore: AMH, E2 and inhibin B < -2SD, FSH > 2SD, streak ovaries and AFC < 10th percentile (57, 64).
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Studies of ovarian morphology and reproductive hormones in

healthy girls support that AMH is produced by granulosa cells

surrounding small ovarian follicles. Even prior to pubertal onset,

these follicles are continuously recruited from the pool of

primordial follicles independently of gonadotropin-stimulation.

Circulating levels of AMH are predictive of the reproductive

lifespan in healthy adult women. Our findings strongly indicate that

the inter-individual variation of AMH in girls is indicative of the

number of remaining primordial follicles – an important outcome

in epidemiological research evaluating factors affecting prenatal

establishment of the primordial follicle pool. Despite strong

evidence of AMH as a quantitative marker of ovarian follicles,

AMH does not predict the specific age at menopause for a given

woman, nor is low AMH associated with reduced fecundability in

young healthy women.

Marked inter-individual variation but little intra-individual

variation of AMH in girls both reflects and predicts the number

of small antral follicles. Thus, girls maintain their relative level of

ovarian activity from follicles growing independently from FSH

stimulation through infancy, childhood, puberty and into

adolescence. Limited longitudinal data suggests AMH as a unique

predictor of premature ovarian insufficiency in TS patients at risk of

accelerated loss of follicles. AMH is therefore a key parameter when

counseling patients and their families about future ovarian function.

The karyotype of the patient as well as consecutive assessment of

circulating levels of inhibin B and FSH may add to the predictive

value of ovarian function of a given patient. This information is

essential when considering whether the patient could benefit from

ovarian cryopreservation.
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Thus, the clinical use of AMHhas been expanded from amarker of

testicular tissue in rare DSD patients to a marker and predictor of

ovarian activity used at a daily basis in pediatric endocrinology.
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