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REVIEWED BY

Jan Mieszkowski,
Gdansk University of Physical Education
and Sport, Poland
Gino Seravalle,
Italian Auxological Institute (IRCCS), Italy

*CORRESPONDENCE

Tadashi Nakagawa

tnakagaw@rs.socu.ac.jp;

tnakagaw@med.tohoku.ac.jp

Toru Hosoi

hosoi@rs.socu.ac.jp

RECEIVED 23 February 2023

ACCEPTED 06 July 2023

PUBLISHED 20 July 2023

CITATION

Nakagawa T and Hosoi T (2023) Recent
progress on action and regulation of
anorexigenic adipokine leptin.
Front. Endocrinol. 14:1172060.
doi: 10.3389/fendo.2023.1172060

COPYRIGHT

© 2023 Nakagawa and Hosoi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 20 July 2023

DOI 10.3389/fendo.2023.1172060
Recent progress on action and
regulation of anorexigenic
adipokine leptin

Tadashi Nakagawa1,2* and Toru Hosoi1*

1Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City
University, Sanyo-Onoda, Yamaguchi, Japan, 2Division of Cell Proliferation, ART, Graduate School of
Medicine, Tohoku University, Sendai, Miyagi, Japan
Organismal energy balance is controlled by inter-tissue communication mediated

by the nervous system and hormones, the disruption of which causes metabolic

syndrome exemplified by diabetes and obesity. Fat-storing adipose tissue,

especially those located in subcutaneous white adipose tissue, secretes leptin in

a proportion of fat mass, inhibiting the accumulation of organismal fat by

suppressing appetite and promoting energy expenditure. With a prevalence of

obesity that exhibits hyperleptinemia, most of the investigation on leptin has been

focused on how it works and how it does not, which is expected to be a clue for

treating obesity. In contrast, how it is synthesized, transported, and excreted, all of

which are relevant to the homeostasis of blood leptin concentration, are notmuch

understood. Of note, acute leptin reduction after hyperleptinemia in the context of

obesity exhibited a beneficial effect on obesity and insulin sensitivity, indicating that

manipulation of circulating leptin level may provide a therapeutic strategy.

Technological advances such as “omics” analysis combined with sophisticated

gene-engineeredmice studies in the past decade enabled a deeper understanding

of leptin’s action inmore detail. Here, we summarize the updated understanding of

the action as well as regulation of leptin and point out the emerging direction of

research on leptin.
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Introduction

Obesity is associated with several metabolic syndromes and its rapid increase in

developed countries is now a public concern (1). Obesity is defined by the value of body

mass index (BMI > 30) which is calculated by body weight divided by the square of a

person’s height. Although fat accumulation in the adipocytes is an end phenotype of this

disease, a genome-wide association study of more than 300,000 individuals identified

multiple BMI-associated loci that affect gene expression primarily in the neurons (2). In

addition, the classic study showed that the lesion in the hypothalamus causes obesity in

mice (3). These data suggest that neurons in the hypothalamus are responsible for the

pathogenesis of obesity.
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In both human beings and mice, the maintenance of organismal

fat equilibrium relies upon two distinct types of adipose tissues:

white adipose tissue (WAT), responsible for fat uptake and release

as needed, and brown adipose tissue (BAT), which utilizes fat for

heat generation (4–7). The distribution of BAT is relatively limited,

whereas WAT is dispersed throughout the body, categorized into

two main types: subcutaneous (sWAT) and visceral (vWAT). While

sWAT serves as the primary site for fat storage, vWAT also

accumulates fat when an excess amount is present in the body.

Emerging evidence further elucidates the functional heterogeneity

of adipose tissue determined by its anatomical localization (8).

Leptin is a hormone secreted from the adipocyte, circulates in the

bloodstream, and acts on the neurons in the hypothalamus and other

brain regions, leading to the inhibition of appetite, enhancement of

energy expenditure through activating BAT, and lipolysis in WAT

(9). Therefore, leptin deficiency in humans and mice causes obesity

through the disruption of these processes (10, 11). Clinical studies

showed that the administration of recombinant human leptin or

leptin analog (metreleptin) reduced BMI in subgroups of obese

adults, revealing that obese patients with high leptin in their blood

may not efficiently respond to exogenous leptin (12–14). Therefore, a

deeper understanding of leptin regulation and action is necessary to

develop leptin-based therapeutics against obesity.

This review overviews the recent advancement of leptin

regulation and action, especially focusing on the “omics” analyses

and state-of-the-art gene-engineered mice studies. Finally, how

knowledge of leptin regulation and action can be translated to the

development of anti-obese therapy will be discussed.

Leptin synthesis and secretion

Gene expression is regulated by transcription factors that

associate with open chromatin regions called enhancers (15).
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Assessment of in vivo enhancer activity with leptin-bac luciferase

mice and genome-wide analysis of open chromatin regions identified

two loci that contribute to adipocyte selective expression of leptin -

LE1 (located at −16.5 to −16.1 kb upstream of the leptin transcription

start site) and LE2 (located at +13.6 to +13.9 kb downstream of the

leptin transcription start site) (Figure 1) (16, 17). Unbiased proteomic

analysis to identify proteins that bind to these regions uncovered

retinoid X receptor alpha (RXRa), nuclear factor I (NFI), and early B
cell factor (EBF) that are critical for leptin expression (Figure 1) (17).

CCAAT/enhancer binding protein a (C/EBPa) and specificity

protein 1 (SP1) (18), FOS like 2 (FOSL2) (19), nuclear

transcription factor Y (NFY) (20), and early growth response 1

(EGR1) induced by insulin (21) have been also reported to play a

role in leptin expression and how these factors collaborate with each

other to achieve optimal expression of leptin remains to be

investigated. Interestingly, Dallner et al. identified long non-coding

RNA, named LncOb, transcribed from further upstream of the leptin

transcription start site (–28 kb) than LE1, that recruits RNA-binding

proteins to leptin gene promoter to increase leptin expression

(Figure 1) (17). How these RNA-binding proteins regulate leptin

expression is not clarified.

As anticipated, leptin levels exhibit elevation during the wakeful

phase when organisms consume nutrients and increase fat

accumulation in the body. Furthermore, circadian proteins have

been also demonstrated to actively participate in the oscillation of

leptin expression. Consequently, the elimination of the circadian

master gene Bmal1 specifically in adipocytes in mice disrupts the

nocturnal surge of leptin expression and the diurnal decline.

Mechanistically, it has been revealed that heightened levels of

BMAL1 during the daytime compete with C/EBPa for binding to

the leptin promoter, thereby exerting a regulatory influence (22).

Regarding the various types of WAT, it is worth noting that

leptin mRNA levels and secretion are twofold higher in
FIGURE 1

Expression, secretion, and excretion of leptin. EBF and NFI as well as long noncoding RNA lncOb cooperatively induce leptin gene expression in the
white adipose tissue (WAT). Leptin secretion from WAT is negatively regulated by b-adrenergic receptors activated by efferent signals from the brain
in response to leptin. A large proportion of leptin is excreted from the kidney. Cannabinoid-1 receptor (CB1R) inverse agonist reduces leptin
secretion possibly through reduction of sympathetic tone that is indicated by a decrease in adrenaline in WAT. CB1R inverse agonist also promotes
leptin excretion, indicating the involvement of the endocannabinoid system in these processes.
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subcutaneous sWAT compared to vWAT (23). Given the larger size

of sWAT compared to vWAT, it is conceivable that fat mass may

influence the expression of leptin levels (23), although the

underlying mechanisms remain poorly understood.

Leptin secretion from the adipocytes is negatively regulated by

the WAT-innervating sympathetic nervous system (SNS) (24). Since

this SNS is activated by leptin stimulation in the hypothalamus (25,

26), it seems likely that leptin downregulates its own secretion via the

neuro-adipose axis (Figure 1). HFD was shown to reduce adrenaline

in WAT (27), which might contribute to hyperleptinemia by

boosting leptin secretion. Importantly, this reduction of adrenaline

is mitigated by the peripheral cannabinoid-1 receptor (CB1R)

inverse agonist (27), providing the endocannabinoid system as a

therapeutic target as described below (Figure 1).
Leptin excretion

Leptin removal from the circulation is mediated by glomerular

filtration in the kidney (28). The following tubular uptake and

metabolism of leptin are mediated by endocytic receptor megalin

(29, 30). The efficacy of these processes is reduced in high-fat diet

(HFD)-induced obese (DIO) mice, indicating that impaired leptin

removal, at least in part, contributes to hyperleptinemia (27, 31). To

make matters worse, as hyperleptinemia contributes to the

pathogenesis of chronic kidney disease (CKD) (32, 33),

hyperleptinemia further exacerbates hyperleptinemia by impairing

leptin excretion, forming adverse positive feedback to increase

blood leptin levels . From the therapeutic point , the

endocannabinoid system may be useful, since the CB1R inverse

agonist not only increases adrenaline in WAT, but also promotes

glomerular filtration and increases megalin expression, resulting in

the decreased leptin level in DIO mice (27).
Leptin transport to the
brain parenchyma

Primary sites of leptin action localize in the brain as discussed

below. Therefore, leptin needs to be transported to the central

nervous system. It is reported that specialized hypothalamic glia

named tanycytes internalize blood-borne leptin and release it to

CSF, enabling the leptin to reach its sites of action (34). Previously,

one variant of the leptin receptors (LepR), ObRa, was suggested to

be a transporter of leptin (35, 36), which is supported by a decreased

ratio of CSF/plasma leptin level in mice with gene deletion of ObRa

(37). Therefore, the involvement of ObRa in tanycytes in leptin

transport would be worth investigating. The extent to which

hypothalamic glia- and choroid plexus-mediated transport

contributes to CSF leptin level awaits to be examined.
Leptin action – receptor system

There are at least six variants of LepR (38) - ObRa to ObRf -

among which ObRa is the most abundantly expressed in the brain
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except for the hypothalamus where ObRb is dominant (39). The

fact that ObRb-specific mutant mice exhibit almost identical

phenotypes to those with null mutations of all the variants

indicates that ObRb is critical for leptin action (40, 41). In line

with this assumption, ObRa-specific knockout mice only manifest a

small increase in body weight only when fed an HFD (40).

The functionality of ObRb in energy homeostasis is attributable

to its tyrosine phosphorylation sites allowing for the activation of

the Janus kinase 2-signal transducer and activator of transcription 3

(JAK2–STAT3) signal transduction pathway (9, 38, 42). Peripheral

leptin administration induces rapid increases in phosphorylated

STAT3 in several brain regions such as the hypothalamus and brain

stem (43), indicating that those regions are responsible for leptin

action in maintaining energy balance.
Leptin action – neural networks

The motivation to eat is driven by neural networks which can be

functionally divided into three sub-modules; the autonomic module

that senses nutritional or energy reserve status in the organism, the

reward module that establishes the “liking” or “wanting” properties

of eating-related stimuli, and the executive module responsible for

the decision to eat (44). The best-characterized function of leptin is

related to the autonomic module in which it inactivates Agouti-

related peptide (AgRP)/Neuropeptide Y (NPY) neurons, while it

stimulates Pro-opiomelanocortin (POMC)/Cocaine- and

amphetamine-regulated transcript (CART) neurons, resulting in

the reduction of appetite as well as increases in locomotion,

thermogenesis, and lipolysis (9, 38, 42). Deletion of LepR gene

specifically in AgRP/NPY, but not in POMC/CART, neurons in the

adult mice (to avoid compensatory effects of gene deletion) causes

obesity under a standard chow diet (45–47). On the other hand, loss

of LepR in POMC/CART, but not AgRP/NPY, neurons in the adult

mice promotes obesity only when fed HFD (43–45) These results

suggest that the primary target of leptin is context-dependent.

Consistently, a recent report shows that fatty acids are involved in

the activation of POMC/CART neurons (48). In addition, leptin

was demonstrated to activate ventral dorsomedial hypothalamus

(vDHM)-located Gamma-aminobutyric acid (GABA) neurons that

inactivate AgRP/NPY neurons (45) and mediobasal hypothalamus

(MBH)-located SH2B-expressing neurons that increase the tone of

SNS as described below (49). Furthermore, it negatively controls

lateral hypothalamus (LH)-localized GABA neurons that inactivate

Proenkephalin (Penk)-expressing dorsolateral periaqueductal gray

(dlPAG) neurons, leading to increased level of food intake (50)

(Figure 2). Of note, selective deletion of LepR in LH neurons in

adult mice causes obesity only under HFD conditions, reinforcing

the notion that the primary target of leptin is context-

dependent (50).

The thermogenic and lipolytic effects of leptin are thought to be

largely mediated through BAT and WAT-innervating SNS,

respectively, as physical or genetic denervation suppresses leptin-

induced lipolysis gene expression in WAT (25) and thermogenesis

in BAT (51). Leptin positively regulates these SNS neurons through

MBH-localized AgRP/NPY-, POMC/CART-, and SH2B-expressing
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neurons since deletion of LepR in those neurons results in obesity

with the inefficiency of thermogenesis and lipolysis (Figure 2)

(45–47).

Besides the autonomic module, it is also reported that leptin

directly acts on striatal dopamine (DA) neurons involved in the

reward module (52, 53). Recently, it is revealed that LepR-

expressing striatal cholinergic interneurons (ChIs) mediate striatal

DA release by leptin (54).
Therapies acting on leptin function as
anti-obesity drugs

Leptin has a profound effect on the reduction of body weight in

obese patients who exhibit a low level of circulating leptin;

designated as type 1 obesity (14). However, its effect is barely

detectable in people with hyperleptinemia (type 2 obesity),

limiting the utility of leptin as an anti-obesity drug (14). Since

type 2 obesity accounts for the great majority of obese patients,

leptin resistance needs to be overcome. To this end, recovery of

leptin sensitivity or bypass of leptin signaling would be two

main strategies.

To find leptin sensitizers, it is critical to understand how the

response to leptin is diminished in LepR-expressing neurons in the

setting of obesity. Utilizing ObRb-expressing cultured neurons we

established to circumvent the heterogeneity of tissue samples, we

reported that endoplasmic reticulum (ER) stress which is known to be

activated under the obese condition inhibits leptin signaling through

protein tyrosine phosphatase non-receptor type 1 (PTPN1, also

known as PTP1B) that dephosphorylates leptin-induced phospho-

JAK2 (55). The negative effects of ER stress on leptin signaling in the

LepR-expressing neurons in mouse brains were also reported by other

research groups (56, 57), reinforcing the notion that mitigating ER
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stress can lead to leptin sensitization. Our subsequent studies

identified fluvoxamine (58), flurbiprofen (59), caffeine (60), and

biochanin A (61) that attenuate ER stress and enhance leptin

signaling, providing the evidence that these compounds are

potential therapeutic drugs. Other candidates targeting ER stress

include 4-phenyl butylate and tauroursodeoxycholic acid (56),

celastrol (62), and withaferin A (63).

As phosphorylation-induced activation of JAK/STAT plays an

essential role in LepR signaling, reduction of JAK/STAT attenuator

might be effective to augment leptin sensitivity. In addition to

PTPN1 which inhibits JAK2 activation as mentioned above, protein

tyrosine phosphatase non-receptor type 2 (PTPN2, also known as

TCPTP) inhibits leptin signaling by dephosphorylating STAT3

(64). In vivo significance of these negative regulators in leptin

resistance was demonstrated by combined deletions of Ptpn1/

ptpn2 genes in adult obese mice that reinstated the leptin

signaling (65). Importantly, simultaneous inhibition of PTPN1

and PTPN2 by intranasal administration of RU486 and claramine

rescues leptin sensitivity in obese mice (65), suggesting that these

phosphatases are therapeutic targets, and intranasal administration

could circumvent the transport barrier of drugs across the BBB to

the hypothalamus.

In contrast to JAK/STAT attenuators, JAK/STAT activators

might be harnessed as leptin sensitizers. Support for this strategy

was provided by overexpression of a potent JAK2 activator SH2B

adaptor protein 1 (SH2B1) in the hypothalamus (49), as well as

overexpression of LepR activator growth factor receptor bound

protein 10 (Grb10) in the AgRP/NPY and POMC/CART neurons

(47), both of which protected against obesity in DIO mice

ObRb leptin receptor is subjected to inactivation in obese

conditions as exemplified by the cleavage of its leptin-binding

regions in the extracellular domain by matrix metalloprotease 2

which is secreted by astrocytes and AgRP neurons under the
FIGURE 2

Representative leptin-responsible hypothalamic neurons. Leptin induces loss of appetite, lipolysis, and thermogenesis primarily through these neural
networks. There might be more complex interactions between these neurons. Leptin-induced activation and inhibition are represented as circled
plus mark and circled minus mark, respectively. dlPAG, dorsolateral periaqueductal gray; LH, lateral hypothalamus; ARC, arcuate nucleus; PVN,
paraventricular nucleus; MBH, mediobasal hypothalamus; Ach, acetylcholine; NE, norepinephrine; GABA, Gamma-aminobutyric acid; AgRP, agouti-
related peptide; NPY, neuropeptide Y; POMC, proopiomelanocortin; CART, Cocaine- and amphetamine-regulated transcript. Of note, ARC is a part
of MBH.
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conditions of obesity (66). Therefore, a forced increase in the ObRb

levels might not improve leptin resistance.

Counterintuitively, emerging evidence indicates that partial

leptin reduction serves as a leptin sensitizer (67), based on the

finding that transgenic overexpression of leptin in adult DIO mice

paradoxically led to weight gain (68). Consistently, administration

of leptin antibody and partial deletion of leptin genes (68), CB1R

inverse agonist (30), and auranofin (69) in adult DIO mice, all of

which achieve a partial reduction of circulating leptin levels, lead to

body weight reduction in a manner dependent on intact leptin

signaling. Even without any manipulation, time-restricted feeding

was recently shown to reduce leptin expression (70), providing a

feasible means to reduce leptin levels. Whether these compounds or

methods can be applied to human obese patients awaits further

investigation with emphasis on side effects.

Several studies have documented the impact of dietary

composition on leptin activity in humans (71). As an illustration,

a high-protein diet has been shown to decrease appetite and body

weight without inducing leptin, thereby indicating enhanced leptin

sensitivity (72). Omega-3 fatty acids have also been observed to

lower fat mass with increased or unchanged leptin levels in obese

individuals, possibly due to partial reduction-induced recovery of

leptin action (73, 74). These findings suggest the possibility of

regulating leptin activity by monitoring dietary intake.

The caveat to the reduction of leptin levels is also raised.

Lipectomy represents the most uncomplicated approach to

reducing adipose tissue. However, the consequential reduction in

leptin levels is postulated to underlie the phenomenon of weight

regain (75), highlighting the necessity of maintaining adequate

levels of leptin following acute adiposity loss. Whichever it is, the

utilization of interventions that modulate leptin levels may

potentially disrupt the hormonal equilibrium of the organism,

thereby posing a potential hazard of unanticipated adverse

reactions. Hence, meticulous deliberation is warranted when

contemplating the administration of such agents.
Frontiers in Endocrinology 05
Bypassing leptin signaling through reducing fat mass and

enhancing thermogenesis was successful in mouse models in

which WAT-innervating sympathetic neurons are optogenetically

activated (25) and BAT-innervating neurons are genetically

increased (49), respectively. These findings may be the basis of

the future development of leptin-bypassing therapy for obesity.
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