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Background: Polycystic ovary syndrome (PCOS) is a complex, multifactor

disorder in women of reproductive age worldwide. Although RNA editing may

contribute to a variety of diseases, its role in PCOS remains unclear.

Methods: A discovery RNA-Seq dataset was obtained from the NCBI Gene

Expression Omnibus database of granulosa cells from women with PCOS and

women without PCOS (controls). A validation RNA-Seq dataset downloaded

from the European Nucleotide Archive Databank was used to validate differential

editing. Transcriptome-wide investigation was conducted to analyze adenosine-

to-inosine (A-to-I) RNA editing in PCOS and control samples.

Results: A total of 17,395 high-confidence A-to-I RNA editing sites were

identified in 3,644 genes in all GC samples. As for differential RNA editing,

there were 545 differential RNA editing (DRE) sites in 259 genes with

Nucleoporin 43 (NUP43), Retinoblastoma Binding Protein 4 (RBBP4), and

leckstrin homology-like domain family A member 1 (PHLDA) showing the most

significant three 3′-untranslated region (3′UTR) editing. Furthermore, we

identified 20 DRE sites that demonstrated a significant correlation between

editing levels and gene expression levels. Notably, MIR193b-365a Host Gene

(MIR193BHG) and Hook Microtubule Tethering Protein 3 (HOOK3) exhibited

significant differential expression between PCOS and controls. Functional

enrichment analysis showed that these 259 differentially edited genes were

mainly related to apoptosis and necroptosis pathways. RNA binding protein

(RBP) analysis revealed that RNA Binding Motif Protein 45 (RBM45) was

predicted as the most frequent RBP binding with RNA editing sites.

Additionally, we observed a correlation between editing levels of differential

editing sites and the expression level of the RNA editing enzyme Adenosine

Deaminase RNA Specific B1 (ADARB1). Moreover, the existence of 55 common

differentially edited genes and nine differential editing sites were confirmed in the

validation dataset.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1170957/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1170957/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1170957/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1170957/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1170957&domain=pdf&date_stamp=2023-07-21
mailto:cjh_bio@hotmail.com
mailto:myp112@163.com
https://doi.org/10.3389/fendo.2023.1170957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1170957
https://www.frontiersin.org/journals/endocrinology


Kong et al. 10.3389/fendo.2023.1170957

Frontiers in Endocrinology
Conclusion: Our current study highlighted the potential role of RNA editing in

the pathophysiology of PCOS as an epigenetic process. These findings could

provide valuable insights into the development of more targeted and effective

treatment options for PCOS.
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Introduction

RNA editing is an epigenetic alteration of the RNA nucleotide

sequence with nucleotide insertions, deletions, or substitutions (1).

In mammals, canonical RNA editing includes adenosine-to-inosine

(A-to-I) editing and cytidine-to-uridine (C-to-U) editing (2).

Altered A-to-I editing has been implicated in various diseases,

including autoimmune disorders, cardiovascular diseases,

neurological diseases, and cancers, suggesting its involvement in

the molecular mechanisms of these pathological processes (3–6).

Polycystic ovary syndrome (PCOS) is a complex multigenic

disorder characterized by excessive androgen levels and ovarian

dysfunction (7). It is the most common endocrine-metabolic

disorder in women of reproductive age in the world (8).

Granulosa cells (GCs) play a crucial role in the pathogenesis of

PCOS. Studies have demonstrated that atrial natriuretic peptides

can inhibit GC apoptosis to modulate ovarian function in PCOS (9).

Furthermore, emerging studies show epigenetic modifications and

altered gene expression patterns in GCs from PCOS women and

mouse models, suggesting a potential contribution of epigenetic

mechanisms to PCOS development (10, 11). However,

understanding A-to-I RNA editing in the context of PCOS

remains limited. Further investigation is needed to elucidate the

role of A-to-I RNA editing in PCOS development and progression.

To identify A-to-I RNA editing associated with PCOS, we

performed a transcriptome-wide analysis of RNA-Seq data from

ovarian GCs and validated the findings using a cross-cohort

approach. Our findings revealed dramatic A-to-I RNA editing

alterations in PCOS compared to controls and underlined their

substantial role in the epigenetic regulation of PCOS.
Materials and methods

Data collection

We searched the OmicsDI database and found two RNA-Seq

datasets of GCs from PCOS and control women. The dataset

GSE138518 retrieved from the NCBI Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo) database was used for

RNA editing event discovery and consisted of GCs from adult

women, including five with PCOS and six controls without PCOS

undergoing in vitro fertilization treatments (IVF) (12). In addition,
02
the validation dataset PRJNA762274 was retrieved from the

European Nucleotide Archive Databank (https://www.ebi.ac.uk/),

which contained GCs from four PCOS patients and four controls

undergoing IVF or intracytoplasmic sperm injection (13). The

processes of RNA extraction, library construction, and RNA

sequencing were described in the original studies.
RNA-Seq data processing

After the raw sequencing data were retrieved, FASTQC was first

used to analyze the raw data for quality control. Adaptor and low-

quality sequences were removed using FASTP Version 0.23.4 (14).

RNA STAR (Version 2.7.0e) was used to map sequencing reads to

the human reference genome (UCSC hg38) and generate alignment

files in Binary Alignment Map (BAM) format (15). The BAM files

were processed using SamTools (Version 1.9) to remove optic

duplications and retain only reads uniquely mapped to the

human reference genome (16). GATK (Version 4.1.3) was used to

recalibrate the base quality scores of the BAM files by following the

instructions provided in the GATK best practice guidance (17).
Identification of high-confidence A-to-I
RNA editing events

Variant calling was then conducted to identify candidates for

RNA editing events. Single-nucleotide variation (SNV) was called

from the BAM files by using VarScan (Version 2.4.3) as described in

our previous study (18). The variant calling criteria were defined as

follows: a minimum base quality of 25, a total sequencing depth of

at least 10, an alternative allele depth of 2 or more, and an

alternative allele frequency (AAF) of 1% or higher. To eliminate

potential false-positive SNVs, VarScan was employed with its

default parameters to filter and remove them. The SNVs were

then annotated using the Ensembl Variant Effect Predictor (VEP)

(19). SNVs were further filtered and removed according to the

criteria as follows unless annotated as RNA editing sites in the

REDIportal V2.0 database: (1) located in homopolymer runs ≥ five

nucleotides (nt), simple repeats, or the mitochondria, (2) within six

nt from splice junctions, one nt from insertions or deletions, or 4%

to the ends of reads; (3) annotated in the dbSNP database Build 142;

(4) more than 90% of the samples had an AAF equal to 100% or
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between 40% and 60% (20–22). The remaining high-confidence A-

to-I (recognized as A-to-G transition in the RNA-Seq reads) RNA

editing events were kept if the editing levels were observed ≥ 1% in

at least two samples (20, 21).
Gene expression quantification

To quantify the gene expression levels, FeatureCounts Version

2.0.1 was used to calculate the pseudo-counts of gene expression

from the BAM files, and EdgeR (Version 3.7) was then used to

calculate the value of transcripts read per thousand bases per

million mappings (TPM) for each gene (23, 24).
Principal component analysis

To evaluate how RNA editing could contribute to the difference

between PCOS and controls, the principal component analysis

(PCA) of A-to-I RNA editing events was performed using the

function prcomp of R (Version 3.6.3) and visualized using the

ggplot2 (Version 2.2.1) package.
Gene function enrichment analysis

To understand the possible functional relevance of RNA

editing, gene ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways of edited genes were analyzed

using Enrichr (25). Items with enrichment p < 0.05 were considered

significant and visualized using the online tools provided at the

website (http://www.bioinformatics.com.cn/).
Prediction of RNA secondary structures
and RNA binding protein binding

To evaluate the potential functional impact of RNA editing, the

RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/

RNAWebSuite/RNAfold.cgi) was used to predict secondary

structures of single-stranded RNA sequences surrounding RNA

editing sites (26, 27). To further understand the potential functional

impact of RNA editing, RBPmap (http://rbpmap.technion.ac.il) was

used to predict the binding of RNA binding protein (RBP) to

differential RNA editing sites (28). The results of RBP binding

prediction were visualized using the wordcloud package

(Version 2.6).
Statistical analysis

To identify differential RNA editing, the intergroup RNA

editing levels were compared using the generalized linear model

(GLM), and the likelihood ratio test (LRT) was used. The t-test was

used to compare the gene expression intergroup levels. p < 0.05 was
Frontiers in Endocrinology 03
used as the significance cutoff. The correlation between RNA

editing and gene expression was analyzed using the Spearman’s

correlation method to calculate the correlation coefficient (r) and

p-value.
Results

Identification of A-to-I RNA editing events
in GCs

Our analysis identified 17,395 high-confidence A-to-I RNA

editing events in 3,644 genes in GCs (Figure 1A). The SNV

density across various chromosomes is shown in Supplementary

Figure S1. Regarding the genomic distribution of the identified

editing sites, the majority (56.5%) were annotated as intronic

variants, while 24.5% were located in the 3′-untranslated regions

(3′UTR). The remaining variants were distributed across other

regions (Figure 1B). Notably, 65.5% of all editing sites were

located in Alu repetitive elements (Figure 1C). Sorting intolerant

from tolerant (SIFT) algorithm was utilized to predict the functional

impact of missense variants, revealing that 50.9% of the missense

variants were predicted to be deleterious (including both deleterious

and low confidence deleterious variants) and might potentially

affect the encoded protein (Figure 1D; Supplementary Table S1).

We then conducted a motif analysis of the sequence between 6

bp upstream and downstream of the editing sites. Our findings

indicated that in most categories, G was suppressed 1 bp upstream

of the editing sites (Supplementary Figure S2).
Comparison between PCOS and control
GCs identified PCOS-associated A-to-I
RNA editing

By comparing the RNA editing between PCOS and control GCs,

a lower number of editing sites and genes unique to PCOS was

observed. In total, 428 genes were uniquely edited in controls,

whereas 76 genes were uniquely edited in PCOS. Likewise, 7,464

editing sites were unique to controls, whereas 312 were unique to

PCOS (Figures 2A, B).

In the GLM and LRT results, 545 sites in 259 genes exhibited

differential A-to-I RNA editing between PCOS and control GCs

(Figure 2C; Supplementary Table S2). These differential RNA

editing (DRE) sites included various consequence types, with the

majority (66.24%) located in the 3′UTR and a significant portion

(24.95%) in intronic regions (Figure 2D). The most significant 3′
UTR variants were found in Nucleoporin 43 (NUP43),

Retinoblastoma Binding Protein 4 (RBBP4), and leckstrin

homology-like domain family A member 1 (PHLDA), including

NUP43:chr6:149725375, RBBP4:chr1:32680141, and PHLDA1:

chr12:76027474 (Figures 2E–G). The top three intronic variants

were found in Nuclear Receptor Subfamily 5 Group A Member 2

(NR5A2), CUGBP Elav-Like Family Member 1 (CELF), and Filamin

B, (FLNB) , including NR5A2 :chr1:200074554, CELF1 :
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chr11:47481265, and FLNB:chr3:58166381 (Figures 2H–J). In

addition, we also identified two synonymous variant sites in

Tubulin Alpha 1b (TUBA1B), and MX Dynamin Like GTPase 1

(MX1) , including TUBA1B :chr12:49128795 and MX1 :

chr21:41452734 (Figures 2K, L).

Additionally, we performed PCA using these differential RNA

editing sites. The results showed that PC1 and PC2 accounted for

73.28% and 13.03% of the total variance, respectively

(Supplementary Figure S3).
Correlation analysis between PCOS-
associated RNA editing and gene
expression levels

We then conducted the correlation to explore the relationship

between RNA editing and gene expression levels. Our findings

revealed significant correlations between editing sites and gene

expression levels for 20 DRE sites (p < 0.05). Among these sites,

eight showed a positive correlation, while the remaining 12

exhibited a negative correlation. Noteworthy, the top three editing

sites with positive correlations were found in Hook Microtubule

Tethering Protein 3 (HOOK3), Rhomboid Domain Containing 2
Frontiers in Endocrinology 04
(RHBDD2), and Transmembrane Protein 16 (TMEM165),

including HOOK3 :chr8:43021004 (r = 0.79), RHBDD2 :

chr7:75883398 (r = 0.8), and TMEM165:chr4:55412273 (r = 0.84)

(Figures 3A–C).

On the other hand, sites in FLNB, Hyccin PI4KA Lipid Kinase

Complex Subunit 2 (HYCC2, also called FAM126B), and

MIR193BHG, including, FLNB:chr3:58166381 (r = −0.89),

FAM126B:chr2:200977846 (r = −0.84), and MIR193BHG:

chr16:14330019 (r = −0.78) showed the top three significant

negative correlations with gene expression (Figures 3D–F). The

editing levels of these 20 sites are shown in Supplementary Figure S4.

Furthermore, we examined the expression levels of genes

containing the identified editing sites and observed significantly

lower expression levels of MIR193BHG and HOOK3 in PCOS

compared to those in controls (Figures 3G, H). We then

performed prediction analysis to investigate whether RNA editing

changed the stability of the mRNA secondary structures of HOOK3

andMIR193BHG before and after editing. The detailed information

of the two editing sites (HOOK3:chr8:43021004 and MIR193BHG:

chr16:14330019) including the minimum free energy (MFE), the

free energy of the thermodynamic ensemble (FE), the frequency of

the MFE structure in the ensemble, and ensemble diversity is

presented in Figures 3I–L.
B

C D

A

FIGURE 1

A-to-I RNA editing events in GC. (A) Circos plot of gene expression and A-to-I RNA editing sites in PCOS and controls. Outer circle: average level of
gene expression. Inner circle: A-to-I RNA editing sites. (B) A-to-I RNA editing functional categories. (C) repetitive elements overlapped with RNA
editing sites. (D) SIFT prediction of that missense variants. P, PCOS; C, controls.
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Correlation analysis between RNA editing
enzyme expression and PCOS-associated
RNA editing

We further assessed the expression of editing enzymes, including

Adenosine Deaminase RNA Specific (ADAR) and Adenosine

Deaminase RNA Specific B1 (ADARB1). We observed a significant

decrease in ADARB1 expression in PCOS compared to controls

(Figure 4A). Therefore, we further looked into the correlation

between ADARB1 expression and PCOS-associated RNA editing

and identified six ADARB1-related sites in Scavenger Receptor

Class B Member 2 (SCARB2), Charged Multivesicular Body Protein

3 (CHMP3), Ubiquitin Specific Peptidase 22 (USP22), FAM126B,

Solute Carrier Family 47 Member 1 (SLC47A1), and Coiled-Coil

Domain Containing 69 (CCDC69), including SCARB2 :
Frontiers in Endocrinology 05
chr4:76159678, CHMP3:chr2:86504167, USP22:chr17:21000918,

FAM126B:chr2:200978748, FAM126B:chr2:200978747, SLC47A1:

chr17:19578434, and CCDC69:chr5:151181355, all with significantly

downregulated RNA editing correlated to the decreased ADARB1

expression (Figures 4B–I).
Functional enrichment of PCOS-associated
RNA editing

We performed enrichment analysis to gain insights into the

biological functions of PCOS-associated A-to-I RNA editing in

GCs. Our results revealed that the differentially edited genes were

primarily enriched in biological processes related to the regulation

of the mitotic cell cycle and transmembrane transporter processes
B

C

D

E F G H

I J K L

A

FIGURE 2

Differential A-to-I RNA editing sites in PCOS and controls. (A, B) Venn plots of A-to-I RNA editing events in PCOS and controls. (C) Manhattan plot
of differential RNA editing sites across the chromosomes. (D) Types of mRNA variants resulted from 545 differential A-to-I RNA editing events. (E–G)
boxplots of the top 3 3′UTR editing sites (NUP43:chr6:149725375, RBBP4:chr1:32680141, and PHLDA1:chr12:76027474). (H–J) Boxplots of the top
three intronic editing sites (NR5A2:chr1:200074554, CELF1:chr11:47481265, and FLNB:chr3:58166381). (K, L) Boxplots of synonymous editing sites
(TUBA1B:chr12:49128795 and MX1:chr21:41452734). Blue and red represent the groups of PCOS and control, respectively. P, PCOS; C, controls.
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(Figure 5A). Moreover, the most significantly enriched KEGG

pathways of the differentially edited genes included apoptosis,

necroptosis, and coronavirus disease (Figure 5B), implicating a

potential link between PCOS and coronavirus disease.
RBP binding prediction of differential
editing sites

To gain insights into the potential mechanism of PCOS-

associated RNA editing, we employed the RBPsmap website to

predict the RBP binding of the identified RNA editing sites

(Supplementary Figure S5). Figure 6 illustrates the top 10 RBPs

with the highest binding frequency of differential RNA editing sites.

Notably, RNA binding motif protein 45 (RBM45), splicing factor

proline and glutamine rich (SFPQ), and heterogeneous nuclear

ribonucleoprotein L (HNRNPL) were found to most frequently

bind to the PCOS-associated RNA editing sites.
Frontiers in Endocrinology 06
Validation of PCOS-associated RNA editing

To validate the common characteristics of RNA editing, we

conducted a comparative analysis using another PCOS and control

GC sample dataset (PRJNA762274) from an independent study (13).

By using the same analysis procedure, we identified the differential

editing sites shown in Supplementary Table S3. To assess their

functional relevance, we then performed enrichment analysis

on the common set of differentially edited genes shared between

the discovery dataset GSE138518 and the validation dataset

PRJNA762274. The Venn plots (Figures 7A, B) show the overlap

between the discovery and validation datasets, revealing 55

differentially edited genes and nine differential editing sites shared

by both datasets. Furthermore, the enrichment analysis found that

these 55 edited genes were mainly involved in apoptosis, the HIF-1

signaling pathway, cellular response to thyroid hormone stimulus,

and arylsulfatase activity (Figure 7C). Among the nine differential

editing sites, six in Scavenger Receptor Class B Member 1 (SCARB1),
B C D

E F G H

I

J

K

L

A

FIGURE 3

Differential editing sites with cis-regulatory effects on gene expression. (A–F) Scatter plots showing their RNA editing and gene expression levels in
PCOS and controls. (G, H) The RNA editing and expression levels of MIR193BHG and HOOK3. (I, J) The RNA structure and stability parameters
before and after RNA editing for HOOK3:chr8:43021004 and (K, L) MIR193BHG: chr16:14330019. P, PCOS; C, controls; MFE, minimum free energy;
FE, free energy of the thermodynamic ensemble; Freq MFE, frequency of the MFE structure in the ensemble; ED, ensemble diversity.
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Thioredoxin Domain Containing 15 (TXNDC15), RNA Polymerase I

Subunit E (POLR1E), DEAD-Box Helicase 19A (DDX19A), and

FKBP Prolyl Isomerase 11 (FKBP11) showed consistent changes

between the two datasets, namely SCARB1:chr12:124783357,

TXNDC15:chr5:134900418, POLR1E:chr9:37503395, DDX19A:

chr16:70372975, AC013394.1:chr15:92889425, and FKBP11:

chr12:48923107 (Figures 7D, E).
Frontiers in Endocrinology 07
Discussion

Understanding the molecular mechanism of PCOS could help

develop new stratiges for diagnosis and treatment of PCOS (29, 30).

Several biomarkers associated with PCOS have been identified and

might serve as potential therapeutic targets. RNA editing has been

reported to play a role in cancer, aging, neurological, and
BA

FIGURE 5

GO (A) and KEGG pathways (B) enriched by genes with differential A-to-I RNA editing between PCOS and controls.
B C D

E F G

H I

A

FIGURE 4

The correlation between RNA editing enzyme expression and differential editing sites. (A) The correlation between ADARB1 expression and
differential A-to-I RNA editing sites. (B) The expression level of ADARB1. (C–I) The editing level of ADARB1-related DRE sites. P, PCOS; C, controls.
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autoimmune diseases, yet how it is involved in PCOS remains

poorly understood (31). In this study, we systematically investigated

and validated A-to-I RNA editing associated with PCOS as

biomarkers at the transcriptome level, providing valuable insights

into the underlying mechanisms of PCOS.

RNA editing dysfunction, particularly A-to-I RNA editing

events, has been implicated in various diseases, including immune

signaling pathways and certain cancers (32–35). Recent studies have

shown that synonymous variants can also affect mRNA splicing,

mRNA stability, and protein function (36–38). We identified two

synonymous variants, TUBA1B:chr12:49128795 and MX1:

chr21:41452734, while the role of the two in PCOS is unclear.

However, TUBA1B, a critical gene in postmenopausal osteoporosis,

has also been linked to BMI in children’s muscles and the overall

survival of colorectal cancer patients (39–41). The expression level

of MX1 in cumulus-oophorus cells was related to the

immunological defense processes (42). Regarding the 3′UTR RNA

editing, NUP43:chr6:149725375, PHLDA1:chr12:76027474, and

RBBP4:chr1:32680141 were the top three significant editing sites.

PHLDA1 has been reported to possibly contribute to PCOS

phenotypes and regulate proinflammatory cytokine production by

interacting with Tollip (43, 44). RBBP4 is involved in apoptosis in

early mouse embryonic development, and NUP43 plays a crucial

role in various cancers, including breast cancer and gastric cancer
Frontiers in Endocrinology 08
(45–47). Further study is necessary to determine the roles of these

genes and their RNA editing in PCOS.

Our cis-Regulation analysis showed that 20 DRE sites were

significantly related to the gene expression level. Notably, the

expression levels of MIR193BHG and HOOK3 showed significant

differences between the two groups. Previous studies have identified

MIR193BHG as a prognostic marker in pancreatic, ovarian, and head

and neck squamous cell carcinoma (48–50). Additionally,

MIR193BHG might play a pivotal role in preeclampsia related to

blood pressure and urine protein and could be a potential prognostic

biomarker in early-onset preeclampsia (51, 52). The phosphorylation

of HOOK3 has been shown to regulate Golgi stability during mitosis

(53). High HOOK3 expression could predict a poor prognosis for

prostate cancer (54). Future research should focus on elucidating the

underlying molecular mechanisms and conducting functional studies

to validate the clinical significance of such cis-regulatory editing.

Functional enrichment analysis showed that apoptosis and

necroptosis mainly enriched PCOS-associated RNA editing. In

previous studies, apoptosis and necroptosis have been reported to

be linked with PCOS. For instance, SH2B adaptor protein 3 (SH2B3,

also called LNK) could promote GC apoptosis through the AKT-

FOXO3 pathway (55). Apoptosis could also be regulated by the toll-

like receptor TLR8 (56). In addition, apoptosis and necroptosis were

involved in the modulation of hyperandrogenism (57).
FIGURE 6

RNA-binding protein (RBPs) prediction showing the top 10 frequent RBPs binding to DRE sites.
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Our findings also reveal decreased ADARB1 expression in

PCOS correlated with seven downregulated DRE sites. In ovarian

cancer, the downregulation of ADARB1 has been reported to have

a potential role in the development of ovarian cancer (58). These

edited genes could exert a related role in various diseases. For

instance, CCDC69 has been associated with immune infiltration

and serves as a prognostic marker in breast and colon cancers (59,

60). Polymorphisms in SLC47A1 are associated with type 2

diabetes (61, 62). Additionally, the hyperediting of FAM126B,

represented by FAM126B:chr2:200978748 and FAM126B:

chr2:200978747, might potentially contribute to PCOS. Taken

together, such findings indicated a substantial role of ADARB1
Frontiers in Endocrinology 09
and RNA editing mediated by it in the pathophysiological process

of PCOS.

RBPs play a crucial role in regulating post-transcriptional processes,

including RNA splicing, decay, and editing (63, 64). Importantly, our

findings suggest that RBM45 is the RBP with the highest number of

binding sites in the identified differentially edited genes. Previous studies

have reported the regulation of splicing machinery by RBM45 in liver

biopsies from patients with nonalcoholic fatty liver disease (65).

Furthermore, RBM45 has been shown to bind to N6-

methyladenosine, thereby controlling and regulating mRNA

processing (66). These results highlight the possible regulatory role of

RBPs in the biological functions of RNA editing in the context of PCOS.
B

C

D

E

A

FIGURE 7

Validation of RNA editing events in dataset PRJNA762274. (A) Venn plot of differential edited genes between datasets GSE138518 and PRJNA762274.
(B) Venn plot of differential editing sites between datasets GSE138518 and PRJNA762274. (C) The top 5 functional analysis terms of KEGG and GO
for the 55 common differentially edited genes shared by the two datasets. (D) Six common differential RNA editing sites with the same differential
editing trend in dataset GSE138518. (E) Six common differential RNA editing sites with the same differential editing trend in dataset PRJNA762274. P,
PCOS; C, controls.
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In conclusion, our study conducted a transcriptome-wide

analysis of PCOS-associated A-to-I RNA editing sites and

provided new insight into understanding the role of RNA editing

in the pathogenesis of PCOS.
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