
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Ma. Cecilia Opazo,
Universidad de Las Américas, Chile

REVIEWED BY

Richa Dwivedi,
University of Pittsburgh, United States
Swati Jaiswal,
University of Massachusetts Medical
School, United States
Sidharth Prasad Mishra,
University of South Florida, United States

*CORRESPONDENCE

Osbaldo Resendis-Antonio

oresendis@inmegen.gob.mx

RECEIVED 20 February 2023
ACCEPTED 09 June 2023

PUBLISHED 27 June 2023

CITATION

Neri-Rosario D, Martı́nez-López YE,
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progression of type 2 diabetes:
a machine learning approach
in a Mexican cohort
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Introduction: The gut microbiota (GM) dysbiosis is one of the causal factors for

the progression of different chronic metabolic diseases, including type 2 diabetes

mellitus (T2D). Understanding the basis that laid this association may lead to

developing new therapeutic strategies for preventing and treating T2D, such as

probiotics, prebiotics, and fecal microbiota transplants. It may also help identify

potential early detection biomarkers and develop personalized interventions

based on an individual’s gut microbiota profile. Here, we explore how

supervised Machine Learning (ML) methods help to distinguish taxa for

individuals with prediabetes (prediabetes) or T2D.

Methods: To this aim, we analyzed the GM profile (16s rRNA gene sequencing) in

a cohort of 410 Mexican naïve patients stratified into normoglycemic,

prediabetes, and T2D individuals. Then, we compared six different ML

algorithms and found that Random Forest had the highest predictive

performance in classifying T2D and prediabetes patients versus controls.

Results:We identified a set of taxa for predicting patients with T2D compared to

normoglycemic individuals, including Allisonella, Slackia, Ruminococus_2,

Megaspgaera, Escherichia/Shigella, and Prevotella, among them. Besides, we

concluded that Anaerostipes, Intestinibacter, Prevotella_9, Blautia,
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Granulicatella, and Veillonella were the relevant genus in patients with

prediabetes compared to normoglycemic subjects.

Discussion: These findings allow us to postulate that GM is a distinctive signature

in prediabetes and T2D patients during the development and progression of the

disease. Our study highlights the role of GM and opens a window toward the

rational design of new preventive and personalized strategies against the control

of this disease.
KEYWORDS

type 2 diabetes, Mexican patients, microbiota, machine learning, explainable artificial
intelligence, dysbiosis, SHAP value
1 Introduction

The study of host-microbiota associations has opened a window

of opportunities for detecting the progression of complex human

diseases and designing new treatments and preventive strategies (1).

Notably, promising results have been found in association models

between the composition of the human gut microbiota (GM) and

the individual phenotype, specifically for complex diseases such as

colorectal cancer, inflammatory bowel disease, liver cirrhosis, and

type 2 diabetes (T2D) (2). A direct relation between individuals with

T2D and dysbiosis of GM has been described during the

progression of the disease (3). Furthermore, this is associated with

an increase in gut permeability, low-grade systemic inflammation,

and inadequate modulation of the immune system and glucose

metabolism by the metabolites derived from the GM, including

short-chain fatty acids (SCFAs) and secondary bile acids (BAs) in

the human body.

Therefore, some efforts have been made to identify this

association to develop individualized diagnostic and therapeutic

interventions in patients with T2D or prediabetes, with a particular

focus on developing countries, given the high mortality and

prevalence in these populations (4). In addition, the association

between GM and T2D varies depending on geographic variables.

For example, a decrease in butyrate-producing species, such as

Roseburia intestinalis and Faecalibacterium prausnitzii, was

described in Chinese patients with T2D. In contrast, a second

study in European patients with T2D found dysbiosis in certain

species, such as Lactobacillus gasseri, Streptococcus mutans, and

Clostridium clostridioforme (5). In this research, they found that

these three species were increased in patients with T2D, and several

of them were linked to other clinical variables. For instance, the

levels of triglycerides and C-peptide were positively associated with

Clostridium clostridioforme, while fasting glucose and HbA1c were

strongly correlated with Lactobacillus gasseri (5). It’s also critical to

remember that several of these species are opportunistic pathogens,

including Clostridium clostridioforme and Streptococcus mutans,

which have been connected to bacteremia and human infections

(6). These results suggest that the gut microbiota’s composition,
02
including the prevalence of unique bacterial species, may have a

major influence on the onset and course of T2D.

The study of the relationship between microbiota and T2D is

challenging due to several factors. Firstly, the human microbiota is

highly diverse, and its composition and function vary significantly

between individuals. Secondly, T2D is a multifactorial and

heterogeneous disease involving complex interactions between

genetic, environmental, and lifestyle factors. Thirdly, microbiota

data analysis requires advanced computation and statistical

methods to handle high-dimensional, sparse, and noisy data. For

this reason, researchers proposed several supervised Machine

Learning (ML) methods in combination with post hoc explanation

approaches to improve classification predictions and identify the

microbiome-disease association simultaneously (7). In addition,

recent advances in artificial neural networks (ANNs) have

attracted attention due to their high predictive ability. ANNs are

powerful ML techniques used to extract and transform information

using multiple layers of neural networks. These layers receive

information from previous layers and are progressively refined to

improve prediction accuracy. ANNs are known for their high

predictive ability but can be prone to overfitting and require large

amounts of training data (8).

On the other hand, the use of tree-based ML methods, such as

XGBoost and Random Forest, on microbiome data has obtained

comparable performance to ANNs and may handles better small

datasets (9). XGBoost is a tree-based ensemble learning method that

uses a set of uncorrelated decision trees depending upon several

randomly selected variables. It iteratively creates new decision trees

by calculating the error of the previous model until the highest

prediction is found. Similarly, Random Forest is also a tree-based

ensemble learning method that creates a set of decision trees by

randomly selecting a subset of features at each node to reduce

overfitting. Compared to ANNs, tree ensemble models such as

XGBoost are more suitable for small sample size and class

imbalance datasets than different ANNs architectures for tabular

data (10).

We suggest different classification ML methods to predict the

clinical phenotypes of naive Mexican patients with T2D or
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prediabetes. Thus, we compared the performance of six different

ML algorithms (see methods) to classify the individual state of

health vs. disease status using the GM data characterized by 16s

rRNA gene metabarcoding.

Following this, we proposed to select the model with the best

predictive performance for an explanatory model analysis using a

post-hoc algorithm called SHapley Additive exPlanations (SHAP)

(11). Using the SHAP values, we try to identify the specific bacterial

taxa that played a crucial role in classifying health versus disease

status. Furthermore, this approach may provide a comprehensive,

model-agnostic, and interpretable explanation of the ML model’s

predictions (11). Our findings could provide valuable insights into

the underlying mechanisms linking the GM to developing T2D

and prediabetes.
2 Results

In our study, we compared different ML methods to determine

the most effective approach for classifying individuals with

prediabetes or Type 2 Diabetes (T2D) compared to the control

group. Since each ML method has different characteristics,

evaluating several algorithms to find the best fit for our cohort

was essential (supplementary Table 1). The model with the best

overall performance was analyzed using the SHAP values to find the

most critical taxa to distinguish the groups.

To achieve this, we performed three comparisons: classification

1 (C-1) compared individuals with NGT versus patients with

prediabetes; classification 2 (C-2) compared individuals with

NGT versus patients with T2D; classification 3 (C-3) we

performed a multi-class classification to predict individuals with

NGT, prediabetes, and T2D. For each classification, we evaluated

the predictive performance of six different algorithms: Binary

Logistic Regression, Naive Bayes, Decision Tree, Random Forest,

XGBoost, and Multilayer Perceptron (MLP) (Figure 1).
2.1 Classification (C1): NGT
versus prediabetes

The models in C1 with the best predictive values were Random

Forest (mean accuracy= 0.98, standard deviation (SD) 0.02) and

MLP (mean accuracy= 0.94, SD 0.02). The best models based on the

AUC-ROC metric were Random Forest (mean AUC = 0.99, SD

0.01), followed by MLP (mean AUC= 0.94, SD 0.03) (Figure 1A).

Therefore, the Random Forest model was analyzed using the SHAP

values to show the most important genera to identify the groups and

their influence on the output (Figure 2A). Some of the most important

bacterial genera for classification found were Intestinibacter,

Anaerostipes, Enterococcus, Collinsella, Fusicatenibacter, and

Granulicatella. Low relative abundance values of Intestibacter,

Enterococcus, and Anaerostipes help predict patients with prediabetes.

And high levels of relative abundance of the genera Collinsella,

Allisonella, Escherichia/Shigella, and Senegalimassilia help to select

patients with prediabetes. However, we considered that it is difficult to

select a unique taxon to identify individuals with the disease accurately
Frontiers in Endocrinology 03
based and can vary depending on the specific dataset or algorithm used.

Instead, a more meaningful approach is to identify a set of specific

patterns and changes in the complete GM profile of individuals with the

disease. This will allow more accurate identification of individuals

suffering from the disease.

Random Forest is an ensemble method (combination of

multiple classifiers) based on generating a set of uncorrelated

decision trees to make a prediction, making it robust and suitable

for complex data patterns. The model results in this classification

allow us to select Random Forest as the best method for this task

because of its ability to capture nonlinear interactions in tabular

data. Other studies have found that Random Forest’s performance

is on par with deep learning algorithms when applied to several

microbiome sets from different populations (7). These findings

highlight the strength of Random Forest as a machine-learning

method for classification tasks in microbiota data.
2.2 Classification C2: NGT versus T2D

The models with the best accuracy values in C2 were also

Random Forest (mean accuracy= 0.96, SD 0.03), followed by MLP

(mean accuracy= 0.91, SD 0.07), and XGBoost (mean accuracy=

0.91, SD 0.07). The models with better AUC values in C2 were

Random Forest (mean AUC = 0.99, SD 0.01) and MLP (mean

AUC= 0.98, SD 0.02) (Figure 1B).

The Random Forest model demonstrated the highest predictive

performance in classifying individuals with T2D in the C2 model.

For this reason, we analyzed this model using the SHAP values to

identify the most important bacterial genera useful for predicting

NG individuals or individuals with T2D. Figure 2B shows the top 30

of bacterial genera most responsible for the model output in the

order of importance. High relative abundance levels of Escherichia/

Shigella, Slackia, and Allisonella help select patients with T2D. And

high levels of relative abundance of Lachnospiracea_UCG.004,

Holdemanella, Ruminococcus_1, and Anaerostipes help to predict

individuals with NGT. For some taxa, we did not see a specific

pattern of high or low abundance values of the specific genre to

classify individuals with T2D or the control group.
2.3 C3: Individuals with NGT vs.
prediabetes vs. T2D

The models in C3 with the best predictive values were XGBoost

(Mean Accuracy= 0.96, SD 0.02) and Random Forest (Mean

Accuracy= 0.95, SD 0.03). According to the Cohen Kappa metric,

the best models were XGBoost (Mean Cohen Kappa score = 0.93,

SD 0.05) followed by Multinomial Logistic Regression (Mean

Cohen Kappa score= 0.94, SD 0.03) (Figure 1C). We chose to use

Cohen’s Kappa over the AUC, because it can be difficult to interpret

in multi-class classification using AUC, as it requires converting the

problem into a set of binary classification tasks. On the other hand,

Cohen’s Kappa offers a single score that accounts for the agreement

between the predicted and actual labels for every class, making it a

better measurement for our multi-class classification task.
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The XGBoost model of C3 (multiclass) demonstrated the

highest predictive performance in classifying individuals with

NGT, prediabetes, or T2D. We analyzed this model using the

SHAP values to identify the major bacterial genera for multilabel

classification of individuals with NGT vs. individuals with

prediabetes vs. individuals with T2D.

Figure 2C displays the 30 most influential bacterial genera,

ranked in order of importance. Some genera include Megamonas,

Faecalitalea, Citrobacter, Megasphera Intestinibacter, Anaerostipes,

Allisonella, Collinsella, Fusicatenibacter, Dielma, Oscillospiram,

Blautia, and Granulicatella.
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3 Discussion

GM has been an emerging factor in the pathogenesis of T2D,

related to the patient´s environmental risks factors such as diet,

obesity, sedentary lifestyles, and genetic risk factors, including

specific genetic variants (12). However, studying the relationship

between the host and GM is complex, and identifying the possible

keystone taxa associated with the prediabetic or diabetic stage is still

problematic (13).

To address this issue, we evaluated various supervised ML

methods to identify specific patterns and alterations in the GM
B

C

A

FIGURE 1

We compared six ML algorithms in three classifications (A) Individuals with NGT vs. Patients with prediabetes, (B) Patients with NGT vs. Patients with
T2D, and (C) Patients with NGT vs. Patients with prediabetes vs. Patients with T2D. We plot a standard error bar of the area under the receiver
operating characteristic (ROC) curve (AUC) median values for a visual comparison performance between the models in each classification. In the
case of multi-class classification (part C), we evaluated it using Cohen Kappa Score.
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profiles of patients with prediabetes and T2D. Tree-based

algorithms such as Random Forest and XGBoost provided the

best predictive performance in our cohort. Furthermore, the post-

hoc analysis of the models enabled us to understand the impact of

keystone taxa on patients with T2D or prediabetes compared with

negative control. The most critical genera identified with these

models were Escherichia/Shigella, Anaerostipes, Blautia, Roseburia,

and Collinsella. Likewise, some studies describe these keystone taxa

as having a role in the pathogenesis of T2D in different populations

(3, 14).

In addition to the typical methods used to study the

microbiome, using Deep Learning algorithms such as MLP is an

attractive alternative to finding robust and high predictive
Frontiers in Endocrinology 05
performance results (15). However, using them on small datasets

that commonly suffer in these microbiome studies remains

challenging, which makes the models easily susceptible to

overfitting (16). We believe that new approaches will continue to

be developed to improve the analysis of small datasets. Using a

larger amount of data to train the deep learning model would allow

finding better performance results reaching the potential reported

in other studies. With the results in our cohort, we can conclude

that the methods based on decision trees (Random Forest,

XGBoost) allow a better understanding of the model and better

performance than the deep learning models in our case.

Furthermore, we explore the possible keystone taxa we found

with Tree-based ensemble learning methods, including Random
B

C

A

FIGURE 2

We selected the best predictive model in each classification to identify the most relevant bacterial genera to classify the phenotype. We analyze the
three comparisons. (A) Patients with NGT (n= 213) versus patients with prediabetes (n= 47). (B) Patients with NGT (n= 213) versus patients with T2D
(n= 47). (C) Multi-class classification: Patients with NGT vs. patients with prediabetes (n=150) vs. patients with T2D (n= 47). In each, a graph of the
SHAP values shows, in hierarchical order, the 30 most important bacterial genera and their type of influence on the Random Forest model (in parts A
and B) and the XGBoost model (in part C). In parts A and B, positive SHAP values help predict individuals with disease (prediabetes or T2D), whereas
negative SHAP values help predict individuals with NGT. The color code shows the feature values, in this case representing the relative abundance of
the bacterial genera, with red color showing high relative abundance values and blue color showing low relative abundance values in the samples. In
part, C shows the most important bacterial genera with their mean SHAP value and uses a color code to indicate the label of the predicted class.
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Forest and XGBoost. Here we summarize the changes in the

structure of the GM and their association with the disease

progression in a cohort of Mexican patients with T2D or

prediabetes: 1) increase intestinal permeability and metabolic

endotoxemia, 2) reduction of SCFAs genera producers, 3)

alteration gut homeostasis and increase opportunistic

pathogens. (Figure 3)
3.1 Increase gut permeability and
metabolic endotoxemia

High blood glucose levels are associated with a loss of gut

epithelial integrity, driving the passage of endotoxins

(lipopolysaccharides (LPS)) and other microbial components into

the bloodstream (17). This phenomenon is called metabolic

endotoxemia and can trigger the systemic immune response (18).

The interaction between microbial components and innate immune

receptors activates the expression of proinflammatory cytokines

(interleukin-4 (IL4), interleukin-6 (IL6), and tumor necrosis factor-

a (TNF-a)) in different insulin sensitive-tissues and blood vessels

(Figure 3). The increase of these mediators maintains a chronic low-

grade systemic inflammation state associated with T2D progression

and long-term vascular complications (19).

During our study, we detected relevant genera associated with

the loss of gut epithelial integrity and metabolic endotoxemia that

helped to classify diabetic or prediabetic patients compared to NGT

subjects. We found that high levels of relative abundance in
Frontiers in Endocrinology 06
Escherichia/Shigella and Veillonella, gram-negative genera with

LPS in their walls, helped predict patients with prediabetes or

with T2D when compared with NGT subjects. Escherichia/

Shigella was on the top 30 essential taxa to classify prediabetes

(C2: NGT vs. prediabetes) and T2D (C1: NGT vs. T2D) (Figure 2A,

B). In addition, Veillonella was also on the top 30 key taxa to classify

patients with T2D (Figure 2B). According to the literature, these

LPS-producing genera, Escherichia/Shigella, and Veionella, have

high abundance levels in patients with T2D in different

populations (20–22). In addition, these genera have been related

to other pathologies with intestinal dysbiosis as a common

component in their pathophysiology, for example, irritable bowel

syndrome and inflammatory bowel disease.

In patients with T2D, the increase in gut permeability could be

attributed to other factors such as long-term consumption of a

processed diet, drugs, alcohol consumption, and gut dysbiosis (23).

For this, specific taxa in the GM may directly affect epithelial

integrity. Some studies point to Collinsella having a particular role

in this phenomenon. Collinsella disrupts the intestinal barrier by

decreasing the expression of thigh junction proteins in enterocytes

(24). We found that an increase in the abundance levels of

Collinsella help classifies individuals with prediabetes in the top

30 ranked genera. (C2: NGT vs. prediabetes) (25).

Metabolic endotoxemia due to gut dysbiosis is a component in

patients with diabetes that perpetuates the chronic inflammatory state

and disease progression. Currently, there are no interventions with

the immediate objective of restoring epithelial integrity. However, a

set of treatments (e.g., fecal microbiota transplantation, diet, drugs,
B

C

A

FIGURE 3

A schematic diagram illustrates the changes in GM associated with Mexican patients with T2D. (A) Disruption of the epithelial gut barrier and
metabolic endotoxemia. (B) SCFA’s producer’s genera and pancreatic beta cell dysfunction. (C) Alter gut homeostasis and increase opportunistic
taxa. Genera colored with brown for prediabetic patients and genera colored with blue for diabetic patients. Created with BioRender.com.
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and prebiotics) considering the microbiota could help to reduce

systemic inflammation and its complications caused by increased

intestinal permeability in these patients (26). For instance, prebiotics

such as fructooligosaccharides (FOS) and inulin can promote the

development of beneficial gut bacteria and improve the efficiency of

the gut barrier. It has also been demonstrated that probiotics, such as

strains of Lactobacillus and Bifidobacterium, enhance gut barrier

function and lessen inflammation. Whereas they present exciting

opportunities for future therapeutic interventions, further study is

required to fully understand the possible advantages and dangers of

these treatments for people with T2D or prediabetes.

3.2 SCFAs producers and beta
cell dysfunction

Concerning dysbiotic microbiota, patients with T2D have a

decrease in certain bacterial producers of SCFAs, including butyrate,

propionate, and acetate. In addition, some environmental factors in

diabetic patients, such as a Western-type diet (low in fiber, rich in

calories from saturated fatty acids and sugars), are associated with a

decrease in butyrate-producing species (e.g., Roseburia intestinalis and

Faecalibacterium prausnitzii) (27, 28). The low production of SCFAs is

associated with alterations in insulin sensitivity and inadequate

immune system modulation, which are risk factors for prediabetes

and T2D (29). We have found that low relative abundance levels of

SCFAs producer’s genera, such as Anaerostipes, Enterococcus,

Intestinibacter, and Fusicatenibacter, help to classify patients with

T2D and patients with prediabetes compared with NGT patients.

Anaerostipes was the third most crucial variable out of 150 genera

studied for classifying patients with prediabetes (C1: NGT vs.

prediabetes), and the 12° most important bacterial genera for

classifying patients with T2D (C2: NGT vs. T2D). In addition to

their role in insulin sensitivity modulation, SCFAs function to maintain

a typical phenotype of colonocytes in the human intestine, providing

survival and anti-apoptosis signals (29). A healthy gut epithelium

prevents the passage of microorganisms and their subsequent

activation of the immune system in an altered way (30).

These SCFAs metabolites act through G protein-coupled

receptors (including GPR41, GPR43, and GPR109A), expressed in

several tissues: intestinal epithelial cells, adipose tissue, and immune

cells. For this reason, they have pleiotropic functions related to the

digestive, immune, and neuroendocrine systems (31). For example,

SCFAs stimulated the secretion of satiety-related peptides (peptide

YY and leptin) and modulated the function of macrophages,

dendritic, and T and B cells. Together, these functions help to

maintain local and overall homeostasis in the human body (32).

Therefore, it is essential to measure the luminal metabolites

associated with these mechanisms in patients with T2D or

prediabetes to discover new insights and approaches to prevent

the disease progression.

3.3 Alter gut homeostasis and increase
opportunistic genera

One main change in the gut microbiome composition in

patients with T2D is the increase of opportunistic pathogens
Frontiers in Endocrinology 07
accompanied by a decrease in SCFAs-producing genera (6). In a

Chinese cohort, they shown are an increase in several opportunistic

pathogens, including Escherichia coli, Bacteroides caccae,

Clostridium hathewayi, Clostridium ramosum, Clostridium

symbiosum, and Eggerthella lenta (33). In other cohorts, describe

a change in bacterial species associated with intestinal health. For

example, L. acidophilus or L. salivarius, but some species, such as L.

amylovorus, are negatively associated with diabetes.

In our cohort, Collinsella and Lachnoclostridium are among the

top 30 bacterial genera, being useful for classifying individuals with

prediabetes (C1: NGT vs. prediabetes). These bacterial genera are

associated with high levels of Trimethylamine (TMA), a pro-

inflammatory metabolite associated with vascular complications

(34). TMA is produced by the GM from L-carnitine, choline, and

betaine in high amounts in red meat and fatty foods. In the liver,

TMA is converted to TMAO (oxidized TMA) by the enzyme FMO3

(flavin 3-containing monooxygenase) (35). High levels of TMAO

play a critical role in the formation of atherosclerosis. TMAO

induces an inflammatory response at the vascular level, causing

endothelial dysfunction and altering cholesterol metabolism (34,

36). Moreover, TMAO could be related as a determinant factor in

the mortality of these patients. Thus, subjects with T2D and

prediabetes have an increased risk of developing cardiovascular

disease (CVD) (37, 38).

Furthermore, we performed the Linear Discriminant Analysis

Effect Size (LEfSe) method to identify particular differences in the

bacterial phenotype at the genus level between the normoglycemic,

pre-T2D, and T2D groups (Supplementary Figure 6 and

Supplementary Figure 7) (39). Our findings revealed distinct

microbial signatures associated with each group. Regarding the

T2D group, several taxa , inc luding Enterobacterales ,

Enterobacteriaceae, Escherichia/Shigella, Gammaproeteobacteria,

proteobacteria, Fusicatenibacter, Lactobacillus, Dielma, and

Allisonella, were significantly enriched, pointing to a dysbiotic

pattern. In the prediabetes group, we found the following taxa

with substantial changes, including Selenomonadales, Negativicutes,

Megasphera, Methanobacteria, Veillonellaceae, Howardella, and

Butyrimonas. Interestingly, the normoglycemic group showed a

unique pattern, with taxa like Clostridia, Clostridiales, Firmicutes,

Lachnospiraceae, Blautia, Anaerostipes, and Rombustia. These

results highlight the potential of the gut microbiota as a

biomarker for the development of T2D and shed light on

bacterial taxa that might play a role in disease pathogenesis.

Overall, using the LEfSe method, we identified microbial

signatures linked to various prediabetic and diabetic stages and

highlighted particular taxa that may potentially contribute to the

onset and progression of T2D. Some of them were also identified as

important to distinguish between groups using ML models,

including Escherichia/Shigella, Allisonella, Dielma, Howardella,

Blautia, Anaerostipes, Rombustia, and Lactobacillus. We can

recognize microbial species whose abundance considerably varies

between several groups using LEfSe analysis. To fully understand

the intricate connection between gut microbiota and metabolic

health, we proposed to use ML explainable analysis to identify the

influence in the classification result. The relative significance of each

microbiological genus in impacting the ML model’s decision-
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making can be explained by the SHAP values. They give us the

ability to determine which bacterial genera have the greatest

influence on the categorization result and to comprehend the

underlying mechanisms causing the disease to progress.

In general, this highlights the importance of medical ecology as

a useful approach to understanding human health and disease

through the lens of the environment, including factors such as

diet, lifestyle, and the microbiome. In this context, disease

progression in patients with T2D could reflect the dynamic

changes exhibited by the GM. Therefore, understanding their

ecological associations could allow intervention in the natural

history of the disease with personalized interventions, such as

individualized nutritional therapies. However, claiming that a

single variable or a single taxon is useful for classifying healthy or

diseased patients is difficult because GM is a complex system (3). A

broad characterization of the GM profile or a group of microbial

taxa is necessary to find optimal values for the predictive

performance of models due to the complexity and heterogeneity

of individuals with T2D (14, 22).

To better understand the implications of our results, shotgun

sequencing is an attractive methodology that could characterize the

GM at strain or species levels and allow us to study the metabolic

capabilities of the GM (3). Additionally, using metabolomics GM

data from T2D patients may help to understand the specific

implications of the disease progression. Some metabolites of

interest include SCFAs, secondary BAs, branched-chain amino

acids, indole-derived amino acids, and TMAO (40).

In summary, the work developed in this paper allows us to

uncover a unique GM structure in the different T2D stages. We

consider intestinal dysbiosis not only a reflection of the pathological

state of the individual but also actively participates in favoring the

progression of the disease. Modulating the GM through personalized

interventions, such as prebiotics, probiotics, or fecal microbiota

transplantation, may help to restore intestinal homeostasis and

improve metabolic health in T2D and prediabetic patients.
4 Methods

As part of a previous study conducted by our laboratory group

(22), a total of 410 Mexican individuals without prior diagnosis or

treatment were stratified into individuals with normal glucose

tolerance (NGT) (n= 213), patients with prediabetes (n= 150), and

patients with T2D (n= 47). Patients were classified as prediabetic if

they had fasting plasma glucose levels of 100-125 mg/dl (known as

impaired fasting glucose (IFG)) and/or 2-hour plasma glucose of 140-

199 mg/dl (known as impaired glucose tolerance (IGT)). Patients

with a fasting glucose level of > 126 mg/dl and/or a 2-hour plasma

glucose level of > 200 mg/dl were classified as T2D.
4.1 Intestinal microbiome - 16s rRNA
gene sequencing

To obtain the gut microbiome profile, we used processed

sequencing data from Diener et al. https://github.com/resendislab/
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mext2d. Briefly, as explained by the authors, DNA extraction from

the fecal samples and 16 rRNA gene V4 amplicon sequencing was

performed. Then, a table of amplicon sequence variants (ASV) was

generated using the DADA2 workflow (41), and the taxonomic

assignment was performed using the SILVA database v132 (42).

This ASV table (analogous to the OTU table), which represents the

gut microbiome profiles of each individual, constitutes our starting

point of the present work. Following this, we used an artificial

intelligence approach using supervised ML methods to create a

model capable of understanding the microbiome-disease

association (Figure 4).
4.2 Data pre-processing

In the base pipeline workflow shown in Figure 4; the data were

first preprocessed using the mb-PHENIX algorithm for each

classification independently (13, 43). This was done to address

the main problems in microbiota data analysis: first, the sparsity of

data with an excess of zeros in the matrix, and second, a lot of

features that exceed the observations (high dimensionality). Thus,

these issues do not lead to finding data structures using

unsupervised dimensionality reduction approaches (13). Taken

together, the data nature and the heterogeneity of the phenotype

of individuals with diabetes make it difficult overall to identify a

unique signature in microbiota data for a specific stage of

the disease.

It should be noted that we initially attempted to analyze the data

without imputation but ran into problems due to the

aforementioned issues. As shown in Supplementary Figure 1, the

performance of machine learning models was significantly worse

without mb-PHENIX preprocessing. Interestingly, as seen in

Supplementary Figure 2, we also evaluated the best model using

summary SHAP plots without mb-PHENIX but found that the

interpretability of the model was greatly reduced due to the sparsity

and high-dimensionality of the data.

The mb-PHENIX algorithm recovers abundance via diffusion

based on a supervised UMAP space of the sparse ASV matrix. The

initial step from the ASV matrix is to reduce the dimensionality in a

supervised manner with UMAP. In brief, the supervised UMAP

method aims to map different classes in the low dimensional space

as far apart as possible while simultaneously maintaining the

internal class structure and the inter-class relationships. Then,

this embedding is used for the computation of the Markovian

matrix. After, a diffusion process (exponentiation) is applied to the

Markovian matrix to refine local neighbors’ similarities. Finally,

imputation occurs when the refined (exponentiated) Markovian

and ASV matrices are multiplied. Because of that, the missing taxa

information is recovered by the local neighbors on the refined

Markovian matrix. The construction of the Markovian matrix and

the diffusion process of mb-PHENIX is similar to the one from (43);

the only difference is that mb-PHENIX uses a supervised UMAP

embedding (13). We observed here that mb-PHENIX algorithm can

improve the interpretability of the models by making it easier to

identify the most important features for predicting the outcome of

interest (Figures 1 and 2).
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We created three imputed matrices with sc-PHENIX based on

the following class label information: 1) NGT vs patients with

prediabetes, 2) NGT vs patients with T2D, and 3) NGT vs patients

with T2D classification classes. For the supervised UMAP

embedding, the parameters were set to: n_components=2,

verbose=True, metric=‘cosine’, n_epochs=1000, min_dist=0.5,

n_neighbors=50, random_state=1, target_weight=0.6 and their

respective class label information. The imputation via diffusion is

controlled by parameters such as the diffusion time (t), the decay

rate (decay), and the number of nearest neighbors to consider (knn).

We set t=1, decay=50, and knn=3. This choice of parameters was to

preserve the structure as much as possible avoiding over-smoothing

of the abundances to other classes. After using the mb-PHENIX

algorithm, the GM profile values (ASV tables) were independently

normalized (Log2) but only in the necessary methods, such as

Logistic Regression, Naive Bayes, and MLP.

We investigated alpha diversity indicators for the three different

groups of normoglycemic, prediabetic, and diabetic individuals
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using the Shannon, Simpson, and InvSimpson index. Despite, we

could not find a connection between the presence of T2D and

microbial alpha diversity (Supplementary Figure 4). These results

are in line with previous studies, which has been unable a clear

relationship between microbial diversity and T2D (14, 22, 44). In

addition, we performed a beta diversity analysis, but the results did

not show any clear clustering patterns that could consistently

distinguish between the groups of people with normoglycemia,

prediabetes, and T2D (Supplementary Figure 5). These results

highlight the complexity of the relationship between microbial

diversity and T2D status.
4.3 Machine learning methods

Three comparisons were performed to assay the classifications:

classification 1 (C1) compared patients with NGT versus patients

with prediabetes; classification 2 (C2) compared patients with NGT
B

A

FIGURE 4

Description of the methods used in this work. (A) In a cohort of 410 Mexican patients with different stages of T2DM (prediabetes and T2D) and
individuals with NGT, the gut microbial profile (16s rRNA) was obtained from fecal samples. (B) Then, six different machine learning algorithms
(Binary Logistic Regression, Naive Bayes, Decision Tree, Random Forest, XGBoost, Multilayer Perceptron) were applied to train the model and predict
the health or disease status of the individual. We selected the best predictive model and performed a post-hoc method interpretation with SHAP
values to find the most important gut microbial genera to correctly classify individuals with NGT, prediabetes, or T2D patients,.
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versus patients with T2D; classification 3 (C3) we made a multi-

class classification to predict individuals with NGT, prediabetes,

and T2D. We developed a base pipeline for each classification to

train and evaluate each model. The linear ML methods used

included: Binary Logistic Regression and Naive Bayes. The

nonlinear ML methods used included: Decision Tree, Random

Forest, and XG Boost. Additionally, MLP with a Multilayer

Perceptron (MLP) architecture was used in each classification.

After the preprocessing step, we randomly split the database

into a training set (80%) and a test set (20%). Subsequently, each

model was individually trained using the training subset (80%) with

the different ML algorithms. And at the end, the model’s

performance was evaluated using the data from the test set (20%).

This evaluation was performed using the values for accuracy and

AUC-ROC values (Tables 1, 2). In the case of the multiclass

classification, we evaluated it using the Cohen Kappa

score (Table 3).

We also calculated their respective median value and SD using

the stratified cross-validation technique (K Fold = 10) (Figure 1) for
Frontiers in Endocrinology 10
the performance metrics, including accuracy, AUC-ROC, and

Cohen Kappa score. This comparison allowed us to select the

model with the best predictive performance. Finally, an

interpretive analysis of the best model for each classification was

performed. Our study found Random Forest and XGboost as the

best model’s performance; for this, we used TreeExplainer (45). It

should be highlighted that the results of the SHAP values for each

fold have been condensed into one plot for each classification task,

as shown in Supplementary Figure 3.

Overall, this post-hoc analysis used the SHAP values to highlight

the most important bacterial genera for correctly classifying healthy

individuals or individuals with diabetes or at high risk of

developing diabetes.
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TABLE 1 Classification 1 (C-1) performance (Patients with NGT vs.
Patients with prediabetes).

ML algorithms Accuracy AUC

Mean
Accuracy

(SD, CV=10)

Mean
AUC
(SD,

CV=10)

Logistic Regression 0.94 0.95 0.9 (0.05) 0.94 (0.04)

Naive Bayes 0.78 0.78 0.76 (0.07) 0.87 (0.05)

Decision Tree 0.81 0.81 0.83 (0.08) 0.82 (0.08)

Random Forest 0.96 0.96 0.98 (0.02) 0.99 (0.01)

XGBoost 0.83 0.83 0.88 (0.04) 0.96 (0.01)

Multilayer Perceptron
(MLP) 0.94 0.94 0.94 (0.02) 0.94 (0.03)
We compared the performance of six ML algorithms using the Precision and area under the
receiver operating characteristic (ROC) curve (AUC)values. To obtain the standard deviation
(SD) in our results, we use the stratified cross-validation (CV) technique (K Fold = 10).
TABLE 2 Classification 2 (C-2) performance (Patients with NGT vs.
Patients with T2D).

ML algorithms Accuracy AUC

Mean
Accuracy
(SD,
CV=10)

Mean
AUC
(SD,
CV=10)

Logistic Regression 1 1 0.94 (0.04) 0.94 (0.06)

Naive Bayes 0.87 0.84 0.85 (0.04) 0.92 (0.04)

Decision Tree 0.86 0.83 0.84 (0.08) 0.75 (0.16)

Random Forest 0.89 0.98 0.96 (0.03) 0.99 (0.02)

XGBoost 0.92 0.96 0.91 (0.04) 0.98 (0.02)

Multilayer
Perceptron (MLP) 1 1 0.91 (0.07) 0.93 (0.07)
We compared the performance of six ML algorithms using the Precision and area under the
receiver operating characteristic (ROC) curve (AUC) values. We use the stratified cross-
validation (CV) technique to obtain our results’ standard deviation (SD) (K Fold = 10).
TABLE 3 Classification 3 performance (C-3) (Patients with NGT vs.
Patients with prediabetes vs. Patients with T2D).

ML
algorithms Accuracy

Cohen
Kappa

Mean
Accuracy
(SD,
CV=10)

Mean
Cohen
Kappa
(SD,
CV=10)

Logistic
Regression 0.77 0.61 0.76 (0.06) 0.65 (0.11)

Naive Bayes 0.71 0.5 0.68 (0.07) 0.49 (0.12)

Decision Tree 0.6 0.29 0.65 (0.08) 0.35 (0.17)

Random Forest 0.98 0.63 0.95 (0.03) 0.9 (0.03)

XGBoost 0.92 0.87 0.96 (0.02) 0.93 (0.05)

Multilayer
Perceptron
(MLP) 0.93 0.87 0.9 (0.06) 0.88 (0.07)
We compared the performance of six ML algorithms using the Precision and Cohen Kappa
score values. We use the stratified cross-validation (CV) technique to obtain our results’
median and standard deviation (SD) (K Fold = 10).
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