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Role of sphingolipid metabolites
in the homeostasis of steroid
hormones and the maintenance
of testicular functions
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University, Xiamen, China, 2Fujian Provincial Key Laboratory for Developmental Biology and
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With the acceleration of life pace and the increase of work pressure, the problem

of male infertility has become a social problem of general concern. Sphingolipids

are important regulators of many cellular processes like cell differentiation and

apoptosis, which are ubiquitously expressed in all mammalian cells. Various

sphingolipid catabolic enzymes can generate multiple sphingolipids like

sphingosine-1-phosphate and sphingomyelin. Present studies have already

demonstrated the role of steroid hormones in the physiological processes of

reproduction and development through hypothalamus-pituitary-gonad axis,

while recent researches also found not only sphingolipids can modulate

steroid hormone secretion, but also steroid hormones can control sphingolipid

metabolites, indicating the role of sphingolipid metabolites in the homeostasis of

steroid hormones. Furthermore, sphingolipid metabolites not only contribute to

the regulation of gametogenesis, but also mediate damage-induced germ

apoptosis, implying the role of sphingolipid metabolites in the maintenance of

testicular functions. Together, sphingolipid metabolites are involved in impaired

gonadal function and infertility in males, and further understanding of these

bioactive sphingolipids will help us develop new therapeutics for male infertility

in the future.
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steroid hormone, gametogenesis, sphingosine-1-phosphate, sphingomyelin,
testicular function
Abbreviations: SPH, sphingosine; S1P, sphingomyelin-1-phosphate; PKC, protein kinase C; PKA, protein

kinase A; cAMP, cyclic adenosine monophosphate; PLD, phospholipase D; SK, sphingosine kinase; StAR,

steroidogenic acute regulatory protein; CYP, cytochrome P450; HSD, hydroxysteroid dehydrogenase; GPCR,

G protein-coupled receptor; PBR, peripheral benzodiazepine receptor; HSL, hormone-sensitive lipase; SR-BI,

class B type I scavenger receptor; SF-1, steroid forming factor-1; FSH, follicle stimulating hormone; LH,

luteinizing hormone; ACTH, adreno corticotropic hormone; SK, sphingosine kinase; TNF-a, tumor necrosis

factor-ag FasL, Fas ligand; INF-g, interferon-gg IL-1b, interleukin-1bg hCG, human gonadotropin; C/EBPb,

CCAAT/enhancer-binding protein-b; PI-3K, phosphatidylinositol 3-kinase; ERK, extracellular regulated

kinase; VLC PUFAs, very long chain polyunsaturated fatty acids.
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1 Introduction

Sphingolipids are a lipid family with a common sphingomyelin

base skeleton, which participates in various physiopathological

processes of cells, including steroid production, cell differentiation

and apoptosis (1–12). In the mammalian reproductive system,

many types of cells can produce sphingolipid metabolites,

especially ceramide and sphingosine-1-phosphate, which are the

second messengers (13–18). Therefore, sphingolipid metabolites in

reproductive system have attracted much attention in recent years.

Steroid hormone is an important regulator of many

physiological processes in mammalians (19–21). It is specifically

synthesized in steroid-producing tissues through a series of multi-

step reactions under the catalysis of monooxygenase and

hydroxysteroid dehydrogenase superfamily members (20–23). It

plays a very important regulatory role in maintaining testicular

functions (19–27). Many sphingolipid metabolites can regulate the

signaling pathways of steroid production, through acting as a

second messenger in the signaling cascade to participate in the

regulation of reproductive functions (5, 15, 17, 27–29).

Recent studies have shown that sphingolipid metabolites not

only participate in the regulation of steroid biosynthesis (5, 16, 17,

21, 22, 24, 30), but also participate in the production of male sperm,

and mediate the apoptosis of germ cells induced by stress or injury

(9, 15, 27, 28), indicating that sphingolipids may be related to the

impairment of gonadal function and infertility. In general, this

research field provides an exciting direction for basic biology and

clinical medicine, which can further study the possible role of

abnormal sphingolipids in male infertility.

In the present review, we summarized the research progress on

the role of sphingolipid metabolites in steroid hormone balance and
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testicular function maintenance during recent years, providing a

theoretical basis to develop new therapies for male fertility.
2 Sphingolipid and its metabolites

Sphingolipids have always been considered as the structural

inert component of the cell membrane with sphingomyelin base

skeleton (31–33). Okazaki et al. found that in various types of cells,

different stimuli can promote sphingomyelinase to split

sphingomyelin, and then send signals (31, 34). Since sphingosine

can inhibit PKC (35–37), people have generated great interest in

sphingomyelin metabolites.

The biosynthesis of sphingolipids is from serine and palmitoyl

CoA, and finally converted into ceramide, the precursor of all

sphingolipids (33). The process of sphingolipid metabolism

includes two stages, de novo synthesis (Figure 1A) and following

salvage (Figure 1B). More and more evidences show that

sphingolipids, as a structural component of cell membrane, have a

signaling transduction function (11, 31, 32), and the special

membrane micro-region rich in cholesterol and sphingolipid is

considered as the center of signal molecular organization,

participating in the signaling transduction of G protein-coupled

receptor and growth factor receptor (9, 31, 32). Therefore,

sphingolipids are widely considered to play an important role in

cell signaling at present.

At present, a variety of sphingolipid metabolites have been

found and their physiological effects have also been clarified, such as

glycosphingolipids (31, 33, 38). These molecules are similar in

structure and can be transformed into each other, but their

biological functions are different (31, 38). Given the low
A

B

FIGURE 1

Sphingolipid metabolic pathways. (A) De novo synthesis of sphingolipids. The de novo biosynthesis of sphingolipids is from serine and palmitoyl CoA,
and finally converted into ceramide through four-step reactions under the catalysis of serine palmitoyl transferase, NADPH-dependent reductase,
ceramide synthase and dihyrceramine desaturase. (B) Different salvage of sphingolipids. Ceramide is the precursor of all sphingolipids, which can be
converted into other phospholipids under the action of specific enzymes, such as ceramide synthase and ceramidase.
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concentration of these sphingolipid metabolites, they may function

as an important signaling molecules participating in various cell

events, like cell cycle arrest, apoptosis and intercellular interaction,

such as S1P and C1P (31, 39). C1P is the main metabolite of

ceramide, which can inhibit cell apoptosis and induce cell survival

(18, 35, 39), besides prostaglandin synthesis and arachidonic acid

release (5, 19, 27). Like ceramide, SPH participates in apoptosis (5,

15) and also inhibits PKC (37, 40) and PLD (41). Noteworthy,

sphingolipid metabolites are being extensively studied as potential

anticancer targets, since many intracellular and extracellular

cytokine regulates the dynamic balance between sphingolipid

metabolites through ceramidase, SK and S1P phosphatase (3, 18,

30, 31, 34).
3 Testicular synthesis of
steroid hormones

The biosynthesis of steroid hormones is from cholesterol

through the sequence activity of CYP and HSD, mainly occurring

in tissues such as testis, ovary, adrenal gland and placenta (Figure 2)

(5, 15, 21, 27, 30, 38)

The main site of androgen biosynthesis is testis, and the

expression of tissue-specific steroid gene is the reason for the

difference of sex hormones (5, 17, 21). When the peptide

hormone is combined with the homologous GPCR in the target

tissue, the steroid biosynthesis is started, and then the steroid

hormone is synthesized through the two different time stages of

acute and chronic response stages, so as to ensure its secretion in an

appropriate and controlled manner (5, 21, 30).

The acute response stage of steroid biosynthesis involves StAR

activation. StAR can promote the rapid mobilization of cholesterol

from the outer to the inner layer of mitochondrial membrane (42–

44). Besides rate-limiting enzyme StAR, other proteins like PBR,

HSL and SR-BI are also involved (42, 44–46).
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The chronic response stage of steroid biosynthesis involves the

transcription activation of steroid hormone genes. This process is

mainly through activating various signaling like cAMP/PKA by

adenylate cyclase for transcriptional activation (5, 21). SF-1 is one of

the main transcription factors during this process, whose activity is

regulated by phosphorylation and acetylation (38, 47, 48).

Many peptide hormones are involved in the initiation of

steroidogenesis, such as FSH, LH and ACTH (16, 21). The

combination of these peptide hormones to their homologous

receptors leads to downstream signaling activation, mainly cAMP/

PKA signaling, thus activating many target transcriptions (Figure 3)

(5, 17). Besides cAMP/PKA, other signaling of cytokines and

sphingolipids are also involved in regulating the synthesis of steroid

hormones (5). The biosynthesis of testicular hormones is closely related

to the specific expression profiles of steroid hormone synthases, such as

CYP11A1 and 3bHSD, which are expressed in testis (21).
4 The role of sphingolipid metabolites
in the synthesis of steroid hormones

Although cAMP/PKA is main signaling, studies have found that

sphingolipids can be used as the second regulator of steroid

biosynthesis (Figure 4) (17, 21). For example, ACTH/cAMP can

reduce the number of sphingomyelin, ceramide and SPH in the cells,

and increase S1P production through SK activation (16). Bioactive

sphingolipids can not only regulate the expression of CYP (5), but

also act as the ligand of SF-1 (17, 47). Therefore, sphingolipids have

been identified as one important synthesis regulator.
4.1 Ceramide and steroid biosynthesis

Ceramide can regulate cytokine-mediated signaling, like TNF-

a, FasL, INF-g and IL-1b, leading to the changes in steroid
FIGURE 2

Biosynthetic pathways of steroid hormones. The biosynthesis of steroid hormones is from cholesterol through the sequence activity of CYP and
HSD. Progesterone is the precursor of other steroid hormones, such as aldosterone, testosterone, estradiol and cortisol. CYP, cytochrome P450;
HSD, hydroxysteroid dehydrogenase.
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biosynthesis (17, 30, 49). They regulates ceramide concentration

through activating intracellular sphingomyelinases (9, 38), but the

mechanism of ceramide functions still remains to be further studied.

In Leydig cells, TNF-a and IL-1b can not only activate

sphingomyelinases and generate ceramide (49), but also reduce

StAR expression and testosterone secretion (50), while ceramide

can inhibit testosterone synthesis induced by hCG (49).

Ceramide can also regulate the expression and activity of

steroid synthases. For example, ceramide can regulate P450c17a
expression and inhibit cAMP production (49). Ceramide can also

induce C/EBPb recruitment to 11b-HSD1 promoter, thus activating

gene expression (51).

Lastly, ceramide metabolism enzymes also participate in steroid

biosynthesis. For example, cortisol can increase sphingosine

concentration through inducing N-acylsphingosine amidohydrolase 1
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expression, leading to the inhibition of SF-1 functions during the

regulation of steroid biosynthesis (17).
4.2 Sphingosine and steroid biosynthesis

Sphingosine is also confirmed as a SF-1 ligand, since SF-1 binds

to phospholipids (17). Therefore, sphingosine is an antagonist of

SF-1. Further investigation indicates that the combination of

sphingosine with SF-1 leads to a decrease of CYP17 expression

(17). In addition, phosphatidic acid is the endogenous ligand of SF-

1 (52), since cAMP can promote phosphatidic acid binding to SF-1

and reverse sphingosine antagonism (Figure 4).

As SF-1 ligand, sphingosine adds another regulatory level of

sphingomyelins during the synthesis of steroid hormones. Notably,
FIGURE 4

Sphingolipid metabolites and steroid biosynthesis. Steroid hormones are synthesized mainly via cAMP/PKA signaling pathway and sphingolipids act as
the second regulator during the steroidogenesis. For example, ACTH activates cAMP/PKA signaling, reduces sphingomyelin number and increases
S1P production, which participates in the biosynthesis of Steroid hormones through CYP and StAR activity. ACTH, adreno corticotropic hormone;
cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; DGK, diacylglycerol kinase; SPH, sphingosine; SF-1, steroid forming factor-1; PA,
phosphatidic acid; SK, sphingosine kinase; S1P, sphingomyelin-1-phosphate; CYP, cytochrome P450; StAR, steroidogenic acute regulatory protein.
FIGURE 3

Regulatory Effects of peptide hormones on steroidogenesis. Peptide hormones, such FSH, LH and ACTH, initiate the synthesis of steroid hormones
through cAMP/PKA signaling pathway, which includes two different time stages. One is the acute response stage, which is characterized by cholesterol
mobilization. And the other is the chronic response stage, which is characterized by steroid hydroxylase gene transcription. FSH, follicle stimulating
hormone; LH, luteinizing hormone; ACTH, adreno-cortico-tropic-hormone; PKA, protein kinase A; cAMP, cyclic adenosine monophosphate.
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sphingosine may regulate the process of development and sex

differentiation through antagonizing SF-1, since SF-1 also

regulates many related gene expressions during these processes

(17, 27, 47).
4.3 Sphingosine-1-phosphate and
steroid biosynthesis

S1P signaling is activated in and out of cells by binding to

specific S1P receptors (52). There are five S1P receptors, which

combines with multiple heterotrimeric G proteins to activate

specific intracellular targets, such as PI-3K, ERK and Rho (10–12).

The binding of S1P and its homologous receptor is the main

signaling transduction, and PI-3K/Akt and ERK pathways are

its downstream targets (35, 37, 52). The relationship between PI-

3K/ERK activation and steroid biosynthesis further indicates the

important role of S1P during the regulation of steroid biosynthesis

(Figure 4) (5, 16).
4.4 Sphingomyelin and steroid biosynthesis

Sphingomyelin exists in cell membrane, which is the target of

many external signals, involving in the regulation of steroid

biosynthesis (5, 32, 41). Sphingomyelin can be hydrolyzed into

ceramide by sphingomyelinases (41), which is mediated by many

stimulators, including TNF-a, IL-1b and FasL (39, 50). For

example, S1P and C1P inhibit acid sphingomyelinase activity

through the negative feedback loop of sphingomyelin metabolism

pathway (52).

In Leydig cells, sphingomyelin hydrolysis is associated with

cholesterol migration (21). In addition, lysosomal sphingomyelin

can bind to SF-1 and cAMP can promote the separation of

sphingomyelin from SF-1 (17, 47). Given the dynamic balance of

different sphingolipid metabolites in specific cells, sphingomyelin

play an important role in the regulation of steroid biosynthesis as a

precursor of ceramide, lysosomal sphingomyelin and S1P (34).
4.5 Glycosphingolipids and
steroid biosynthesis

Bioactive sphingomyelins participate in steroid biosynthesis,

however whether steroid hormones are involved in sphingolipid

metabolism is another issue, which is exemplified in the

neurosteroidogenesis between sphingomyelin and isoproterenone

(53, 54). Mellon et al. found that isoprenol treatment can reduce

sphingomyelin and improve neurodegeneration (30, 55). At the

same time, sphingomyelin is critical for testosterone synthesis

(17, 27), and testosterone can regulate the level of renal

sphingomyelin (43, 52). Although the exact mechanism of

molecular regulation is still unclear, these demonstrate the

importance of sphingolipid metabolites and the complexity of

steroid biosynthesis.
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5 The role of sphingolipid metabolites
in spermatogenesis

In mammals, testes are mainly composed of two functional

regions, the seminiferous tubules containing germ cells and sertoli

cells, and the stroma containing Leydig cells (23, 26, 56). Among

them, spermatogenesis is a complex physiological process, which

mainly occurs in the seminiferous tubules and is regulated by the

interaction between multiple hormones (FSH and LH) and cells (24,

46, 57). The seminal vesicle contains many hydrolases, including

sphingomyelinase, which is involved in sperm phospholipid

hydrolysis, and closely related to sperm capacitation and

fertilization (27, 29, 38).

Glycosphingolipids are widely expressed in cell membrane (58)

and involved in differentiation, growth and transmembrane

signaling (4, 38). For example, glycosphingolipids GM1

distributed in spermatozoa (59), and GM3 distributed in sertoli

cells of seminiferous tubules (60). Analysis of sphingomyelin acyl

composition of in ram sperm found that VLC PUFAs only bind

with sphingomyelin, but not with other phospholipids (28).

The study of fertile and sterile mice that block the biosynthesis

of glycosphingolipids found that the synthesis of acidic subgroups

of fucosylated glycosphingolipids was blocked in fertile and sterile

mice, but the neutral subgroup of fucosylated glycosphingolipids

was only missing in sterile mice (61). Glycosphingolipids not only

play a role in the secretion of testosterone (62), but also is critical to

the prolonged polarization of sperm and the stability of the sperm-

sertoli cell contact (29).

At the initial stage of spermatogenesis, not only fucosylated

glycosphingolipids, but also ceramide and sphingomyelin (VLC-

PUFA contents) firstly appear in the pachytene spermatocyte stage

(63), and ceramide and sphingomyelin also appears in

spermatocytes 25-27 days after birth (64), these compounds are

the main components of mammalian sperm head (65).

During the last step of sperm maturation, ceramide and

sphingomyelin also play a very important role in the sperm

capacitation (29), After sperm was treated with the agents of

sperm capacitation, such as calcium, bicarbonate and albumin,

sperm sphingomyelin was degraded to ceramide, which reduced

the sphingomyelin/ceramide ratio several times (64). Therefore, the

hydrolysis of sphingomyelin in sperm head may be the early

biochemical change of sperm before fertilization (64), but the

mechanism of its action in spermatogenesis and capacitation is

still unclear and needs further research.
6 The role of sphingolipid metabolites
in testicular cell apoptosis

Sphingolipid metabolites play not only an important role in

spermatogenesis, but a regulatory role in apoptosis of germ cells

after pathological stress of testis (19, 22, 23, 26, 27, 30).

Firstly, sphingomyelinase can inhibit gonadotropin-induced

testosterone synthesis in Leydig cells, reduce the binding of

gonadotropin to receptors, then decrease cAMP (17, 23, 27). In
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mammalian testis, Leydig cells can maintain spermatogenesis and

androgen synthesis (17, 23, 30, 57), indicating that sphingomyelinase

not only reduces androgen synthesis, but also leads to excessive

apoptosis of spermatogonia and spermatocytes.

Secondly, ceramide is involved in the process of testicular cell

apoptosis mediated by various pathophysiological stresses. When

male rats were treated with toxic compounds, their testicular cells

were mostly Fas-positive and more sensitive to FasL (66). During

the spermatogenesis, FasL/Fad is involved in the loss of germ cells

(66, 67) and FasL can induce the increase of intracellular ceramide

level (68). In testicular cells, Fas can activate cell apoptosis through

ceramide signaling (69), indicating that Fas pathway is a sensor for

toxic substances to induce testicular injury.

Thirdly, S1Pmay also participate in the apoptosis of testicular cells,

since S1P can effectively inhibit chemotherapy-induced apoptosis of

ovarian cells. Suomalainen et al. examined the changes of intracellular

sphingolipids and cell apoptosis markers, and then found the elevated

ceramide contents during the early apoptosis following with activated

caspase 3 and appeared DNA laddering (70). Interestingly, reactive

oxygen species inhibitor (n-acetyl-L-cysteine), not ceramide synthetase
Frontiers in Endocrinology 06
inhibitor (fumonisin B1) suppressed testicular apoptosis without

ceramide changes, while S1P can inhibit testicular apoptosis by 30%

(70). Additionally, ceramide-initiated SAPK/JNK signaling and protein

phosphatase 2A activation is required during stress-induced apoptosis,

such as TNF-a, FasL and X-rays (69–74).

Finally, ceramide is an important regulator of cell apoptosis (5, 9,

10, 18, 31, 35, 38, 61), which may play a role through the following

three mechanisms (Figure 5). (i) Instantaneous acid sphingomyelinase

activation increases the membrane ceramide, promotes receptor

aggregation and subsequent apoptosis signaling transduction. (ii)

Ceramide is continuously produced through the activation of neutral

sphingomyelinase or ceramide activated protein phosphatase, resulting

in cell apoptosis. And (iii) plasma membrane phospholipid disorder

occurs, presenting sphingomyelin to neutral sphingomyelinase,

producing ceramide, and then forming the morphological changes of

membrane vesicles and apoptosis.

At present, the role of ceramide in testicular cell apoptosis has

made great progress, but the role of other sphingolipid metabolites

during the apoptotic process of testicular cells remains to be

further clarified.
A

B

C

FIGURE 5

Effect mechanisms of ceramide during the regulation of cell apoptosis. (A) The instantaneous activation of A-SMase. A-SMase activation promotes
ceramide-dependent receptor aggregation, leading to cell apoptosis via cathensin D. (B) The continuous activation of N-SMase. Ceramide induces
cell apoptosis through the continuous activation of N-SMase and phosphatase. (C) The formation of membrane vesicles. The membrane
morphology changes because of phospholipid disorder, and the membrane vesicle forms since N-SMase transforms sphingomyelin to excessive
ceramide. N-SMase, neutral sphingomyelinase; A-SMase, acid sphingomyelinase.
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7 Summary and prospect

Together, the contribution of sphingolipid metabolites to the

homeostasis of steroid hormones and the maintenance of testicular

functions is reviewed, but it is necessary to fully clarify their roles in

male reproduction in the future. These bioactive sphingolipids, as

key regulators, regulate steroid biosynthesis at different levels,

including the expression and activity of steroid synthetases. In

addition, sphingolipid metabolites participate in the regulation of

male gametogenesis and testicular damage. However, the

mechanism of these active molecules (such as ceramide and S1P)

during male gonadal development and gametogenesis needs further

study, and mass spectrometry, metabolomic analysis and

proteomics are important tools to further study the physiological

and pathological functions of sphingolipid metabolites. The present

review about sphingolipid metabolites will help to formulate new

strategies to improve gamete maturation and survival rate, thus

optimizing various assisted reproductive technologies. In addition,

the selective regulation of these active molecules in germ cells will

help to protect the testis from chemotherapy damage, preserve the

fertility of prognosis and improve the quality of life.
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