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The complex pathophysiology of
bone fragility in obesity and type
2 diabetes mellitus: therapeutic
targets to promote osteogenesis

Siresha Bathina1,2* and Reina Armamento-Villareal1,2

1Division of Endocrinology Diabetes and Metabolism, Baylor College of Medicine, Houston,
TX, United States, 2Center for Translational Research on Inflammatory Disease, Michael E. DeBakey
Veterans Affairs (VA) Medical Center, Houston, TX, United States
Fractures associated with Type2 diabetes (T2DM) are major public health

concerns in an increasingly obese and aging population. Patients with obesity

or T2DM have normal or better than normal bone mineral density but at an

increased risk for fractures. Hence it is crucial to understand the pathophysiology

and mechanism of how T2DM and obesity result in altered bone physiology

leading to increased fracture risk. Although enhanced osteoclast mediated bone

resorption has been reported for these patients, the most notable observation

among patients with T2DM is the reduction in bone formation from mostly

dysfunction in osteoblast differentiation and survival. Studies have shown that

obesity and T2DM are associated with increased adipogenesis which is most

likely at the expense of reduced osteogenesis and myogenesis considering that

adipocytes, osteoblasts, and myoblasts originate from the same progenitor cells.

Furthermore, emerging data point to an inter-relationship between bone and

metabolic homeostasis suggesting that these physiologic processes could be

under the control of common regulatory pathways. Thus, this review aims to

explore the complex mechanisms involved in lineage differentiation and their

effect on bone pathophysiology in patients with obesity and T2DM along with an

examination of potential novel pharmacological targets or a re-evaluation of

existing drugs to improve bone homeostasis.

KEYWORDS
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1 Introduction

1.1 Obesity type 2 diabetes and bone

Obesity is associated with increased risk of T2DM (1), Cardiovascular diseases (2) and

Cancer (3). The World Health Organization (WHO) defined overweight as a BMI of 25 to

29.9 kg/m2 and obesity as a BMI greater than or equal to 30 kg/m2 (4). According to new

world health Atlas 2022, by 2030, 20% of women and 14% of men and over 1 billion people
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w i l l b e l i v i n g w i t h o b e s i t y g l o b a l l y ( h t t p s : / /

www.worldobesityday.org) and nearly 1 in 4 adults will have

severe obesity with prevalence of more than 25% higher in 25

states in US (5). Obesity may lead to T2DM and by 2035, the global

prevalence of T2DM is likely to be 592 million (6). The duo (obesity

and T2DM) increases as the population ages. Both conditions are

associated with normal or better than normal bone mineral density

(BMD) but paradoxically increase in the risk for fractures. Obesity

is a risk factor for T2DM such that the bone phenotype in the two

conditions likely overlap in a major way. Thus, this review aims to

examine, the complicated underlying molecular mechanisms

involved in the alteration in lineage differentiation and identify

pharmacological targets that redirect cell differentiation from the

adipogenic to the osteogenic/myogenic pathways.
1.2 Pathophysiology of skeletal fragility in
obesity and T2DM

Increase in bone marrow adipose tissue volume has been reported

both in diabetes and obesity (7). Earlier studies confirmed an increased

risk for hip fracture in both male and female patients with type1

diabetes(T1DM) (8). Osteoporotic fractures especially on the hip, are

increased in both T1DM and T2DM, but the risk is 7 fold for those

with T1DM compared to 1.38 fold increase in hip fractures of T2DM

(9). The increased risk in T1DM is due to lack of anabolic effects of

insulin which may contribute to lower peak bone mass while bone

mass seems to be preserved in the T2DM (10). Regardless, studies

have shown that both T1DM and T2DM is associated with a switch

from osteogenesis to adipogenesis, increase in bone marrow adiposity

leading to cellular marrow replacement with fat (11). The higher BMD

in obesity is believed to be due to skeletal adaptation to accommodate

mechanical load and strain (12, 13). However, visceral and total

adiposity was not associated with vertebral fractures in men (14).

Some studies reported negative correlation between BMD (15, 16).

Obesity, is associated with increased secretion of pro-inflammatory

factors (as described in Figure 1)) that may be harmful to bone and

activation peroxisome proliferator-activated receptor-g (PPARg) and
CCAAT/enhancer-binding protein alpha (CEBPa), nuclear factor

kappa light chain enhancer of activated B cells (NF-Kb) pathway

(17, 18). Adipokines produced in the adipocytes have inverse

relationship to fat mass (19, 20), variably effects bone mass (21).

Cao et al, found reduced serum bone formation marker osteocalcin

(OCN) and increased bone resorption markers, serum C-telopeptide

of type I collagen (CTx) and Tartrate-resistant acid phosphatase 5b

(TRAP5b) in diet-induced obese mice (22). Furthermore, Jain et al.,

studies confirmed that visceral adipose tissue (VAT) is negatively

associated with bone mineral density (23). On the other hand, in T2D

BMD is normal or above normal,likely protective against vertebral

fractures (24), but some studies show reduced BMD (25, 26) due to

accumulation of advanced glycation end products (AGEs) (27, 28)

increased proinflammatory cytokines such as TNF-a, IL-6 (28, 29)

high sclerostin levels (30) leading to reduction in bone formation,

OCN (31) and (Procollagen I N-terminal propeptide) P1NP levels in

T2DM (31, 32) and impairment in osteoblastogenesis (33–35). There

is also reduction in bone resorption markers (CTX and TRAP5b) (28)
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though bone turnover markers are not as predictive of fractures

compared to BMD and maybe difficult to interpret,. Mesenchymal

stem cells residents in the bone marrow (BMSCs) are endowed with

plasticity and can differentiate into the osteogenic, myogenic or

adipogenic lineages depending on the predominant transcription

factors present. The enhanced potential of skeletal muscle satellite

cells or SMSCs for adipogenic differentiation was observed in diabetic

rats using a 3-dimensional matrices in vitro model (36) and from in

genetically obese Zucker rats (37). Furthermore, myoblasts isolated

from Wnt10b (wingless-type mouse mammary tumor virus

integration site) null mice showed increased adipogenic potential

(38). Jiang et al. found that PRDM16 (Positive Regulatory Domain

Motif -16) over expression could partially reverse the effect of mir-499

on adipogenic differentiation of SMSCs and maybe a target for obesity

treatment (39). Therefore, there is a need to fully understand the

molecular mechanisms behind this shift along with investigations on

common regulatory pathways.

Despite the high BMD in obese subjects, these individuals are at

increased risk of fractures at nonvertebral skeletal sites (i.e. lower

extremities and humerus) (40–42). There are several mechanisms

proposed to explain the increased skeletal fragility in obese

individuals such as low vitamin D with consequent secondary

hyperparathyroidism (43, 44), increased levels of proinflammatory

cytokine release from the expanded adipose tissue volume and

possibly the high levels of leptin and reduced adiponectin though

both have variable effects on the skeleton (44) Low vitamin D is easily

corrected clinically but the increase in adipose tissue volume and

subsequent proinflammatory state requires more effort (45). Likewise,

studies (46–52) have shown that BMD is also higher in patients with

T2DM compared to nondiabetic subjects but associated with an

increased fracture risk affecting any skeletal site (52, 53). Given that

obesity is a risk for T2DM, it would be hard to separate out the effect

of obesity from diabetes on the bone. Clinical studies (54–57),

including from our group (58, 59) demonstrated suppressed bone

formation maker OCN, P1NP (48) and bone resorption marker

(CTX) in patients with T2DM. Additionally, Vigevano et al. showed

that among obese men, those with concurrent T2DM had higher

bone density but reduced bone turnover markers (CTx and OCN)

(60) and lower bone strength suggesting that if obesity has a negative

effect on the bone, T2DM further adds to the skeletal compromise

from obesity alone or that diabetes is the driver for the skeletal

phenotype in those who have both. In a study of older women,

relative to nonobese without diabetes, those with diabetes but

nonobese had a 1.9 risk for vertebral or hip fracture and 1.4 for

nonvertebral and non-hip fractures. The corresponding numbers for

nondiabetic but obese were 1.2 and 1.1, respectively, while they were

1.5 and 1.8, respectively, for those with both diabetes and obesity (61).

Meanwhile, given the clinical observation of increased in bone

marrow fat in obesity and diabetes, it is likely that MSCs are

involved in the pathology of skeletal fragility seen in in patients

with obesity, diabetes or both. This hypothesis was supported by a

study from Tencerova et al., which showed that an increase in

adipocyte differentiation along with accelerated senescence in

BMSCs lead to bone fragility in obese men (62). Thus,

pathophysiology of brittle bone in both obesity and T2DM may be

attributed as due to the mechanisms discussed below.
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1.3 Lack of regulation of brown fat
synthesis and/or enhancement
of adipogenesis

Differentiation of fat and its control is regulated by

transcriptional cascade which can affect the physiological

functioning of white and brown adipocytes (63). Normally, the

conversion of pre-adipocytes to mature lipid containing adipocytes

is a multi-step complex process regulated by transcription factors

which can be altered by inflammatory signaling pathways of obesity

(64). Of all transcription factors, (PPARg and CEBPa) are the key

regulators in driving fat cell differentiation (65, 66). Crucially,

PPARg which is the driving factor for adipogenesis needs co-

activation by CEBPa to promote myogenesis (67–69) Cohen et al.

(70) found that knock out of PRDM16 resulted in obesity and

severe insulin resistance mice fed a high-fat diet (70). Several pre-

clinical experiments have confirmed the association of PRDM16

with PGC 1a (71) and PPARg (72) resulting in activation of the

myogenic cascade (73) and BAT formation. Recent human studies

have shown positive correlations between BAT volume and bone

density (74–76). Nevertheless, PPARy remains the novel target

because of its dual role in MSC-derived adipogenesis.as well as

HSC-derived osteoclastogenesis (67). Studies of Beekman et al. (77)

showed that PPARg inhibitor, GW9962 has no direct impact on

bone marrow adipose tissue (BMAT) in C3H/HeJ mice (77)

suggesting that BMAT accumulation might be regulated by a

different mechanism. In contrast, another study demonstrated

upregulation of sphingosine-1-phosphate (S1P) by S1P lyase,

mediated PPARg suppression resulting in enhanced bone

formation (78). Similarly, Wnt cascade also plays a significant

role in the initiation of adipogenesis in obese people (79, 80).

Normally, Wnt ligands bind to one of the frizzled family

receptors (FZD) and to a co-receptor low-density lipoprotein

receptor-related protein (LRP) to activate b-catenin dependent

pathway (canonical signaling) and subsequent bone formation

(81, 82). Conversely, Wnt signal transduction seems to be

redundant in both obesity (83) and T2DM (84). Previous studies

showed a close relationship between upregulation of classical Wnt

signaling and enhanced myogenesis and/or osteogenesis (85, 86). In

humans, subcutaneous injection of Romosozumab which targets

sclerostin (an inhibitor of the Wnt pathway), reduced the risk of

vertebral and clinical fractures in women with postmenopausal

osteoporosis and hence this drug was approved to treat osteoporosis

(87). Thus, attractive therapeutic targets using Wnt-targets, acting

on obesity associated genes such as secreted frizzled receptor(Srfp1)

and Wnt inhibitory factor (WIF-1) acting on classical Wnt-b
catenin pathway are undergoing pre-clinical and clinical trials (81).
1.4 Effect of T2DM and obesity on satellite
cells and bone senescence

Sarcopenia which is defined as low muscle mass and function is

common in the elderly and is associated with increased falls and

fractures (88–93). It can accompany obesity in a significant number

of older adults for a condition called sarcopenic obesity resulting in
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frailty (94). Exercise improvedmuscle strength and physical function in

older adults (95–99) and mice (100). For instance, the Lifestyle

Interventions and Independence for Elders (LIFE) study (101) in 424

sedentary older persons showed that engaging in moderate-intensity

physical activity (combination of aerobic and resistance) intervention

reduced the incidence of major mobility disability with an increase in

the Short Physical Performance Battery (SPPB) (102). Similarly weight

loss from lifestyle intervention by a combination diet and exercise

improves physical function, and ameliorates frailty in obese older adults

(103–105). In addition, these studies exercise added to diet resulted in

amelioration of muscle and bone loss experienced by those who were

on diet alone. Since obesity is a risk factor for T2DM, it is expected that

a significant number of obese patients with T2DM also have sarcopenic

obesity (106). It is likely that skeletal muscle mass and function relies on

muscle progenitor cells cascade including satellite cells, interstitial

progenitor cells and hence discovery of novel therapeutic targets to

improve muscle mass and function are of utmost importance (107).

Although the mechanism leading to impairment of muscle dysfunction

in obesity remains unclear, the proinflammatory cytokines present in

the muscles such TNFa, IL-6 which are elevated in obesity has been

found to be reduced by exercise (108).

Verpoorten et al., showed that cluster of differentiation (CD36)

deficient mice although protected from diet-induced obesity,

developed impaired satellite cell function and muscle regeneration

(109). Apart from adipogenic and inflammatory markers,

impairment in fatty acid uptake via CD36 can also affect bone

integrity (110). Our recent studies showed that in patients with

poorly-controlled T2DM had significantly higher circulating

osteogenic precursor cells (COPs) compared to well-controlled

diabetics. This could mean that COPs are markers of poor

metabolic control or the possibility for uncontrolled hyperglycemia

results in retardation of differentiation of COPs into mature

osteoblasts (59). Studies from our lab also confirmed, that poor

glycemic control over 1year is associated with poor bone

microarchitecture and strength in men with T2DM (59, 111). On

the other hand, alteration in crucial genes of myogenesis can promote

development of osteoprogenitor cells. Studies from Hashimoto et al.

(112), showed both primary and immortalized progenitor cells

derived from muscle of healthy non-dystrophic woman expressed

two osteoblastic specific bone proteins, alkaline phosphatase and

Runt-related transcription factor 2 (Runx2) (112). Studies in knock-

out mice (113) and other aging studies (114) also showed that Runx2

deficiency resulted in impairment in osteoblastogenesis and depletion

for satellite cells. Thus, it is likely that satellite cells and its gene

machinery, play significant role on mediating the process of bone

repair and thus, can be used as strategy in treatment (115). The next

section discusses on the targets to minimize/nullify the inflammatory

oxidative stress and enhance osteogenesis.
2 Emerging therapeutic treatment in
bone loss of obese and T2DM patients

Currently, there are numerous medications and therapeutic

options for the treatment of osteoporosis but not for bone

fragility in diabetic or obese patients in particular (116–120).
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Given this unmet need, understanding the pathways involved in

bone disease in these patients will potentially lead to future

strategies to prevent fractures.
2.1 Novel therapies -targeting bone
formation

2.1.1 Role of PRDM16 in adipo-myogenic shift
and osteogenesis

The novel therapeutic strategies that suppress bone marrow

adipogenesis and bone resorption and enhanced bone formation

deserve further research. Human PRDM16 located on chromosome

1p36 with 370kb, a zinc finger containing transcriptional regulator

protein (121), was recently reported to interact with PPARg (122),

CEBPa (123) and/or Pgc-1a (124) promote browning of fat.

Additionally, Prdm16 represses adipogenesis mediated through its

association with C-terminal binding proteins (CtBP-1 and -2)

suggesting that PPARy can act as bi-directional switch between

adipogenesis and myogenesis through its interaction with multiple

proteins (125). Apart from Prdm16 and PPARg, Pgc1a might act as

co-activator and play critical role from adipogenic to myogenic

shift. This was suggested by studies from Seo et al., showing

reduction in obesity among mice fed a high-fat diet through
Frontiers in Endocrinology 04
suppression of adipogenesis by upregulation of Prdm16, Pgc1a

and uncoupling protein 1 (UCP1) (126). Furthermore, Kaneda

et al., found a synergistic association between Prdm16 and

Osteogenic Runx2 gene in Mel1/Prdm16-deficient mice (127).

They observed that BMP2 stimulated osteoblasts isolated from

Mel1/Prdm16+/- mice are highly stained with alizarin due to

extensive calcification and enhanced expression of osteogenic

markers such as osteopontin (OPN), OCN when compared to

control mice (127). Thus, any ligand inducing a confirmational

change in PPARg promoting the dissociation of transcriptional

repressors and intake of co-activators (Pgc1a) leading to

activation of the myogenic cascade (as described in Figure 2)

along with promotion of the osteogenic Runx2 gene might be a

novel therapeutic targets. The research on these transcriptional

activators needs to be investigated. In the next section, we explore

the targets involved in myogenesis and osteogenesis and blocking

of adipogenesis.

2.1.2 Stem cell therapy
Obesity and T2DM enhance the recruitment of adipocyte

precursors, resulting in fat deposition in the viscera, muscles, and

other organs and bone fragility. Hence, it is critical to develop

therapies to prevent adipocyte differentiation. Stem cell therapy

remains an attractive candidate for tissue engineering (128).
FIGURE 1

Schematic proposal of pathophysiology of bone fragility in Obesity and T2DM. Even though underlying mechanisms are unclear, both T2DM and
Obesity causes oxidative stress and inflammation. T2DM causes the accumulation of AGEs with increased oxidative stress leading to osteoblast
dysfunction and reduced bone formation (i.e. reduced Runx2 and OCN) followed by increasing bone fragility. On the other hand, obesity is
associated with increased pro-inflammatory markers and pro-resorptive factors such as RANKL, TRAP5b. However, whether obesity by itself has any
effect on osteoblastic function is unclear. Altogether, the above contribute to simultaneous effect on bone tissue homeostasis leading to
bone fragility15-21.
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Adipose-derived mesenchymal stem cells (AD-MSCs) can exhibit

various phenotypes of ecto and endodermal hematopoietic stem

cells (HSCs) and mesodermal adipocytes, myocytes and osteocytes

(129). Louwen et al. showed that human ASCs from obese patients

had reduced capacity for osteogenic lineage differentiation (130,

131). Furthermore, Lee et al., reported that intra-articular injection

of adipose derived AD-MSCs in patients with knee osteoarthritis,

resulted in functional improvements for 6 months without major

adverse effect (131). Thus, AD-MSC transplantation is feasible and

can possibly be used to repair areas where osteoblastogenesis and

subsequent endogenous bone formation is necessary (131, 132).

This therapeutic potential of AD-MSCs depends on understanding

the mechanism of differentiation capacity in the BM. In line with

this, are over 1000 clinical trials registered with the Clinicaltrials.gov

(http://www.Clinicaltrials.gov) which may demonstrate the clinical

applications of AD-MSCs against bone fragility (133).

2.1.3 Si RNA and other inhibitors
Targeted drug delivery strategies with reliable, efficient delivery

remain crucial for cell-based therapy. Even though the delivery of

siRNA to bone is challenging due to limited drug penetration and

poor vascular perfusion, siRNAs (Short interfering RNA) play

pivotal role than chemical-based studies (134), Previous studies

targeting Shn3 (adaptor protein Schnurri-3) gene silencing by

genetically engineered BT-Exo-siShn3 novel MSC-derived
Frontiers in Endocrinology 05
exosome as carrier, resulted in osteogenesis along with blocking

of Receptor activator of nuclear factor kappa-Β ligand/Dickkopf

WNT Signaling Pathway Inhibitor 1 (RANKL/DKK-1), thereby

inhibiting osteoclastogenesis in mouse MC3T3-E1 pre-osteoblast

cell line (135). Liang et al, developed CH6 aptamer–functionalized

lipid nanoparticles (LNPs), specifically targeting both rat and

human osteoblasts, was found to promote bone formation (136).

Due to high stability and non-immunogenicity aptamers, small

single stranded oligonucleotides which can form 3D structure, are

used in the ongoing clinical trials for their potential use as novel

drug therapy targets for osteoporosis (137). Furthermore, in order

to overcome the limitations of direct drug delivery, the combination

of nanotechnology with bone target agents can provide more

effective therapeutic approach in the near future (138).

2.1.4 Testosterone therapy
Testosterone which is an old drug used for treatment of

hypogonadism, has been found in recent years to have beneficial

effects in both myogenesis and osteogenesis (139). T is well-known

to improve BMD and bone quality in men (140–145). Various

studies demonstrated that T therapy increased, levels of OCN (146,

147) and reduced levels of CTx (144, 145) (148) In vitro studies

showed that 5a-dihydrotestosterone (a potent agonist of androgen
receptor synthesized from T by the enzyme 5a-reductase)
treatment of bone forming MC3T3-E1 cells not only enhanced
FIGURE 2

Proposed effect of T therapy in Obesity. Binding of testosterone might initiate the PPARg-Prdm16-Pgc1a complex with retinoid X receptor (RXR)
which not only activates the browning of adipose tissue by re-programming but may also activate the myogenic cascade and runx2 gene involved
osteogenesis. Thus, T therapy with its activator Prdm16 might be a novel therapeutic target and research on this transcriptional activator needs to be
consider.
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osteoblast differentiation (149) but also downregulated bone

resorption promoter RANKL (150) in human osteoblastic cells.

Furthermore, testosterone administration increased the width of

epiphyseal growth plate of growing rats directly (151, 152).

Similarly, Chin et al, showed decreased trabecular bone volume

and increased trabecular porosity in orchiectomized (ORX) rats

when compared to sham-untreated (SH) group. Conversely, T

treatment (7mg/kg) for 8weeks in ORX-TE group prevented these

changes and decreased expression of RANKL significantly when

compared to SH group (153).

Muscle function contributes in some measure to bone mass and

testosterone increases muscle mass and function (154). Preclinical

studies suggest a critical role of the adipogenic/myogenic/osteogenic

switch on the observed effects of T therapy. Using mouse C3H 10T1/2

pluripotent cells, Singh et al, evaluated the effect of T treatment (0-300

nM) on the myogenic/adipogenic conversion by immunocytochemical

staining for MyoD and PPARy (155). They found that T not only

promotes commitment of SMSCs into the myogenic lineage but also

inhibits adipogenic lineage. Apart from the myogenic machinery, Gao

et al., further reported that osteoblast differentiation was activated by T

therapy in MC3T3-E1 cells through ERK-1/2, activated Runx2

pathway (156). Changes in body composition and bone density with

T therapy from our lab and other investigators support the above

findings from in-vitro and animal studies (146, 157, 158). Hence, we

hypothesize that the reciprocal effect of T therapy on fat mass, lean

mass and bone mass is due to the shift in lineage differentiation from

adipogenesis to both myogenesis and osteogenesis. Thus, this concept

provided a unifying mechanism for the observed effect of T in

hypogonadal men. Roles of other gene machinery such as Prdm16.

Pgc1a on the adipogenic/myogenic cascade need to be explored. We

hypothesize that T therapy activates the trio cascade PPARg-Prdm16-

Pgc1a leading to initiation of the switch from adipogenesis to

myogenesis along with promotion of osteogenesis (Figure 2)

responsible for the observed positive effect on fat mass, lean mass

and bone mass in hypogonadal men (146, 157, 158). The Endocrine

Society has suggested the use of T to maintain or prevent loss of lean

mass in men with HIV (159). Given the emergence of a substantial

amount of data showing the positive effects of T on body composition

and bone, it is possible that obesity may become one of the indications

for T therapy.
3 Conclusion

Obesity and T2DM are increasing at an alarming rate worldwide.

Despite the normal or better than normal BMD, both appear to be

associated with increased fracture risk, most especially with T2DM.

Though it is difficult to separate the skeletal effects of one from the

other, there seems to be more data supporting the negative skeletal
Frontiers in Endocrinology 06
effects of T2DM than that of obesity, however, this is a complicated

issue that needs further investigation. To date, there is no drug

approved specifically to treat skeletal fragility in these patients. Since

BMD cannot alone predict the risk of bone fragility, this review explores

potential new methods or agents to promote the adipo-myogenic/

osteogenic lineage shift which may include but not limited to targeting

Prdm16, stem cell therapy, si-RNA inhibitors and repurposing of an old

drug, testosterone in the general population of patients with obesity,

T2DMor both.With further drug development, it is possible to prevent

skeletal fragility and promote overall health in these patients.
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