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Ovarian cancer-associated
immune exhaustion
involves SPP1+ T cell and
NKT cell, symbolizing more
malignant progression

Kunyu Wang, Hongyi Hou, Yanan Zhang, Miao Ao,
Haixia Luo and Bin Li*

Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for
Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Background: Ovarian cancer (OC) is highly heterogeneous and has a poor

prognosis. A better understanding of OC biology could provide more effective

therapeutic paradigms for different OC subtypes.

Methods: To reveal the heterogeneity of T cell-associated subclusters in OC, we

performed an in-depth analysis of single-cell transcriptional profiles and clinical

information of patients with OC. Then, the above analysis results were verified by

qPCR and flow cytometry examine.

Results: After screening by threshold, a total of 85,699 cells in 16 ovarian cancer

tissue samples were clustered into 25 major cell groups. By performing further

clustering of T cell-associated clusters, we annotated a total of 14 T cell

subclusters. Then, four distinct single-cell landscapes of exhausted T (Tex)

cells were screened, and SPP1 + Tex significantly correlated with NKT cell

strength. A large amount of RNA sequencing expression data combining the

CIBERSORTx tool were labeled with cell types from our single-cell data.

Calculating the relative abundance of cell types revealed that a greater

proportion of SPP1 + Tex cells was associated with poor prognosis in a cohort

of 371 patients with OC. In addition, we showed that the poor prognosis of

patients in the high SPP1 + Tex expression group might be related to the

suppression of immune checkpoints. Finally, we verified in vitro that SPP1

expression was significantly higher in ovarian cancer cells than in normal

ovarian cells. By flow cytometry, knockdown of SPP1 in ovarian cancer cells

could promote tumorigenic apoptosis.

Conclusion: This is the first study to provide a more comprehensive

understanding of the heterogeneity and clinical significance of Tex cells in OC,

which will contribute to the development of more precise and effective therapies.
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1 Introduction
Ovarian cancer (OC) is one of the deadliest and most aggressive

tumors in women, and its incidence has increased in recent years (1).

Because the early specific signs and symptoms of OC are not obvious

and develop rapidly, the vast majority of patients with OC are not

diagnosed until the late stage (2). Patients with OC often have a poor

prognosis, presumably because their heterogeneity limits reproducible

prognostic classification (3). At present, surgery, chemotherapy and

radiotherapy are the most commonmodalities used in the treatment of

OC. However, the side effects of treatment in these patients are more

severe and there is a serious decrease in the quality of life of the patients

(4). Extensive heterogeneity in OC cells is a critical mechanism for

overall survival and cancer progression (5). Therefore, it is of great

significance to explore specific markers for the early diagnosis of OC to

improve treatment and patient outcomes.

Emerging single-cell technologies provide powerful tools to

explore heterogeneity and thereby aid in problem solving (6, 7).

This technology has been increasingly used in the field of cancer

and provides new mechanisms for understanding carcinogenesis

and revealing therapeutic strategies (8–12). However, only a few

studies have investigated OC at the single-cell level. A recent single-

cell RNA sequencing (scRNA-seq) study investigated tumor

heterogeneity at cellular resolution using OC samples (13).

Another study examined how fallopian tube epithelial cell sources

could accurately predict cancer behavior (14). These studies provide

new insights into the carcinogenesis of OC, and their findings

enhance our understanding of OC.

Tumors are characterized by significant heterogeneity that can

lead to differential responses to the same therapy (15). Until now,

there have been efforts to explore the heterogeneous characteristics

of tumors. However, our understanding of tumor heterogeneity is

still limited to tumor cells due to the limitations of technology.

Recent studies have demonstrated that tumor-infiltrating immune

and stromal cells exhibit heterogeneity (16). In addition, increasing

evidence suggests that the tumor microenvironment (TME) plays

an important role in targeting agents (17). Previous studies have

highlighted CD8+ failure, immune checkpoints, and tumor-

associated macrophages as key therapeutic targets (18, 19). These

data enhance our understanding of TME heterogeneity.

To reveal the heterogeneity of T cell-associated subclusters in

OC, we performed an in-depth analysis of single-cell transcriptional

profiles and clinical information of patients with OC. We then

explored the immune landscape of four different Tex and could

clearly see a significant correlation between SPP1 + Tex and NKT

cells. A large amount of RNA-seq expression data combining the

CIBERSORTx tool and TCGA were labeled with cell types from our

single-cell data. In calculating the abundance of immune cells for

each patient, we found that the abundance of SPP1 + Tex cells was

associated with poor prognosis. In addition, we showed that the

poor prognosis of patients in the high SPP1 + Tex expression group

might be related to the suppression of immune checkpoints. Finally,

we performed in vitro experiments for validation. The expression

level of SPP1 in ovarian cancer cells was significantly higher than

that in normal ovarian cells, and the ability to promote apoptosis
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after knocking down SPP1 in ovarian cancer cells could be seen by

flow cytometry. This is the first study to provide a more

comprehensive understanding of the heterogeneity and clinical

significance of Tex cells in OC, which will contribute to the

development of more precise and effective therapies.
2 Materials and methods

2.1 Data collection

Three single-cell datasets (E-MTAB-8107, GSE154600, and

GSE130000) were obtained from the Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/) containing a total of 16

samples from patients with OC. RNA-seq data and accompanying

clinical information from 371 OC samples were downloaded from

the TCGA cohort for further correlation analysis (http://

cancergenome.nih.gov/). This study used a publicly available

dataset that received ethical approval from the original study.
2.2 Data filtering and correction

We used the “Seurat” and “SingleR” software packages for

scRNA-seq data analysis. We filtered cells with unique feature

counts > 2500 or < 200 and cells with mitochondrial counts > 5%.

Then, the feature-expression measurements for each cell were

normalized to the total expression using the default parameters of

the Seurat “NormalizeData” function. Subsequently, all cell data were

transferred to a combined Seurat object using the Harmony package.

Variable genes were then scaled, and the principal component (PC)

was analyzed. Using the “RunUMAP” (min. dist = 0.2, n. neighbors =

20) and “FindClusters” (resolution = 0.5) functions, significant PCs

were selected for Umap and cluster analyses.
2.3 Cell annotation

To identify cell types, we performed two annotation modalities.

Automated annotation (used for the first clustering to select T cell-

related subsets): SingleR is an automated annotation method for

scRNAseq data (20). Given a sample reference dataset (single cell or

batch size) with known labels, it marks new units in the test dataset

based on their similarity to the reference. Thus, for reference

datasets, the burden of manually interpreting clusters and

defining marker genes only needed to be done once, whereas

biological knowledge could be spread to new datasets in an

automated manner.

Manual annotation (used to cluster T cell-related subsets for the

second time): We checked whether the well-studied marker genes

were the top differentially expressed genes (DEGs) and annotated

the most likely identity for each cell cluster. The remaining cell

types were identified by manually searching the cell marker

database (http://biocc.hrbmu.edu.cn/CellMarker/). The R package

“estimate” was used for estimate analysis to classify and score cells

as a whole: estimate score, immune score, and stromal score.
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2.4 GSEA pathway and cell-to-cell
communication analyses

We performed GSEA pathway and cell-to-cell communication

analyses to explore the association between T cell-associated

subsets. R package “ABGSEase” was used to perform biological

pathway enrichment between the two groups, and the reference

gene set was Hallmark, GO, and KEGG. Minimum gene set size

minGSSize = 50, maximum gene set size maxGSSize = 100, and P-

value truncated at P-value cutoff = 0.05 were set for the analysis.

Cell–cell communication analysis uses the R package “CellChat”,

and the pathway selects the secreted signaling pathway. The

reference human ligand–receptor database was CellChatDB. We

examined the interactions between different cell types and filtering

pathways with cell numbers less than 10.
2.5 Unsupervised consensus
cluster analysis

Robust Tex cell infiltration-associated clusters can be found in

TCGA cohort patients by consensus clustering techniques based on

partitioning and expression of Tex cells in 4 with the help of the R

package “ConsensuClusterPlus”. The cumulative distribution

function and consensus heat map were used to determine the

optimal K-value. The method was repeated 1000 times to ensure

the stability of the layering process.
2.6 Prognostic analysis

For the selected cells, univariate cox regression analysis was first

performed to select prognostically relevant Tex cells (P < 0.05).

Kaplan–Meier curves were used to assess the differences in survival

between the high and low groups of such cells.
2.7 Immune infiltrate analysis

Immune infiltration analysis was performed using the

CIBERSORTx algorithm (21), which quantifies the absolute content

of 22 immune cells based on the patient’s transcriptional profile

information, as well as the absolute content of Tex cell infiltrates in 4

derived from a reference dataset of our own single-cell data.
2.8 DEG analysis

The main purpose of this analysis was to identify DEGs between

the SPP1 + Tex high and low groups. DEG analysis was performed

using the “limma” package in R software with thresholds set at log

FoldChange ≥ 1 and adj PVal Filter (adj P) < 0.05. Subsequently,

GSEA was performed for the SPP1 + Tex high and low groups to
Frontiers in Endocrinology 03
explore the significance of their biological functions. Finally, we

analyzed the expression of immune checkpoints in the high and low

SPP1 + Tex groups.
2.9 Cell culture

Human normal ovarian cells IOSE80 and ovarian cancer cells

A2780 were purchased from American Type Culture Collection

(ATCC, Rockville, MD, USA). Cells were cultured in RPMI-1640

medium containing 10% Fetal Bovine Serum (FBS) at 37° C and

5% CO2.
2.10 Quantitative real-time PCR (qRT-PCR)

Cells were treated with TRIzol reagent (Takara, Japan). We then

extracted all RNA and reverse-transcribed it into cDNA. qRT-PCR was

used to analyze the relative expression of SPP1, and data were

normalized to GAPDH. Reverse transcription system: 500ng RNA,

2ul RT Master Mix, add RNase-free water to fix the volume to 10ml.
qPCR system: 10ml 2xTB Green, 8ul ddH2O, 1ml cDNA, 1ml primer

(22). The primer sequences are as follows: SPP1-F::5’-AGA CCC TGA

CAT CCA GTA CCT G-3’, SPP1-R: 5’-GTG GGT TTC AGC TAC

CTG GT-3’. GAPDH-F: 5’-GGAGCGAGATCCCTCCAAAAT-3’,

GAPDH-R: 5’-GGCTGTTGTCATACTTCTCATGG-3’.
2.11 Apoptosis analysis

We analyzed cell apoptosis using flow cytometry after pre-

cooling PBS washing and digestion with trypsin digestion solution

containing no EDTA (Solarbio, Shanghai, China). Cells were

harvested after centrifugation at 1000 rpm for 5 minutes, followed

by 7-AAD (BD Biosciences, number 559, 925, USA) staining and

annexin-APC (BD Biosciences, number 561, 012, USA) staining for

15 minutes.
2.12 Statistical analysis

The student’s t-test was used for normally distributed

continuous variables. The Mann–Whitney U test was used for

continuous variables that were not normally distributed.

Correlations between continuous variables were evaluated using

Pearson’s correlation analysis. Statistical significance was set at P <

0.05. R software version 4.1.0 (http://www.R-project.org) was used

for data analysis and figure generation.
3 Results

Flowchart (Figure 1).
frontiersin.org

http://www.R-project.org
https://doi.org/10.3389/fendo.2023.1168245
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1168245
3.1 Cell clustering of OC landscapes

First, we performed principal component analysis (PCA) on 16

samples to reduce dimensionality and selected the first 50 PCs for

subsequent analysis (Figure 2A). Following data processing and

screening, we obtained gene expression profiles for 85,699 cells

from 16 OC samples and identified 25 cell clusters using Seurat

(Figure 2B). Cell distributions are visualized by Umap plots for

different samples (Figure 2C). Cells in clusters 0 and 20 were

classified as T cells by defining the annotation of cell identity in

each cluster by cross-referencing the DEGs in each cluster to

canonical marker genes (Figure 2D). The heatmap visualizes the

expression of genes in each cluster of cells, with yellow highlighted

sections representing genes highly expressed in this cluster

(Figure 2E). The expression levels of some signature genes in this

cluster were visualized using violin plots (Supplementary Figure 1).

In addition, we showed the infiltrative content of seven clusters of

cells in each sample by histogram and found that epithelial cells

accounted for the highest proportion in most samples (Figure 2F).
3.2 Cellular clustering of T cell
subsets in OC

We calculated three scores for the three classes of cells using the

package “estimate”. Immune cells had the highest immune score.

tumor cells had the highest tumor purity score, and other cells had

the highest stromal score (Supplementary Figure 2). This score also

demonstrates the accuracy of the grouping.

First, we identified CD8+ T cell locations by determining the

distribution of cell signature genes (Figure 3A) and proceeded with

PCA dimensionality reduction of the T cell clusters (Figure 3B).

Subsequently, Umap dimensionality reduction was performed to
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obtain 14 clusters of cells, and the cell distribution of different

samples is shown (Figures 3C, D). Through bubble plots, we can

visually observe the signature genes of each T cell subcluster

(Figure 3E). The Umap plot shows the distribution of CD8A

markers (Figure 3F). By determining the distribution of the Tex

cell marker, clusters 5, 3, 4, and 1 were identified as CD8+ Tex cells

based on this distribution (Supplementary Figure 3A). Clusters 8, 10,

and 12 were identified as Treg cells based on the distribution of the

two Treg cell markers (Supplementary Figure 3B). Finally, the results

for T cell subsets were determined by manual annotation, with 14 cell

clusters annotated as a total of nine Tex-related cell subsets

(Figure 3G). Using the Umap plot, we determined the distribution

of highly expressed genes in Tex cells (Supplementary Figure 3C). In

addition, we determined the proportion of Tex cells in the samples

using a histogram plot (Figure 3H). We found that the content of T

cells in different samples was significantly different.
3.3 Pathway analysis of four Tex cells

By comparing the enriched pathways in four Tex cells using

GSEA analysis, we found that SPP1 + cluster CD4+ ab T cells were

functionally active (Figure 4A). Comparing the SPP1 + Tex and

ZFP36S2 + Tex cluster cells, we found that the positive regulation of

cell adhesion was significantly activated (Figure 4B). GNB2L1 + Tex

cluster cells showed activation of negative regulation of immune

effector processes (Figure 4C). IL32 + Tex cluster cells showed

significant activation of the lymphocyte-mediated immune function

(Figure 4D). Cell communication analysis revealed a close connection

between these cells (Figure 4E). In addition, we found that the signal

emitted by SPP1 + Tex was very strong in NKT cells, in addition to a

significant link with IL32 + Tex, GNB2L1 + Tex, and other

cells (Figure 4F).
FIGURE 1

Flowchart.
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3.4 Identification of the role of Tex
cell-related pathways

Subsequently, we visualized the cellular role of the sub-

pathways of secretory cell communication. Cell communication
Frontiers in Endocrinology 05
diagram shows the signaling pathway networks of WNT, TGF-b,
and SPP1. The results showed that endothelial cells expressed the

WNT signaling pathway significantly, and the WNT-based

pathway macrophage Tex cells had a strong effect on

endothelial cells (Figure 5A). In addition, fibroblasts were more
A B

D

E F

C

FIGURE 2

Single cell cluster analysis in patients with ovarian cancer. (A) Single cell data were subjected to PCA dimensionality reduction analysis and the first 50 PC
principal components were selected for subsequent analysis. (B) Umap plots show 25 clusters of cells generated by clustering after dimension reduction.
(C) Umap plot showing cell distribution for different samples. (D) Umap plots show the distribution of cells in each cluster after annotation. (E) Heat map
of signature gene expression in different groups. (F) Histograms show the proportion of infiltrates per cluster of cells in each sample.
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potent based on the TGF-b pathway (Figure 5B). Based on the

fact that SPP1 + Tex is highly active in the SPP1 signaling

pathway, it was demonstrated that the main effect of SPP1 +

Tex is from its marker SPP1 and that it may interact with

fibroblasts (Figure 5C).
Frontiers in Endocrinology 06
3.5 Identification of the prognostic
role of Tex cells

Using single-cell data as reference data, Tex-related cell

content was calculated from the OC dataset in TCGA using the
A B

D

E F

G H

C

FIGURE 3

Identification of characteristic cell clusters. (A) View CD8 + T cell location by distribution of cell signature genes. (B) PCA Dimensionality Reduction
Analysis of T Cell Clusters. (C) Umap shows 14 clusters of cells after dimension reduction. (D) Umap Plot of cell distribution by sample. (E) Bubble
plots showing signature genes for each T cell subcluster. (F) Umap plot showing distribution of CD8marker. (G) Umap plots show results after
annotation of T-cell clusters. (H) Histogram plot showing cell proportions for each sample.
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CIBERSORTx algorithm. A heat map showing the expression of

four cells in the TCGA cohort was created (Figure 7A). Patients

with OC were divided into two groups according to the median

expression level. Many samples had expression values of 0 in

ZFP36L2 + Tex cells, which may have affected the analytical

results. hence, we did not perform subsequent analysis on them.

Survival curves showed differences in survival between the high
Frontiers in Endocrinology 07
and low groups of the three Tex cells, with IL32 + Tex and

GNB2L1 + Tex cells not being associated with survival

(Figures 7B, C), whereas SPP1 + Tex cells showed a correlation

with survival, and the high group had a poor prognosis

(Figure 7D). In addition, univariate cox regression demonstrated

that SPP1 + Tex cells are an unfavorable prognostic factor for

OC (Figure 7E).
A B

D

E F

C

FIGURE 4

Cell-enriched pathway analysis. (A-D) GSEA analysis comparing enriched pathways in four Tex cells. (E) Shown the pathway analysis between cells.
(F) Signaling pathway of SPP1 + Tex to other cells.
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3.6 Identification of components of
immune cell infiltration of Tex cells and
their correlation

By performing immune cell infiltration analysis between the

high and low groups of three Tex cells, we found significant
Frontiers in Endocrinology 08
differences in immune cell composition between the high and low

groups. The results showed a significant difference between plasma

cells and CD8 T cells in the high and low GNB2L1 + Tex cell groups

(Figure 8A). There were significant differences in plasma cells,

follicular helper T cells, and neutrophils between the high and

low IL32 + Tex groups (Figure 8B).
A

B

C

FIGURE 5

Network diagram showing (A) WNT, (B) TGF -b and (C) SPP1 related signaling pathways, respectively. The role of TGF-b-related pathways among all
cells was shown by bubble plots, in which TGF-b 1 (TGF-b R1 + TGF-b R2) was generally more active among various types of cell communication
(Figure 6A). In addition, analysis of the effect of related pathways between Tex cells showed that the effect of BMP4- and GDF5-related pathways
differed between Tex cells, in which GNB2L1 + Tex actively interacted with stem cells, while SPP1 + Tex cells communicated mainly with stem cells
through BMP4 (BMPR1B + ACVR2A) and GDF5 (BMPR1B + ACVR2A) (Figure 6B).
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Plasma cells, CD8 T cells, follicular helper T cells, and NK cells

were significantly different between the high and low SPP1 + Tex cell

groups (Figure 8C). The proportion of helper infiltration of plasma

cells, CD8 T cells, and T cell follicles in the low-expression group was

significantly higher than that in the high-expression group, whereas

the proportion of NK cell infiltration in the high-expression group

was higher than that in the low-expression group. This result suggests

that the difference in survival between the high and low SPP1 + Tex

groups may be due to improved immune control.

Radar plots showed the correlation between the four Tex cells

and other immune cells (Figure 8D). A significant negative

correlation between SPP1 + Tex and IL32 + Tex cells, and a

negative correlation was found between SPP1 + Tex and plasma

cells, T cell follicular helper using correlation heat maps (Figure 8E).

In addition, the correlation analysis of the 4 Tex cells also showed

the strongest correlation between SPP1 + Tex and IL32 + Tex cells

(Supplementary Figure 4).
3.7 Identification of differences between
high and low SPP1 + Tex cell groups

By performing differential gene expression analysis between the

SPP1 + Tex high and low groups, we drew a volcano plot for
Frontiers in Endocrinology 09
visualization (Figure 9A). GO analysis revealed that these DEGs

were enriched in terms of extracellular matrix. therefore, SPP1 +

Tex may be associated with extracellular matrix remodeling

(Figure 9B). GSEA analysis, based on KEGG data, showed that

DEGs were significantly enriched in chemokine signaling pathways,

cytokine receptor interactions, ECM receptor interactions, and local

adhesion signaling pathways (Figures 9C, D). In addition, the

expression of immune checkpoints in the SPP1 + Tex high and

low groups was analyzed, and the results showed significant

differences in CD274, NRP1, NRP1.1, CD28, and CD44 between

the high and low groups (Figure 9E). Interestingly, the number of

patients in the high SPP1 + Tex expression group was larger than

that in the low SPP1 + Tex expression group among these immune

checkpoint inhibitors, corresponding to the worse outcome in the

high-expression group.
3.8 In vitro validation

With the previous results, it can be seen that only SPP1 + Tex

has prognostic value in KM analysis and COX analysis. Therefore,

we mainly chose SPP1 as the subject of further study in our

subsequent study. To validate the validity of our model and

identify a potential biomarker, we performed in vitro

experimental validation from selection of SPP1. It can be found

by boxplots that SPP1 has a very high expression level in ovarian

cancer patients (Figure 10A). The SPP1 gene was expressed at a

significantly higher level in ovarian cancer cells A2780 than in

normal ovarian cells IOSE80, which also demonstrated the accuracy

of our experiment (Figure 10B). In addition, we knocked down the

expression level of SPP1 gene in A2780 cells and quantified it again

to verify our knockdown efficiency (Figure 10C). By flow cytometry,

we analyzed the function of SPP1 in ovarian cancer. The results

showed that knockdown of SPP1 significantly promoted apoptosis

in ovarian cancer cells (Figure 10D). Therefore, SPP1 may be a

potential therapeutic target for ovarian cancer.
4 Discussion

The past decade has witnessed a shift in the paradigm of cancer

therapy with the advent of approaches to target or manipulate the

immune system (“immunotherapy”) (23–25). Cancer cells are often

immunogenic while in the organism, but the immune system is

often unable to clear it. This is because cancer cells have

mechanisms that prevent recognition by the immune system,

including central tolerance, ignorance or failure to be activated in

the periphery, extrinsic regulation of T cells (e.g., regulatory T cells,

myeloid-derived suppressor cells, and suppressor cytokines), and

intrinsic dysfunction of T cells, resulting in inappropriate or

excessive antigenic stimulation (anergy and depletion) (26–28).

Antibodies targeting inhibitory pathways, including CTLA-4 and

PD-1, have paved the way for a new generation of cancer

therapeutics (29–31).

T cell depletion is characterized by the overexpression of multiple

inhibitory receptors, including PD-1 (CD279), cytotoxic T-
A

B

FIGURE 6

Analysis of cell-related pathways. (A) Bubble plots demonstrate the
role of TGF-b related pathways across all cells. (B) Bubble plots
demonstrate the role of Tex cell-associated pathways.
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lymphocyte antigen-4 (CTLA-4, CD152), lymphocyte activation gene

3 (Lag-3), T cell immunoglobulin domain and mucin domain 3 (Tim-

3), CD244/2B4, CD160, T cell immune receptor-containing Ig and

ITIM domains (TIGIT), and other receptors (32). Blocking the PD-1
Frontiers in Endocrinology 10
pathway partially reverses failure and leads to reduced viral or tumor

burden, which is a breakthrough (33, 34). These data suggest that Tex

is not an ultimate dysfunction but can be revitalized and is important

for the treatment of diseases, including cancer.
A B

D

E

C

FIGURE 7

Identify Tex-related cellular features. (A) Heat map showing expression of four Tex-related cells in the TCGA cohort. (B-D) Survival curves showing
survival differences between the three Tex cells in the high and low groups divided according to the median. (E) Forest plot showing the results of
univariate cox regression.
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To reveal the heterogeneity of T cell-associated subclusters in

OC, we performed an in-depth analysis of single-cell transcriptional

profiles and clinical information of patients with OC. By

performing further clustering of T cell-associated clusters, we

annotated a total of 14 T cell subclusters. We then explored the

immune landscape of four different Tex and could clearly see a

significant correlation between SPP1 + Tex and NKT cells. A large

amount of RNA-seq expression data combined with the
Frontiers in Endocrinology 11
CIBERSORTx tool and TCGA were labeled with cell types from

our single-cell data. In all OC patients, we found that the higher the

abundance of SPP1 + Tex cells, the worse prognosis of the patients.

We found a greater association between SPP1+ Tex and NKT cells

by cell communication analysis. NKT cells are T cells with T-cell

receptors that primarily recognize lipid antigens presented by CD1d. In

cancer, NKT cells tend to play different roles, and type I NKT cells,

which activate NK and CD8+ T cells by producing interferon-g, are
A B

D

E

C

FIGURE 8

Clinical value of Tex cell clusters identified by our scRNA-seq analysis in patients from the TCGA OC cohort. (A-C) Difference in overall cellular
infiltration between high and low groups according to median values for the 3 Tex cells. (D) Radar plots show the correlation of 4 cells with other
immune cells. (E) Heat map showing correlation between all cells. * means <0.05,** means <0.01,*** means <0.001. ns means >0.05.
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mostly protective (35). In contrast, type II NKT cells, characterized by

a more diverse T cell receptor recognizing CD1d-presented lipids,

predominantly suppress tumor immunity (36). Moreover, type I and

II NKT cells counter-regulate each other and form a novel

immunomodulatory axis (35). Thus, manipulating this balance along

the NKT regulatory axis may be critical for cancer immunotherapy.
Frontiers in Endocrinology 12
In addition, we found that SPP1 + Tex significantly enhanced

the regulation of cell adhesion compared to other Tex cells. Unlike

most other tumor types that metastasize via the vasculature, OC

metastasizes predominantly via the transcavitary route within the

peritoneal cavity (37). In the peritoneal cavity, tumor-mesothelial

adhesion is an important step in cancer dissemination (38).
A B

D E

C

FIGURE 9

Differential enrichment analysis between high and low SPP1 + Tex groups. (A) Volcano plot of differentially expressed genes analysis between high
and low groups. (B) GO enrichment analysis bubble plot. (C) Ridge plots for KEGG enrichment analysis. (D) Pathway plots for GSEA enrichment
analysis. (E) Box plots show results of immune checkpoint analysis between SPP1 + Tex high and low groups. * means <0.05,** means <0.01,
*** means <0.001. ns means >0.05.
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therefore, we reasoned that cell adhesion pathways could be

potential pathways to inhibit OC.

Immunocyte infiltration analysis showed that the proportion of

plasma cell, CD8 T cell, and follicular helper T cell infiltration in the

low-expression group was significantly higher than that in the high-

expression group. Plasma cell infiltration in OC has a significant
Frontiers in Endocrinology 13
impact on tumor progression and prognosis (39). Follicular helper

T cells are specialized providers of T cells that contribute to B cells

and the formation of germinal center responses, and numerous

studies have demonstrated their important role in various

malignancies (40, 41). Immune checkpoint inhibitor analysis

revealed that the levels of immune checkpoint inhibitors were
A B

D

C

FIGURE 10

In vitro experiments validated SPP1 as a potential target. (A) Boxplot showing differential expression of SPP1 gene between ovarian cancer patients
and normal patients. (B) Histogram showing expression levels of SPP1 gene in normal ovarian cells and ovarian cancer cells. (C) Histogram showing
knockdown of SPP1 gene expression levels in ovarian cancer cells. (D) Flow cytometry scatter plot showed that SPP1 gene could affect apoptosis of
ovarian cancer cells. *** means <0.001.
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significantly higher in the high SPP1 + Tex expression group than

in the low SPP1 + Tex expression group. This corresponds to the

outcome of poor prognosis in the high-expression group.

Additionally, patients in the high SPP1 + Tex group may benefit

more from anti-immune checkpoint inhibitors. In addition, we

found that only SPP1 + Tex had better prognostic efficacy among

the four previously studied Tex. Therefore, we selected SPP1 for

further study in ovarian cancer. Finally, we verified in vitro that

SPP1 expression was significantly higher in ovarian cancer cells

than in normal ovarian cells. By flow cytometry, knockdown of

SPP1 in ovarian cancer cells could promote tumorigenic apoptosis.

SPP1 may be a potential therapeutic target for ovarian cancer.

Also, we must acknowledge the potential limitations of our

analysis. First of all, our study is based on the analysis of public

databases. Therefore, further multicenter, large sample, prospective

studies that may follow are needed. Secondly, the screened gene

SPP1 was only partially phenotypically experimented, and further

exploration about the molecular mechanism needs to be

followed up.

In addition, the cell type-specific marker expression patterns

described in this study may contribute to a better understanding of

the heterogeneity and biological characteristics of OC. The present

work revealed markers for cells of different Tex subsets that may be

better in diagnostics or other biological experiments. In conclusion,

our study provides new insights into the heterogeneity of OC and

may contribute to the development of new and efficient therapies

for OC.
5 Conclusions

This is the first study to provide a more comprehensive

understanding of the heterogeneity and clinical significance of

Tex cells in OC, which will contribute to the development of

more precise and effective therapies.
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