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The thymus gland is a central lymphoid organ in which developing T cell precursors,

known as thymocytes, undergo differentiation into distinct type of mature T cells,

ultimately migrating to the periphery where they exert specialized effector functions

and orchestrate the immune responses against tumor cells, pathogens and self-

antigens. The mechanisms supporting intrathymic T cell differentiation are

pleiotropically regulated by thymic peptide hormones and cytokines produced by

stromal cells in the thymic microenvironment and developing thymocytes.

Interestingly, in the same way as T cells, thymic hormones (herein exemplified by

thymosin, thymulin and thymopoietin), can circulate to impact immune cells andother

cellular components in the periphery. Evidence on how thymic function influences

tumor cell biology and response of patients with cancer to therapies remains

unsatisfactory, although there has been some improvement in the knowledge

provided by recent studies. Herein, we summarize research progression in the field

of thymus-mediated immunoendocrine control of cancer, providing insights into how

manipulation of the thymic microenvironment can influence treatment outcomes,

including clinical responses and adverse effects of therapies. We review data obtained

from clinical and preclinical cancer research to evidence the complexity of

immunoendocrine interactions underpinning anti-tumor immunity.

KEYWORDS

thymus, thymus-derived peptide hormones, T cell subsets, immunoendocrine
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1 Introduction

T lymphocytes (T cells) are critical orchestrators of the adaptive immune response that

optimally eliminates tumor cells. The thymus is uniquely committed to T cell production

by providing an inductive microenvironment in which bone marrow-derived progenitors

undergo proliferation, T cell receptor (TCR) gene rearrangements and differentiation into

mature T cells. Normal thymic architecture is essential for the proper development of T

cells, which is mediated by interactions between resident thymic T cells (thymocytes) and

thymic epithelial cells (TEC). TEC expressing the autoimmune regulator (AIRE) maintain
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1168186/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1168186/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1168186&domain=pdf&date_stamp=2023-07-17
mailto:wilson.savino@fiocruz.br
mailto:a.lepletierdeoliveira@griffith.edu.au
https://doi.org/10.3389/fendo.2023.1168186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1168186
https://www.frontiersin.org/journals/endocrinology


Savino and Lepletier 10.3389/fendo.2023.1168186
immune central expressing the autoimmune regulator (AIRE) to

maintain immune central tolerance by guiding the clonal deletion of

autoreactive thymocytes and development of regulatory T cells

(Treg) (1). Mature T cells egress from the thymus and enter the

bloodstream, participating as a central component of the adaptive

immune system as mediators of anti-tumor immunity (2, 3).

Accordingly, therapies harnessing cytotoxic T cells have markedly

improved the care of patients with multiple types of cancer (3, 4).

Different from immunotherapies based on adoptive T cell therapy

and immune-checkpoint inhibitors (ICI, designed to target the

immune-inhibitory receptors CTLA-4, PD1 and TIGIT on T

cells), conventional which are designed to target the immune-

inhibitory receptors CTLA-4, PD1 and TIGIT on T cells,

conventional cyto-ablative cancer therapies (i.e. chemotherapy

and radiotherapy) directly target the tumor cell. These

conventional cancer therapies lead to damage of the thymic
Frontiers in Endocrinology 02
structure, with significant impairment of mature TEC generation

and the naïve T cell repertoire, a hallmark of thymus atrophy

(Figure 1A) (5, 6).

In comparison to T cells, the role of thymic hormones in

controlling tumor progression is understudied. Thymic peptide

hormones, including thymosins, thymulin and thymopoietin, are

secreted by TEC and can either act locally on thymocytes or

circulate in the periphery to impact the differentiation and

function of T cells and other immune subsets (1, 7, 8). Purified

peptides from the thymus as well as thymic peptide analogues and

cytokines have been trialled in several studies investigating their

impact on the response and tolerability of standard chemotherapy,

radiotherapy, or both (9, 10). As such, revealing the relationship

between thymic hormones/cytokines, T cells and tumor cells may

lead to novel strategies to improve the outcome of patients

with cancer.
FIGURE 1

Harnessing the thymic microenvironment to improve cancer therapy. (A) Conventional cancer therapies, including chemotherapy and radiotherapy,
causes the thymus to transiently involute due to loss of TEC and thymocytes. (B) Cytokines and growth factors produced by the thymic
microenvironment can be used as adjuvants for cancer therapy. i. IL-22 is produced intrathymically by T cells and drive thymic regeneration
following radiation damage, by inducing TEC proliferation. ii. BMP4 is produced by thymic endothelial cells in response to radiation and stimulate
self-renewal of TEC progenitors (TEPC). iii. KGF is produced by thymic fibroblasts in the fetus and by mature thymocytes in the adult thymus. KGF
has an important role in repairing epithelial tissues, inducing TEC proliferation and differentiation. iv. RANKL is mainly provided by positively selected
CD4+ thymocytes and innate lymphoid cells, and controls central tolerance by inducing mTEC proliferation, differentiation, and regeneration. It is
possible that RANKL blockade interrupts central tolerance and unleashes cytotoxic T cells (CTL) possessing TCR with self-reactive features to
recognize tumor cells expressing self-antigens.
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2 Intrathymic T cell differentiation

The thymus, a primary lymphoid organ where differentiation of

T cells take place, is a source of a variety of soluble immune-related

moieties, including cytokines, chemokines, classic hormones, and

neurotransmitters. Additionally, key interactions occur through

cell-cell and cell-matrix interactions. Intrathymic T cell

development has been extensively reviewed in the last few years

by several research groups (11–15). During intrathymic T cell

differentiation, bone marrow-derided T cell precursors enter the

thymus through blood vessels at the corticomedullary junction

where they encounter the thymic microenvironment. The thymic

tridimensional network is constituted of cellular components, such

as TEC, thymic dendritic cells, macrophages and fibroblasts, as well

as secreted non-soluble and soluble molecules such as the

extracellular matrix proteins (including among other fibronectins

and laminins), cytokines (as interleukin (IL)-2, IL-6, IL-7, IL-22 and

RANKL), chemokines (CXCL12, CCL4, CCL7, CCL19 and CCL25),

thymic hormones (as thymosin, thymopoietin, and thymulin),

growth factors (as BMP4, KGF and FLT3) and different typical

soluble components of nervous tissues, including as neuropeptides

and neurotransmitters.

The thymus is histologically divided in lobules, each one

comprising two main regions: the cortex and the medulla.

Immature CD4-CD8- double-negative (DN) and CD4+CD8+

double-positive (DP) thymocytes are in the cortex, whereas

mature CD4+ or CD8+ single-positive (SP) thymocytes are in the

medulla. In physiological conditions, these SP cells leave the thymus

to colonize the T-dependent regions of secondary lymphoid organs.

This process is under the control of the thymic microenvironment.

During intrathymic T cell development, thymocytes are exposed to

interactions involving the TCR and major histocompatibility

complex (MHC) proteins expressed by TEC and dendritic cells.

TCR-expressing DP developing thymocytes are rescued from

programmed cell death during positive selection by interaction

with self-antigens presented to the TCR by MHC molecules.

Those thymocytes that were positively selected move towards the

medulla to interact with self-antigens presented by AIRE-expressing

medullary TEC (mTEC), being thus tested for negative selection. If

this is the case, differentiating thymocytes will undergo apoptosis,

due to high avidity interaction of the TCR with self-antigens

presented by the MHC class I or class II molecules expressed by

microenvironmental cells.

Positioning of developing thymocytes to specialized thymic

microdomains depend on multiple interactions including cell-cell

and cytokine/chemokine-mediated interactions. For example,

CXCL12 is secreted by TEC, and preferentially attracts immature

DN and DP cells, by ligation with the receptor CXCR4. The

chemokine CCL25 also attracts immature thymocytes and its

receptor, CCR9, is expressed at all stages of murine thymocyte

differentiation. Notably, alike the thymic microenvironment that

guide the development of thymocytes, reciprocally thymocytes

control the differentiation and organization of TEC (Figure 1B), a

process commonly known as thymic cross-talk (16, 17). One of the

classical examples of this bidirectional interaction between

thymocytes and the thymic stroma is provided by the interactions
Frontiers in Endocrinology 03
between thymocytes, mTEC and dentric cells, which result in

deletion of autoreactive T cells and the generation of natural

regulatory T cells at the same time that the developing

thymocytes control the composition and complex three-

dimensional organization of the thymic medulla (16).

Overall, in physiological conditions, mature CD4+ and CD8+ SP

thymocytes exit the thymus to populate the peripheral lymphoid

organs and participate in adaptive immune responses, including

those underpinning anti-tumor immunity. Of note, thymic-derived

hormones, cytokines, and growth factors can be manipulated to

improve responses to cancer therapy, as summarized in

Figures 1B, 2.
3 Thymic hormones affect tumor
cell biology via direct and immune-
related mechanisms

In addition to the above cited molecules secreted

intrathymically, we can find the thymic peptides, being

considered as part of a heterogenous family of polypeptide

hormones synthesized within the thymus. Studies with purified

native thymic peptides and analogue peptides have shown a variety

of regulatory effects on oncogenic diseases, mediated both by

interactions with the host’s immune compartment (18, 19) and

direct interaction with tumor cells (20–22). The effect of the main

thymic peptides able to modulate tumor progression is summarized

in Figure 2A and described below.
3.1 Thymosins

Includes two major families termed as a and b, which are

classically regarded as main regulators of intrathymic T cell

differentiation (1, 23). Besides, thymosins can also impact other

immune cell types and tumor cells.
3.1.1 Thymosin a1 (Ta1)
Ta1 represents a varied range of targets for its immune-

enhancing activity and has shown promising results in improving

immune responses in different types of malignancies (10). Ta1
increases the number of tumor-infiltrating CD4+ and CD8+ T cells

in melanoma and breast cancer xenograft models (24) due to its role

in induction of T cell differentiation, enhancement of IFN-g and IL-

2 production, and downregulation of T cell apoptosis (25, 26).

Besides its effect on T cells, Ta1 has been reported to accelerate the

replenishment and maturation of macrophages in the bone marrow

of mice severely damaged by the chemotherapy (27) and block the

intratumoral accumulation of myeloid suppressor cells in a mouse

subcutaneous xenograft tumor model (28). Besides modulating the

host immune system, Ta1 can act directly on tumor cells, exhibiting

the ability to restrain tumor growth by its proapoptotic and anti-

proliferative properties demonstrated in human leukemia cells lines

(20) and preclinical cancer models (29), including prevention of

tumor progression in immunosuppressed mice (30, 31).
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3.1.2 Thymosin b4 (Tb4)
It is the most abundant thymic hormone among the thymosin

family, with regenerative and anti-inflammatory properties, being

expressed not only in the thymus but also in many other tissues (32).

Tb4-derived synthetic peptides have been shown to induce the

angiogenesis, invasion and metastasis of melanoma tumor cells

when administrated in vivo (21). Corroborating with its pro-

tumorigenic role, Tb4 gene silencing suppressed proliferation and

invasion of NSCLC cells (22). Inversely, decreased expression of this

hormone has been associated with poor prognosis in patients with

multiple myeloma (20), while overexpression of Tb4 led to decreased
proliferative and migratory capacities of tumor cells in a mouse

model of multiple myeloma (33). These data evidence a dual role of

Tb4 in cancer, either promoting or inhibiting tumor progression.

3.1.3 Thymosin b10
Thymosin b10 has multiple pro-tumorigenic roles. Its

overexpression correlates with disease progression in bladder

cancer (34), hepatocellular carcinoma (35), NSCLC (36), and
Frontiers in Endocrinology 04
pancreatic cancer (37). Thymosin b10 has been shown to

promote tumor-associated macrophage conversion into

immunosuppressive M2 types and favor progression of lung

adenocarcinoma (38). On the other hand, administration of

thymosin b10 to a xenograft model of human ovarian cancer

inhibited tumor cell invasion and metastasis (39) and induced a

high rate of apoptosis in ovarian cancer cell lines (40).

3.1.4 Thymosin b15
It has been pointed as a novel regulator of tumor cell motility

and is upregulated in metastatic prostate cancer (41). In addition,

high expression of thymosin b15 has been correlated with the

metastatic potential of mouse lung carcinoma and human breast

carcinoma cells (42).

Therefore, while Ta1 presents vast anti-tumors effects and have

been shown synergic effects with multiple anti-cancer therapies

(reviewed in section 7), the members of the beta thymosin family

can either stimulate or inhibit tumor progression, differentially

interfering with prognosis according to the type of cancer.
FIGURE 2

Thymus-derived peptides and immune cells regulate tumor growth. (A) Thymic peptide hormones are synthesized within the thymus and exert
important regulatory effects on tumor cells. Thymosin a1 can induce anti-tumor immune responses and directly act on tumor cells to retrain tumor
growth. Although b-thymosins (herein exemplified by b4, b10 and b15) can facilitate tumor progression, the b4 and b10 isoforms have also been
reported to present suppressive tumor effect is some disease settings. Despite the paucity of available data, thymulin appears to promote anti-tumor
effects, while high levels of thymopoietin have been associated with tumor cell proliferation and survival. The chemical structure of synthetic
thymosin b4, thymulin and thymopoietin is shown. (B) The thymus provides the physiological microenvironment critical for the development of
different types of T cells. It is possible that immature T cells expressing both CD4 and CD8 co-receptors can migrate to the immune periphery
exerting either cytotoxic or immunosuppressive effects depending on the disease context. Similarly, conventional CD4+ T cells and unconventional T
cells (MAIT, NKT and gd T cells) can exert dual effect on tumor cells. Cytotoxic CD8 + T cells are the main effector cells to promote anti-tumor
immunity, while regulatory T cells expressing both CD4 and the transcription factor Foxp3 have been largely investigated for its immunosuppressive
properties and ability to hamper effective anti-tumor immune responses. The signals represent the role of hormones and T cells in controlling (✓) or
inducing (✗) tumor progression.
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3.2 Thymopoietin

It is a thymus-derived polypeptide involved in the modulation of

tumor cell biology. Studies conducted in gastric cancer patients showed

that high levels of thymopoietin were associated with a significantly

poorer overall survival, and that knockdown of this hormone

suppressed gastric cancer and glioblastoma cell proliferation and

survival (43, 44). In pancreatic cancer cells, knockdown of

thymopoietin not only inhibited cell proliferation but also suppressed

migration, invasion, and metastasis (45). Accordingly, long non-coding

thymopoietin RNA 1 (TMPO-AS1) is highly expressed in

hepatocellular carcinoma cells and promotes tumor development by

enhancing cell viability, proliferation, and stemness and inhibiting

apoptosis (46). Besides its contribution to tumor cell expansion and

metastasis thymopoietin induced non‐significant reduction in the

number of patients experiencing neutropenia during chemotherapy

(47). Overall, the scarce data on the role of thymopoietin in cancer

outcome remains to be better defined.
3.3 Thymulin

The thymic hormone thymulin is a zinc-containing nonapeptide

specifically produced by TEC, which can be simultaneously detected with
Frontiers in Endocrinology 05
Ta1 and thymopoietin in the epithelial network of the human thymus

(48, 49). A non-exhaustive list of thymulin biological functions can be

seen in Box 1.

The role of thymulin in cancer is poorly understood and the data

available so far suggest that thymulin can induce anti-tumor immunity and

inhibits proliferation of tumor cells. An early study investigating young

patients affected by acute lymphoblastic leukemia demonstrated a positive

correlation between the levels of zinc-bound active thymulin and

lymphocyte proliferative responses to mitogens, at the same time the

proliferation rate of human lymphoblastoid cells reduced when active

thymulin was added to the cultures (52). Interestingly, we have previously

identified thymus atrophy in amousemodel of lung cell carcinoma, which

was abolished after treatment with zinc chloride (a stimulator of thymulin

secretion) (53), indicating that thymulin and tumor cells may play a two-

way regulatory role in the thymic microenvironment.

4 Thymus-derived immune cells
play a complex role in cancer,
either promoting or inhibiting
tumor progression

T cells are regarded as the main players in tumor immunity. The

thymus generates naïve T cells able to differentiate into populations
Box 1 Biological Functions of the Thymic Hormone thymulin.

•

Increase of CD3, CD4 and CD8 expression in immunodeficient children
•

Upregulation of NK activity in humans and mice
•

Stimulation and activation of mouse intraepithelial T lymphocytes
•

Increase in IL-2 production by normal mouse thymocytes and nude mouse splenocytes
•

Increase in IL-1 and decrease in IL-6 and TNF-a production by peripheral blood mononuclear cells from normal volunteers
•

Increase in IgA and IgE synthesis in patients with ataxia telangectasia
•

Increase of LPS-induced polyclonal B cell responses of CBA/N mice
•

Enhancement of T cell-dependent macrophage-mediated killing of microorganisms
•

Delayed skin graft rejection time in normal mice
•

Reduction in anti-DNA antibody production and glomerulonephritis in mice undergoing lúpus erithematosus
•

In vitro modulation of T cell markers in human rheumatoid arthritis and systemic lupus erythematosus patients,
•

In vivo prevention of encephalomyocarditis virus-induced diabetes and myocarditis in mice
•

Decrease in hind paw swelling and anti-type II collagen antibody production in experimental arthritis in rats
•

Protection against chronic septic inflammation in mice
•

Anti-inflammatory and analgesic action in neuropathic pain
•

Therapeutic reversion of asthma-induced pathology in the respiratory tract
•

*Based on references (1, 50, 51)
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of effector and memory T cells, providing long-lasting immune

responses to diverse tumor antigens. Among the immune cells that

contribute to anti-tumoral responses, conventional T cells (T cells

that express an ab T cell receptor, as well as a co-receptor CD4 or

CD8), have attracted the attention of tumor immunologists and

clinical scientists. These cells present highly diverse TCR, each

composed of a heterodimeric ab chain, to recognize processed

antigenic peptide presented by MHC molecules on other cells

(Figure 1B). Besides conventional T cells, other types of T

lymphocytes also developed in the thymus, such as Treg and

innate-like unconventional T cells (including MAIT, NKT and gd
T cells), orchestrate the immune responses against tumor cells (54,

55), as summarized in Figure 2B and reviewed below.
4.1 CD8+ T cells

Cytotoxic T cells expressing cell-surface CD8 are the most

powerful effectors in the anti-tumor immunity and constitute a

critical determinant of response to cancer immunotherapies (2, 56).

Once conjugated to a tumor cell, secretory granules in the CD8+ T

cell cytoplasm traffic to the immunological synapse and release a

cargo of deadly cytotoxic proteins (mostly represented by perforin

and granzymes) leading to membrane damage, induction of reactive

oxygen species, nuclear envelope rupture and DNA damage, and

resulting in tumor cell death (57). Besides cytotoxic events

unleashed by direct interaction with tumor cells, the protective

role of CD8+ T cells in the tumor microenvironment is associated

with release of effector cytokines (including IFN-g, TNF-a and IL-

2) that sculpts the local immune response to cancer (58). Primary

CD8+ T cells isolated from the human blood and modified with

chimeric antigen receptors (CAR) to express high affinity to tumor

antigens have been large used in the clinical practice to treat patients

with hematological malignancies (59, 60). However, CD8+ T cell

exhaustion is a major limitation to the efficacy of cytotoxic anti-

tumor responses, particularly limiting the application of CAR T

cells to solid tumors, due to persistent TCR activation in the tumor

microenvironment (61). To overcome exhaustion in primary CD8+

T cells and CAR T cells, combination therapy with ICI has emerged

as an attractive strategy for increasing efficacy (62, 63). Whereas

CAR T cell therapy targeting CD8+ T cells to tumor antigen has

shown remarkable efficacy for treating patients with certain B cell

driven hematological malignancies (64), ICI has significantly

enhanced life-expectation in patients with a broad range of solid

tumors (65–68) and became the first-line therapy for advanced

melanoma patients, given its improved clinical efficacy and

improved safety profile in comparison with conventional cancer

therapies (65).
4.2 Conventional CD4+ T cells

CD4+ T cells have largely been neglected because most tumors

lack MHC II expression and cannot directly be recognized by these

T cells. However, CD4+ T cells play helper functions through

secretion of cytokines that orchestrate the immune response and
Frontiers in Endocrinology 06
have a dual role in the tumor microenvironment. They can destroy

the tumor vasculature, induce cellular senescence of cancer cells,

and help CD8+ T cells in the effector phase, a role mostly associated

with T-helper (Th)1 responses mediated by IL-2 and IFN-g
producing CD4+ T cells (69). Besides Th1 cells, IL-17-producing

Th17 cells may also have potent anti-tumor immune effects by

recruiting immune cells into tumors, activating effector CD8+ T

cells, or even directly by converting toward Th1 phenotype and

producing IFN-g (70, 71). Th2 cells have also been shown to destroy

tumor cells by inducing necrosis (72) and the therapeutic

effectiveness of Th2 CD4+ CAR T cells has been demonstrated in

a preclinical model of myeloma (73). Contrarily to these effects, Th2

and Th17 CD4+ T cells are also thought to have pro-tumorigenic

activities mainly involving induction of cytokines that can promote

growth, proliferation, and invasion of tumor cells, including IL-4

and IL-17, respectively (74–76).
4.3 Treg cells

These are an immunosuppressive subset of CD4+ T cells

characterized by the constitutive expression of the transcription

factor forkhead box protein 3 (FoxP3) and present essential roles in

maintaining central tolerance. FoxP3+ natural Treg cells are

generated in the thymus as a functionally mature T cell

subpopulation specialized in immune suppression, hindering

immunosurveillance against cancer development and hampering

effective anti-tumor immune responses (77, 78).

Treg cells exert their immunosuppressive effects through

various cellular and humoral mechanisms: (i) consumption of IL-

2, thus inhibiting the proliferation and differentiation of

conventional T cells (79), (ii) production of the inhibitory

immune cytokines, IL-10 and TGF-b (80) and (iii) high

expression of CTLA-4, which induces suppression of antigen-

presenting cells (81). Treg expansion is associated with induction

of c-Fos and elevated transcription of FoxP3 (82). FoxP3+ Treg cells

with an activated phenotype can be enriched in tumors in

comparison with peripheral blood and are associated with a poor

prognosis in patients with various types of cancer, including

cervical, renal, melanomas, and breast cancers (83, 84). Inversely,

Tregs have also been associated with improved survival in

colorectal, head and neck, and esophageal cancers (85, 86). This

apparent paradoxical role of Treg may be associated with the fact

that most of the studies rely on the solely detection of FoxP3

expression, which is transiently increased in activated conventional

CD4+ T cells and cloud the specific identification of Treg (87, 88).
4.4 CD4+CD8+ double positive (DP) T cells

Classically, DP T cells are considered as a developmental stage

in the thymus, before maturation as either CD4+ or CD8+ SP cells,

but have been described in the peripheral blood and tissues in

various settings, including in human cancers and some infectious

diseases (89–91). The role of DP T cells in the periphery remains

largely understudied, and it is unclear whether these cells escape the
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thymus in their immature stage expressing both co-receptors or if

they originate from mature SP thymocytes that re-express the

opposite co-receptor. DP T cells have been described in blood of

patients with melanoma, bladder, prostate, kidney cancers (89, 92).

The conflicting literature regarding the role of DP T cells —

cytotoxic vs. immunosuppressive (93) — may indicate that these

cells are heterogeneous and/or show pleiotropic functions that need

to be investigated in each disease context. DP T cells favor the

polarization of naïve CD4+ T cells into a Th2 functional profile (89).

This previously unrecognized capacity of DP T cells was observed in

healthy donors and exacerbated in patients with urologic cancer,

who also showed elevated levels of circulating DP T cells (89).
4.5 Mucosal-associated invariant T
(MAIT) cells

These are a class of innate-like T cells that exists in a pre-primed

memory state and express a semi-invariant TCR that recognizes

non-peptide antigens presented by the non-polymorphic MHC

class I-like molecule, MRI (94). MAIT cells express CD8 in

humans and either CD4 or CD8 in mice (95). Due to their

multiple functions often associated with successful anti-tumor

immune responses, MAIT cells represent an attractive population

to explore for their potential roles in anti-tumor immunity (96).

However, these cells represent a controversial topic in the field of

tumor immunology with studies showing conflicting results

regarding as to whether they contribute to tumor growth, tumor

regression, or play a neutral role in human cancers (97, 98). Once

activated, tumor-infiltrating MAIT cells display decreased IFN-g
and TNF-a and increase IL-17 production. Early investigations of

MAIT cells in cancer suggested they may represent a potential

positive prognostic marker. Indeed, a study screening of ~18,000

human tumors across 39 malignancies found a significant

association of the KLRB1 gene (encoding CD161, a marker of

MAIT cells), indicating a favorable prognosis (99).
4.6 Natural killer T (NKT) cells

These are a small population of true thymus-dependent T cells

which are distinct from conventional T cells. Their TCR recognizes

lipids rather than peptides and is restricted by a non-classical class

I-like (class Ib) molecule CD1d (100, 101). Both type I and type II

NKT cells play critical roles in tumor immunity; most often type I

NKT cells promote anti-tumor immunity and type II NKT cells

suppress it (102, 103). Moreover, both type I and II NKT cells have a

myriad of interactions with other immune effector and regulatory

cells, forming a complex web of immune regulation.

Type I and II NKT cells can cross-regulate each other, forming

an immunoregulatory circuit that comes into play in the early steps

of immune responses (104). When type I NKT cells are absent, both

Tregs and type II NKT cells can exert suppressive activity upon the

same tumor, and this situation mimics that often found in cancer

patients, in which type I NKT cells are deficient in numbers or

function. The role of type I NKT cells in protection against cancer
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has been found to be largely dependent on production of Th1

cytokines, especially IFNg, even though NKT cells have lytic activity

and could potentially directly lyse tumors expressing CD1d

(102, 105).
4.7 TCRgd T cells

These are the non-classical thymus-derived cell subgroup

characterized by expression of gd heterodimeric T cell receptor

(TCRgd) on cell surface, playing important roles in tumor

immunity. Depending on the microenvironment, different gd T

cell subsets can have anti-tumor or pro-tumor activities (106).

TCRgd T cells can enhance the anti-tumor ability of other

immune cells by secreting cytokines or expressing costimulatory

molecules (107). Accordingly, this cell population has been safely

used in clinics for the treatment of NSCLC and breast cancer (108).

gd gd T cell-based immunotherapy appeared to be safe and well-

tolerated in patients (109, 110). However, TCRgd T cells represent

one of the main source of IL-17 in the tumor microenvironment,

promoting ovarian cancer and pancreatic cancer progression (111,

112). In these studies infiltrating TCRgd T cells could also directly

induce the apoptosis of anti-tumor immune cells (112) at the same

time they have shown to promote tumor development and

metastasis by enhancing angiogenesis and recruiting inhibitory

cells to the tumor site (113). Thus, it urges that the mechanisms

controlling the anti-tumor versus pro-tumor activity by this cell

type must be clarified, so that to better design therapeutic strategies

targeting TCRgd T cells.

In summary, unconventional T cells differ from their

conventional counterparts in the rapidity of their initial response,

the way they recognize and respond to nonpeptidic molecules, as

well as their tissue distribution within the body (114). As the

complexities of the immune system continue to be elucidated, it

has become increasingly apparent that conventional and

unconventional T cells operate in fundamentally different ways to

mediate and coordinate host’s immune response to tumor cells.
5 Thymic cancer and its impact on T
cell development

Thymomas are rare neoplasms of the thymic epithelial cells and

present several abnormalities that may affect normal T cell

development (91). Theories attempting to explain the association

between autoimmune disorders and thymomas are based on the

failure of positive and negative selection of thymocytes, the absence

of regulatory mechanisms provided by AIRE, and on a Treg-poor

environment in the neoplastic thymus (115). Myasthenia gravis is

the most common disorder associated with thymoma, often linked

to T cell-mediated autoimmunity in 30% of patients with thymoma

(116, 117). Pioneer work screening tumors excised from patients

with thymomas revealed their endocrine contents and MHC

molecules, evidencing that thymoma epithelial cells contained

large amounts of thymulin, thymosin a 1 and thymopoietin (48)

and did not express the MHC class II-encoded molecules, HLA II-
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DR and -DC (117). These were the first studies showing that

thymoma epithelial cells are endocrinologically active but present

a defective antigen-presenting cell function, a potential mechanism

for thymoma-associated autoimmunity. The finding that

immunosurveillance towards cancer cells may be impaired before

the diagnosis of thymoma (118) may challenge current theories

attempting to explain immune disorders in patients with thymoma,

suggesting that some immune events may precede the thymoma

itself. It is likely that a combination of mechanisms, yet to be

elucidated, is responsible for immune disorders in patients with

thymoma. Again, further studies are crucial for design therapeutic

alternatives to this cancer.
6 Manipulation of the thymic
microenvironment to support anti-
tumor immunity

Strategies aiming to protect the thymus are required to decrease

side-effects of cyto-ablative cancer therapies (Figure 1A). Cytokines

and soluble mediators secreted by the thymic microenvironment

can impact prognosis of patients suffering from multiple types of

cancer and have been manipulated to promote thymus

regeneration, as reviewed below:
6.1 IL-22

Although IL-22 is not required for the formation or

maintenance of the thymus under steady-state physiological

conditions, it is produced intrathymically by T cells and innate

lymphoid cells, presenting a paracrine role in driving thymic

regeneration following radiation damage through induction of

TEC survival and proliferation (119). Although the regenerative

function of IL-22 is beneficial, its expression is confined to a period

of tissue repair and persistence in the microenvironment helps

tumors to escape cell cycle control and eradication by cytotoxic

drugs. IL-22 is increased in the tumor of patients with non-small

cell lung cancer (NSCLC), pancreatic cancer, gastric cancer and

hepatocellular carcinoma and predicts a poor prognosis, higher

disease stage, and faster tumor progression (120–123). Tumor cells

from both murine and human lungs promote IL-22 production by

memory T cells via induction of IL-1 (124). Expression of its

cognate receptor, IL-22R1, is restricted to the non-hematopoietic

cells, which makes the IL-22-IL-22R1 pathway an attractive target

for cancer therapy.
6.2 Bone morphogenetic protein 4 (BMP4)

It is produced by thymic endothelial cells in response to

radiation, and acts as a regulator of thymic regeneration after

acute injury due to its role in stimulating bipotent TEC

progenitors (TEPC) present in the adult thymus (125, 126).

Accordingly, certain chemotherapeutic drugs reduce production
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of BMP4 and further damage the thymus (125, 126). BMP signalling

has both tumor-promoting as well as -suppressing effects: at the

same time that BMP4 is an important regulator of cell migration

and invasion and induces epithelial–mesenchymal transition

(EMT), an event that is crucial for the ability of cancer cells to

acquire mobility and eventually metastasize, BMP4 can promote

anti-tumor effects (127). TGFb-mediated inhibition of BMP4 has

been reported to promote breast cancer stem cell self-renewal

activity, response to chemotherapy and is a good prognostic

marker for patients with triple negative breast cancer (128). In

mice, BMP4 induces differentiation of colorectal cancer stem cells

and increases their response to chemotherapy (129). High

expression of BMP4 in serous ovarian cancer is an independent

prognostic factor for longer progression-free survival and overall

survival (130). Contrarily to breast, colorectal and ovarian cancer,

high expression of BMP4 in hepatocellular carcinoma promotes

tumor progression (131).
6.3 Keratinocyte growth factor (KGF)

Keratinocyte growth factor (KGF) is a member of the fibroblast

growth factor family mostly produced by cells of mesenchymal origin

and plays an important role in protecting and repairing epithelial

tissues. In the thymus, mesenchymal cells (fibroblasts) enhance the

proliferation of TEC via the production of KGF during fetal

development (132). In the adult thymus, KGF is produced by mature

thymocytes, which mediates thymic epithelial cell proliferation and

differentiation (133). KGF knockout mice are more vulnerable to

sublethal irradiation, and endogenous administration of KGF

attenuates the negative effects of acute thymic injury caused by

chemotherapy and irradiation in middle-aged mice (134). In a phase

III trial involving patients with hematologic malignancies who were

treated with chemoradiotherapy before autologous peripheral blood

progenitor cell adoptive transfer, recombinant human KGF

(palifermin) treatment significantly reduced both the incidence and

duration of severe oral mucositis (135). These data suggest that KGF

can be used as a strategy to decrease adverse effects associated with

cancer therapies.
6.4 RANK ligand (RANKL)

It is a TNF family member produced intrathymically by

positively selected thymocytes and lymphoid tissue inducer cells

(136). RANKL binds to its cognate receptor activator of nuclear

factor kappa-B (RANK) expressed on the surface of mTEC to

induce cellular expansion and differentiation into AIRE+ cells,

establishing central tolerance (137). Clinically, increase in serum

RANKL levels is associated with incidence of breast cancer in

postmenopausal women (138). RANKL inhibition with

Denosumab, a fully humanized antibody, improves bone-

metastasis free survival in patients with breast cancer, prostate

cancer and other solid tumors, an effect known to be associated with

prevention of RANKL-RANK signaling on osteoclasts (139–141). A

recent study using a poorly immunogenic murine melanoma model
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show that transient RANKL blockade interrupt central tolerance

and unleashes T cells possessing immature TCR to recognize tumor

self-antigens and improve response to immunotherapy (142). These

data evidence that the therapeutic value of blocking the RANKL/

RANK axis for cancer therapy is both due to its direct action in

preventing skeletal-related adverse effect and in shaping

intrathymic T cell development.
6.5 Interruption of thymic activity

Therapeutical thymectomy for thymic epithelial tumors has been

an established procedure for more than 40 years and is associated

with several paraneoplastic autoimmune syndromes due to a loss of

central tolerance (143, 144). Although it is assumed that thymectomy

renders immunosuppression due to disturbance in the pool of

conventional T cells in the periphery, a recent study conducted in a

preclinical model of primary melanoma documented that cessation of

thymic activity in adult mice causes preferential reduction of Treg

exports to the periphery, thus increasing the efficacy of anti-tumor

immunotherapies targeting the immune checkpoint inhibitor CTLA-

4 (145). Corroborating these findings, therapeutical thymectomy for

thymoma prevents the increase of Treg cells in the circulation

following immunosuppressive therapy (146).

Apart from its role in Treg export, interruption of thymus

activity by genotoxic chemotherapy induces secretion of molecules

by the thymic microenvironment and creates a chemoprotective

niche harboring surviving lymphoma cells following chemotherapy

(147). In support to these findings, there is evidence that tumor cells

can hide in the thymus and acquire chemo-resistance. The presence

of cancer cells within the thymus has been demonstrated in mice

injected with 3LL lung tumors (148), while athymic mice presented

significantly fewer chemo-resistant lymphoma cells and lived

considerably longer than immunocompetent mice (147).

These data are from pre-clinical experimental models, and

future studies in humans will provide more information on the

impact of thymectomy in anti-tumor immunity and response

to chemotherapy.
7 Efficacy of thymic peptides
in clinical and preclinical
cancer research

Purified thymus extracts are thought to enhance the immune

system of patients with cancer, promoting elimination of tumor

cells and resistance to opportunistic infections, which are often

associated with the use of conventional therapies for cancer (9).

Derivatives of thymic peptides, mostly of thymosins, have been

detected as products of neoplastically transformed TEC and

employed in the early diagnosis and treatment of neoplasms.

Besides, studies in animal models and human patients have

shown promising results in different types of malignancies,

especially when Ta1 was used in combination with other cancer

therapies, as reviewed below:
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7.1 Clinical use of Ta1 in solid tumors

The therapeutic use of the Ta1 synthetic analogue, thymalfasin,

for treating several diseases is currently approved in over 35

countries worldwide for its immunomodulatory activities and

safety (10). Approved indications for medical use include

adjuvant to chemotherapy. Combination of Ta1 with

chemotherapy has been of value to treat oncologic patients, with

reference to melanoma, non-small cell lung cancer (NSCLC) and

hepatocellular carcinoma.

7.1.1 Melanoma
Dacarbazine (DTIC) is considered the benchmark treatment for

advanced melanoma, despite response rates of less than 10% in

contemporary trials. A phase II study analyzing the effect of

combination of DTIC+Ta1+IL-2 in treating patients with

metastatic melanoma showed objective responses in 36% of the

patients analyzed and no safety concerns (149). A following up

study aiming to analyze the effect of DTIC+Ta1+low dose IFN-a in

treating melanoma patients demonstrated response rate of 50%,

associated with increase in CD4+ T cells and NK cell numbers in the

peripheral blood (150). Due to the low cohort size and absence of

Ta1 monotherapy arm for direct comparison, both studies failed to

demonstrate a survival benefit for patients receiving Ta1. In larger

following up randomized trial involving 488 patients with

metastatic melanoma randomly assigned to 5 groups including

DTIC+Ta1+IFN-a; DTIC+Ta1; DTIC+IFN-a (control group), 10

and 12 tumor responses were observed in the DTIC+IFN-a+Ta1
and DTIC+Ta1 groups, respectively, versus 4 in the control.

Response rates ranged from 1.9 to 23.2 months in patients given

Ta1 and from 4.4 to 8.4 months in the control group (151). The

high rates of stable disease (26% to 37%) observed in patients

treated with Ta1 are characteristic of immunotherapy, where the

decline in tumor volume tends to occur slowly and progressively

with continued treatment (152). Although the mechanism

underlying the activity of DTIC+Ta1 is not fully understood, it is

possible that Ta1 potentiates T cell–mediated immune responses

directed against tumor antigens.
7.1.2 NSCLC
Ta1 has been used with chemotherapy to treat NSCLC. A study

performing a systematic review and meta-analysis of 27 randomized

controlled trials in China containing 1925 patients with NSCLC

demonstrated clinical efficacy and safety of combination therapy

with synthetic thymic peptides and chemotherapy. Optimal

conditions for Ta1 treatment included combination with

gemcitabine or navelbine and cisplatin, twice a week, with one 3-

week cycle (153). In another retrospective study, 5746 patients with

margin-free-resected NSCLC patients were divided into the Ta1
group and the control group according to whether Ta1 was used or

not after surgery (154). The 5-year disease-free survival and overall

survival rates were significantly higher in the Ta1 group compared

with the control group (77.3% versus 57.9% and 83.3% versus

65.6%, respectively). This was observed in all subgroups of age, sex,

smoking status, and pathological tumor-node-metastasis stage,
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especially for patients with non-squamous cell NSCLC and without

targeted therapy (154). More recently, phase 2 trial where 69

patients received Ta1 during and after chemoradiotherapy based

on docetaxel and nedaplatin demonstrated significant reductions in

radiation-induced pneumonitis and lymphopenia compared with

control group (36.2% versus 53.6% and 19.1% versus 62.1%,

respectively) (153).

7.1.3 Hepatocellular carcinoma
In a small phase II randomized trial for unresectable hepatocellular

carcinoma where 25 patients were enrolled, Ta1 administration to

patients that have gone through transarterial chemoembolization (a

combination of regional chemotherapy and some form of hepatic

artery occlusion) 5 times weekly for 24 weeks resulted in numerically

higher rates (although not statistically significant) of tumor response

(155). Through 72 weeks, 57.1% (8/14) of patients in the group

receiving TACE + thymalfasin became responders to cytoablative

therapy versus 45.5% (5/11) in the group receiving TACE only.

Among the 8 responders in the group receiving TACE +

thymalfasin, 4 patients became eligible for liver transplant whereas

none of the 5 responders in the TACE-only group became eligible for

transplant. A larger study enrolling a total of 206 patients with small

hepatocellular carcinoma who received liver resections to evaluate the

effect of Ta1 as an adjuvant therapy demonstrated a statistically

significant increase in 5-years overall survival and recurrence-free

survival (82.9% versus 62.9% and 53.3% versus 32.1%, respectively)

for patients that received Ta1 in comparison to those that went

through resection only (156). Therefore, Ta1 as an adjuvant therapy

may improve the prognosis of hepatocellular carcinoma patients.
7.2 Preclinical studies on thymic hormone
using murine models

The first observations that Ta1 could play a protective role in

melanoma came from the work published in 1983 showing that Ta1
was able to protect mice immunosuppressed with 5-flurouracil

chemotherapy from infection by opportunistic pathogens (157). In

two other publications from the same year the group showed that Ta1
could similarly protect mice immunosuppressed with cytostatics or X-

ray irradiation frommetastatic growth and increase survival (30, 31). A

more recent study showed that combination of Ta1 with

cyclophosphamide significantly increased the median survival time of

treated mice, and cured an average of 23% of animals, while none was

cured in mice treated with cyclophosphamide only. This was associated

with increase of T cell numbers, expression of IL-2 receptor and

cytotoxic responses (158). The relevance of IL-2 in potentiating anti-

tumor activity of Ta1 in combination with cyclophosphamide was

further evidenced in mouse model of Lewis lung carcinoma, where

depletion of T cells abolished the positive response to combination

therapy (159). Further, chemo-immunotherapy with 5-fuorouracil (5-

FU)+Ta1+IL-2 had superior activity over all treatments tested as

monotherapies in preventing liver metastases in a rat colorectal
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cancer model (160). To improve Ta1 targeting of tumor cells, Ta1
was combined with RGD (Arg-Gly-Asp), which has been utilized in

delivering anticancer drugs to tumor sites. Results showed that Ta1-
RGD had remarkable anti-tumor effects, and its tumor targeting was

better than that of Ta1 (161).

Further, several lines of evidence converge to the notion that

Ta1 represents a plausible candidate to improve the safety of ICI.

This is evidenced in a murine model of ICI-induced colitis where

Ta1 administration prevented intestinal toxicity by promoting the

indoleamine 2,3-dioxygenase (IDO) 1-dependent tolerogenic

immune pathway (162). Despite improving safety of ICI, Ta1
monotherapy showed clear anti-metastatic benefit in a mouse

melanoma lung metastasis model but no increase in effectiveness

was observed upon addition of anti-PD1 (163).

Altogether, these results provide direct evidence that Ta1 can

significantly affect tumor development in humans and murine

models. As mentioned above, contrasting with Ta1, thymopoietin

expression positively correlates with tumor development (30, 31).

In this respect, it is conceivable that neutralizing thymopoietin

expression might bring therapeutic advances. As regards thymulin,

despite its anti-inflammatory activity well defined (51, 164), data are

still lacking in terms of its potential modulatory role on cancer, and

to our knowledge no clinical trials have been engaged on this aspect.
6 Conclusion and future direction

We have briefly reviewed some of the potential impacts of

thymic-mediated immune and endocrine effects on modulating

cancer evolution, emphasizing the relevance of future studies

aiming to improve cancer prognosis and reducing side effects of

treatments through manipulation of the thymus.

Since thymic-derived immune cells, hormones and cytokines

can circulate in the blood impacting diverse aspects of the host’s

immune system and tumor cell biology, it is important to

understand the immunoendocrine interactions during oncogenic

diseases in humans and in preclinical models. Further, the

possibility of purifying and manipulating thymic peptides and

immature T cells able to recognize tumor self-antigens for clinical

use, makes the thymus an attractive target for cancer therapy.
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